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Graphische Analysis vermittelst des Linienbildes einer Funktion.

Von Prof. Dr. E. MEISSNER, E.T. H., Ziirich.

6. Ganze rationale Funktionen.

Eine ganze rationale Funktion #n-ten Grades ist
dadurch ausgezeichnet, dass ihre #n-te Ableitung konstant
ist. Es ist daher die #-te Evolute ihres Linienbildes ein Kreis.
Die (# — 1)te Evolute ist sonach eine gewdhnliche Kreis-
evolvente, und indem man zu dieser ihre aufeinander-
folgenden Evolventen zeichnet, gelangt man schliesslich
zum Linienbild der Funktion. Um praktisch das Linienbild
zu zeichnen, wird man zur Kontrolle einige Werte der
Funktion und damit die zugehorigen Stitzgeraden g direkt
berechnen bezw. konstruieren. Aber wenn es sich darum
handelt, den Verlauf der Funktion in einem grdssern
Intervall darzustellen, wird man das Linienbild zweck-
missig in der geschilderten Weise als Evolvente zeichnen.
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Abb. 11

In Abb. 11 ist die Funktion

p(u) = 5 — 31 + 3ud — 35 us
dargestellt. Esist po =35, po' = — 3, o’ =6, o = — 4,
und es ist daher C” ein Kreis vom Radius — 4. Dem-
entsprechend sind die Geraden go, g0, g, g einge-
tragen und die Evolventen C, C’' und C” von C" gezeichnet.
C ist das Linienbild der gegebenen Funktion und in der
Abb. 11 fiir das Intervall von o bis z dargestellt.

Von dieser Konstruktion wird bei der Integration
von Differentialgleichungen Gebrauch gemacht, wenn aus-
nahmsweise fiir eine Funktion an einer Stelle die Funktion
und ihre ersten Ableitungen alle Null werden. Ist z. B,
wie in Abb. 12 dargestellt, fir den Wert # = a sowohl
p, wie 2/, p” und p”" gleich Null und erst p®=a von
Null verschieden, so kann die Funktion in der Umgebung
jener Stelle angendhert durch den Ausdruck

(x—a)t
4!
dargestellt werden. Ihre zweite Evolute ist dort angenihert

(Fortsetzung von Seite 335 letzten Bandes.)

ein Kreis vom Radius ¢ und man hat hierzu nur die
zweite Evolvente durch den Punkt O zu zeichnen, wie die
Abb. 12 angibt.

7. Die harmonische Funktion.

Das einfachste Linienbild ist ein Punkt P. Sind seine
rechtwinkligen Koordinaten @, b, so ergibt sich aus Abb. 13
pu) = a cos(u) -+ b sin (%)

d.h. die harmonische Funktion mit der Periode 2 . Schreibt
man p in der Form
p(u) = A cos (u—¢)

so ist die Amplitude 4 dargestellt durch die Linge der
Strecke OP, die Phase ¢ ist der Winkel, den diese Strecke
mit der Polaraxe einschliesst. Die Bestimmungstiicke der
harmonischen Schwingung werden aus dem Vektor OP
ersichtlich. Umgekehrt gentigen alle harmonischen Schwin-
gungen von der Periode 2z der Differentialgleichung
plu) +p"(u) = o, die nichts anderes aussagt, als dass der
Kriimmungsradius o des Linienbildes stets gleich Null ist,
es sich also um einen Punkt handelt.

Durch Addition beliebig vieler solcher Schwingungen
erbilt man wiederum eine Schwingung der selben Art,
und zwar wird sie dargestellt durch den Vektor, der sich
durch geometrische Addition der Vektoren der Teil-
schwingung ergibt.

Die Losung der Gleichung a cos(#) - b sin (#) = ¢
erfordert, jene Stiitzlinien durch den Punkt P (e, 6) in
Abb. 14 zu zeichnen, die von O den Abstand ¢ haben.
Man hat also einfach die Tangenten an den um O
geschlagenen Kreis vom Radius ¢ von P aus zu legen.
Die Radien nach den Beriihrungspunkten schliessen mit
der Polaraxe jene Winkel # ein, die die Losung der
Gleichung ergeben. Natiirlich sind sie nur bis auf Multipla
von 2 7 bestimmt.

Die Losung der Gleichung @, cos (1) - b; sin (#) =
a; cos (1) 4 b, sin (#) wird analog durch die Verbindungs-
gerade der Punkte P (a,,6,) und P (as, b3) gegeben (Abb. 15).

Das nichsteinfache Linienbild ist der Kreis vom
Radius ». Fur ihn gilt p 4" = » mit der allgemeinen
Lésung “p(u) =r -+ a cos(u) + b sin (u)

Zur harmonischen Funktion erscheint eine feste Konstante
addiert.

Verlegung des Anfangspunktes. Verlegt man bei be-
liebigem Linienbild C den Anfangspunkt von O nach links
und unten um die Strecken @ und & (Abb. 16), so tritt
an Stelle der Stiitzfunktion p(#) die neue Funktion

p(n) = p(u) + a cos (u) -+ b sin (u).
Eine harmonische Funktion mit der Periode 2z ist somit
ein unwesentlicher additiver Zusatz zur Stiitzfunktion.

Durch passende Verlegung des Anfangspunktes kann sie
stets beseitigt werden.
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1. Beispiel. Elastische Schwingungen eines Massen-
punktes auf einer Geraden bei konstanter Reibung.

Auf der Geraden OA (Abb. 17) sei ein Massenpunkt m
von der Masse 1, der von O aus proportional der Ent-
fernung p = Om angezogen werde
(Proportionalitits - Konstante #2).
Ausserdem wirke auf ihn entgegen- Abb.17
gesetzt der Bewegung der kon-
stante Reibungswiderstand R. Dann lautet die Bewegungs-
gleichung .

0
P m.

a2p
T -+ ,ézp — i R
wo das obere Zeichen fiir die Rickwirts-, das untere fiir
die Vorwirtsbewegung gilt, oder mit der Abkiirzung
R/k? = r und nach Einfiihrung der neuen Verinderlichen
u==~kt
i P t+p=+r

Diese Gleichung aber sagt aus, dass das Linienbild C
von p(u) einen Kriimmungsradius hat, der abwechselnd
bald gleich 7, bald gleich — » ist, und dass der Wechsel
an den Stellen eintritt, wo p' = o wird. Hat man etwa die
Anfangsbedingungen

b= po P/ = Po’ fair ¢ = o,
also

P=p,=a p=kp’ =0 fir u=o
und ist & wie in Abb. 18 positiv, so beginnt das Linienbild
als Kreis vom Radius — 7, was bedeutet, dass der Kreis-
mittelpunkt im Sinne der negativen Richtung auf der
Geraden g’ aufzutragen ist. Dies gilt solange p'(u) positiv
bleibt, also bis zur Stelle P, der ersten Umkehrstelle.
Hier springt der Radius auf 7, d. h. der Kreis ist jetzt
auf die entgegengesetzte Stelle der Normalen zu zeichnen.
Dieser Kreis gilt bis zur nichsten Umkehrstelle Py, worauf
neue Halbkreisbogen P,, P; usw. sich anschliessen. Ein
endgiiltiger Stillstand der Bewegung tritt in jenem Punkte
(Py) ein, an dem zum ersten Mal die elastische Kraft 42p
kleiner wird als die vollentwickelte Reibung R, im Linien-
bild also da, wo zum
ersten Mal |p| < » vor-
kommt. Das Linienbild
der Bewegung setzt
sich also aus einer An-
zahl  Halbkreisbsgen
zusammen, von denen
nur der erste unvoll-
stindig bleibt. Man
erkennt mit einem
Blick, dass die Schwin- Abb. 18
gungsausschlige arith-
metisch abnehmen jeweilen um den Betrag 27, aber man
kann, was wertvoller ist, aus dem Bild fiir jede beliebige
Zeit t (bezw. #) den Ort p und die Geschwindigkeit
d pldt = kp' entnehmen. In Abb. 18 sind bespielsweise
die Geschwindigkeiten OQ;, OQ;; beim Durchgang durch
den Nullpunkt und die zugehdrigen #-Werte (Durchgangs-
zeiten) u;, #; hervorgehoben.

2. Beispiel. Stisse eines Pendels gegen eine elastische
Wand.

Ein Pendel, dessen Schwingungen so klein sind,
dass sie als rein harmonisch angesehen werden kdnnen,
stosse beim Fallen auf eine schiefe, elastische Wand W
von der Neigung a. Durch den Stoss werde ein bestimmter
Bruchteil der Bewegungsenergie vernichtet, die Geschwin-
digkeit jeweilen der Richtung nach umgekehrt und auf
den A-fachen Wert ihrer Grosse reduziert. Der echte Bruch 1
kann als Mass fir die Elastizitit der Wand gelten. Wie
verlauft die Bewegung, wenn zu Anfang das Pendel um
den Winkel p, abgelenkt ist und ohne Anfangsgeschwin-
digkeit fallen gelassen wird?

Es sei (Abb. 19) p der Ausschlagwinkel des Pendels;
an Stelle der Zeit ¢+ werde die Veranderliche =2z t/T
beniitzt, wo 7 die Periode des ungehemmten Pendels
bedeutet. Das Pendel fiihrt dann eine Reihe harmonischer
Schwingungen aus, die in # die Periode 2 z haben, deren

Linienbilder also durch Punkte P;, P, ... dargestellt
werden. Die Art dieser Schwingungen wechselt mit jedem
Stoss. Denn im Augenblick des Aufprallens springt die
Geschwindigkeit und damit das zu ihr proportionale p’
auf das Z-fache ihres Wertes hinab unter Wechsel des
Vorzeichens. Im Anfang, fiir kleine Werte von #, wird
das Linienbild des Vorganges dargestellt durch den
Punkt Py, der durch die Anfangsbedingungen p(o) = p,
p'(0) = o gekennzeichnet ist. Fiir die letzte der zugehd-
rigen Stitzlinien g(d), ist p(6,) = @, d. h. die Stiitzlinie
ist Tangente an dem um O gezogenen Kreis K vom
Radius «. Die nachfolgende harmonische Schwingung
wird durch das Linienbild P; dargestellt, das man erhalt,
indem man vom Berithrungspunkte T, das /-fache der
Strecke T, P, auf
g(0y) nach entgegen-
gesetzten Richtung
~ abtragt, also P; T,
=1.TyP, macht.
Dieses neue Linien-
bild gilt wiederum
solange, bis p wie-
der gleich a wird,
also bis die zuge-
horige Stiitzgerade
FL=3T%h RT-5TE RL-3LE  Abb19  g(dy) durch P; den
Kreis K berihrt,

Das nachfolgende Linienbild P; wird analog konstruiert,
d. h. man macht Py T;=21-.T; P, und so fihrt man weiter

Das Linienbild C des Vorganges wird sonach eine
Folge von Punkten, die, miteinander verbunden, ein dem
Kreis K umschriebenes Polygon Py, P, P, Py ... ergeben,
dessen Seiten nach einer geometrischen Degression ab-
nehmen. Man erkennt leicht, dass sich infolgedessen die
Punkte P; gegen eine bestimmte Stelle P, des Kreis-
umfanges haufen, nach der sie konvergieren. Die Ampli-
tude OP, der verschiedenen Schwingungen nehmen daher
mehr und mehr ab.

Wenn der Radius « des Kreises K von Null ver-
schieden ist, d. h. wenn die Wand nicht vertikal steht, so
konvergiert mit der Folge der Punkt P; auch der im
Gesamten {iberstrichene Winkel # nach einem Grenzwert .
Nur im Falle « = o wird er ins Unendliche anwachsen.
Man erhilt somit das bemerkenswerte Resultat:

Wenn die Wand nicht vertikal steht, so kommt die
Bewegung nach der endlichen Zeit 7= U2 7 zum Stillstand,

8. Die Differentialgleichung der erzwungenen
Schwingung.

In vielen Teilen der Mechanik und Physik spielt eine
Differentialgleichung eine Rolle, die wir an einem mecha-
nischen Beispiel auseinandersetzen wollen.

Ein System mit einem Freiheitsgrad und der Lage-
koordinate z sei fahig, gedadmpfte harmonische Schwin-
gungen auszufihren, fir die dann eine Gleichung von
der Form

s+21 s—ktz=o0
gilt. 1 ist die sog. Dampfungskonstante, Punkte bedeuten
Ableitungen nach der Zeit. Wenn jetzt von aussen her
eine zeitlich verdnderliche Kraft hinzutritt, hat man als
Bewegungsgleichung
s-F2hz4 ks =f(t)
Um sie der graphischen Integration zuginglich zu machen,
setzen wir zunichst z = ¢—*7p, worauf sie tibergeht in
?+ (/32 — 12) b =f\/) et
Wir filhren noch einen neuen Zeitmasstab ein, indem wir
¢ durch u:V/e?—lit ersetzen und erhalten schliesslich
pp=F@w . . . . . . (9
wo jetzt die Striche wiederum Ableitungen nach # be-
deuten, und F(#) die Abkiirzung fiir die rechte Gleichung-

seite ist, wenn man dort / durch # ersetzt und durch
(k2 — A%) dividiert.
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In der Folge dirfen wir uns auf die Behandlung
dieser letzten Gleichung beschrianken, die wir als die
Differentialgleichung der erswungenen Schwingungbezeichnen.

Das Linienbild C der Losung ist eine Kurve, fiir die

olw) = F(u)
d. h. fir die der Kriimmungshalbmesser o eine gegebene
Funktion des Richtungswinkels u ist.

Wenn man den Bereich der Verédnderlichen # in
geniigend kleine Intervalle @, @, as, ... einteilt, sodass
innerhalb eines Intervalls «; die Funktion F(x) als kon-
stant (= p;) angesehen werden kann, so hat man einfach
zu den Zentriwinkeln ¢; mit den Radien o; eine Folge
von stetig und mit stetiger Tangente aneinanderschlies-
senden Kreisbogen zu zeichnen, die dann das gesuchte
Linienbild mit Anniherung darstellen. Das kommt darauf
hinaus, die Funktion F(#) durch eine stiickweise konstante
Funktion zu ersetzen, sodass deren Funktionsbild in recht-
winkligen Koordinaten eine Treppenkurve wird (Abb. 20).
In gewissen Fillen mag das nicht genau genug scheinen.
Man kann aber wohl immer mit gentigender Genauigkeit

Fiu) Fu)

Abb. 20 Abb. 21 3
die Funktion durch ein Polygon ersetzen (Abb. 21). Als-
dann ist aber ihre Ableitung durch eine Treppenkurve
ersetzt und es lisst sich infolgedessen die Evolute C' von
C durch eine Folge von Kreisbogen wie beschrieben kon-
struieren. Man hat dann einfach nachtréglich noch zu C'
die Evolvente zu zeichnen, um zum gesuchten Linienbild C
zuriickzugelangen.

Der beschriebenen Konstruktion, die wir als die
Konstruktion aus den Kriimmungsradien bezeichnen, kann
eine zweite an die Seite gestellt werden, die wir die
Evolventenkonstruktion nennen wollen. Sie illustriert einfach
den Umstand, dass man das Integral einer linearen, nicht
homogenen Differentialgleichung durch blosse Quadraturen
finden kann, wenn die Losung der homogenen Gleichung
bekannt ist, was hier der Fall ist. Wir werden auf die
anschaulichste Weise zu dieser Darstellung gelangen,
indem wir auf die geometrische Deutung zuriickgehen.

Seien wie friher x, y (Abb. 4) die rechtwinkligen
Koordinaten des Berithrungspunktes P, von g(#) mit dem
Linienbild C. Sei ferner s die auf C gemessene Bogen-
linge, ds das Linienelement P, P,*, das der Winkel-
inderung du entspricht. Dann gelten die Formeln

ds = o du = F(u) du,
dx = —ds sin (u),
dy = —ds cos (1)

und also
dx . L . dy .
s = — F(u) sin (u) = F(u) cos(u)

— F(u) sin (#) und F(u) cos () sind also die Stiitz-
funktionen fiir zwei Kurven Cy und C,, deren Evolventen
die Funktionen x(#) und y(#) zu Stiitzfunktionen haben.
Sind sie ermittelt, so ergibt sich direkt ohne neue Inte-
gration

pln) =  x(u) cos (u) —~+ y(u) sin (u)
p'(n) = — x(u) sin (u) + y(u) cos (u)

Da sich Evolventen mit grosser Genauigkeit zeichnen
lassen, wird es sich gelegentlich empfehlen, trotz der
etwas grossern Zeichenarbeit diese Evolventenmethode
anzuwenden.

Anwendung auf die Biegung eines halbkreisformigen
Stabes.

Ein krummer Stab von Halbkreisform ABCDE
(Abb. 22) sei an einem Ende A eingespannt und durch
drei Krifte, Kin D, 2K am freien Ende E und 3K in C

belastet. Die beiden
ersten wirken radial
nach aussen, die letzte
radial nach innen. Es
sei die Deformation
des Stabes zu suchen.

Der Schwerpunkt
eines zum beliebigen
Winkel ¢ gehorigen
Querschnittes verschie-
be sich um den Be-
trag # in der Richtung
tangential zur Stabaxe
im Sinne des wachsen-
den Winkels ¢, und um
den Betrag w radial
nach aussen. Es be-
zeichne M(p) das Bie-
gungsmoment fir die-
sen Querschnitt. Die
Theorie kreisformig ge-
kriimmter Stibe?) fiihrt
dann fir w und # zu den
Differentialgleichungen
von Boussinesq:

d2w a?

w+oo = —Mo) 5
Abb. 22 2K v _ 9
=

Hier ist @ der Halbmesser des Kreises, in den die
Stabaxe gebogen ist, B ist die sogen. Biegungsteifigkeit
des Stabes. Es geniigt sonach w der Gleichung der er-
zwungenen Schwingung und es stimmt die Stdrungs-
funktion F der allgemeinen Theorie abgesehen vom kon-

2
stanten Faktor —% mit dem Biegungsmoment {iberein.

Es ist indessen zu beachten, dass der Winkel # der Theo-
rie hier durch ¢ und die Funktion p durch w ersetzt ist,
und dass der Buchstabe # hier eine andere Bedeutung bat.

In Abb. 23 ist zunichst ein Polardiagramm des
Biegungsmomentes unter Mitberiicksichtigung des Faktors
—}-a?/B dargestellt, d. h. es sind die Krimmungsradien o
des zu konstruierenden Linienbildes in jedem Schnitt ¢
vom Zentrum O des Kreises aus aufgetragen. Da das
Biegungsmoment fiir jedes der drei Felder AC, CD, DE
von der Form

! cos () + m sin (p)

ist, setzt sich das Polardiagramm aus drei Kreisbogen
zusammen, die durch das Zentrum O gehen. Man findet
die Mittelpunkte M,, My, M; der Kreise in den Ecken des
Vektorpolygons, das entsteht, wenn man die radial wir-
kenden Krifte der Reihe nach um einen rechten Winkel
dreht, mit dem Faktor @8/28 multipliziert und zusam-
mensetzt.

Das Intervall von o bis 180° wurde in zwolf Inter-
valle von 15° eingeteilt und als konstanter Mittelwert des
Kriimmungsradius in einem Intervall wurde der Wert von o
fir die Intervallmitte gew#hlt. So ergaben sich zwolf

1) Vergl. hierzu etwa: Handbuch der Physik, Bd. VI, S. 181, 182.
Man hat in der Formel (2) S. 181 die Axialdehnung &= o zu setzen,
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Kriimmungsradien o; bis g,3 (Abb. 22 und 24). Es ist zu
beachten, dass das Biegungsmoment an zwei Stellen Null
wird, am freien Ende E und an der Stelle B.

Abb. 24 zeigt nun die Konstruktion der L&sung
aus den Kriimmungsradien. Vom Punkte A ausgehend,
wo w(0) = o, w'(0) = o ist (wegen der Einspannung), sind
Kreisbogen von je 15° geschlagen, deren Halbmesser
sukzessive mit den Grossen o, 0;, 03 ... bereinstimmen.
In der Nihe der Stelle B werden indessen die Radien so
klein, dass die Konstruktion einer Erginzung bedarf. Das
Linienbild hat dort eine Spitze, die sich aus den kleinen
Radien nur ungenau zeichnen lassen wiirde. Es ist des-
halb dort die Evolute gezeichnet, die einen nicht ver-

schwindenden Krimmungsradius
, a? dm

=T

hat, und das Linienbild in der %mgebung von B wird
durch die Evolvente dieser Kurve ersetzt, Der gleiche
Kunstgriff ist verwendet, um am freien Ende E das
Linienbild zu zeichnen. Endlich ist in Abb. 24 noch die
Evolvente A B*C*D*E* gezeichnet, die der Anfangs-
bedingung w'(0) = o entspricht. Sie gibt, gemiss den
angeschriebenen Formeln, abgesehen vom Vorzeichen, die
Verschiebung # in der Stabaxenrichtung.

Nachtraglich sind in Abb. 22 die ermittelten Ver-
schiebungskomponenten #, w fiir jeden Punkt der Stabaxe
in stark vergrossertem Masstab aufgetragen worden. Die
gestrichelte Kurve, die die so erhaltenen Punkte verbindet,
gibt das stark iibertrieben dargestellte Bild der defor-
mierten Stabaxe.

Wenn auch zu bemerken ist, dass in dem behan-
delten Beispiel die Losung analytisch streng gefunden
werden konnte, so ist es doch ein Vorteil dieser gra-
phischen Methode, dass sie selbst bei ganz beliebiger Last-
verteilung einfach und iibersichtlich bleibt, wihrend schon
in dem hier behandelten Beispiel von nur drei Lasten
die analytischen Rechnungen umstindlich werden. Denn
das Biegungsmoment folgt in den drei Feldern drei ver-
schiedenen analytischen Gesetzen. Man hat daher die
Differentialgleichungen dreimal zu integrieren und, was
besonders umsténdlich ist, die Teilldsungen stetig und mit
stetiger Ableitung aneinander anzupassen. Dieser Prozess
wird fir grossere Lastenzahl praktisch fast undurchfiihrbar.
Die Verhaltnisse sind denen beim geraden Stab ganz

analog. In der graphischen Darstellung entspricht der .

Culmannschen Momentenfliche das aus Kreisbogen sich
zusammensetzende Polardiagramm des Biegungsmomentes.
Lisung der gleichen Aufgabe mit der Evolventenkon-
struktion.
Die Abb. 25 enthdlt zun#ichst wieder das Polar-
diagramm des Krimmungshalbmessers p fiir das zu kon-
struierende Linienbild von w. Fir den hervorgehobenen

= Abb. 25

Winkel ¢ ist er negativ, sein Absolutwert ist durch die
Strecke OA dargestellt. Es sind nun die zu den Funk-

tionen — o sin (p) und o cos(p) gehdrigen Stitzlinien g’
und g’ konstruiert. Dazu hat man die Strecke OA auf OB

iibertragen und durch B die Parallele g’ bezw. die Normale g’
zu OA gezogen. Sie haben von O die Abstinde — o cos(¢)
und — ¢ sin (¢). Dementsprechend ergeben sich fir die
Stiitzlinien die in der Figur eingezeichneten Pfeile.

Zum System der Geraden g’ ist nun irgend eine
Evolvente e; gezeichnet, die also bis auf eine Integrations-
konstante genau die Funktion y(p) darstellt, und zwar hat
man, entsprechend dem Pfeilsinn der Stiitzlinien, die
Beziehung

—y = 0] = DE.
Analog liefert die Orthogonaltrajektorie e; zu den Ge-

raden g’ bis auf eine additive Integrationskonstante genau
die Funktion x(p) und zwar ist
% — JG = CF

Demgemiss stellen die Strecken

HG =JG cos p — JO sinp = x cos ¢ |y sing — w
und =

HO = JG sin ¢+ JO cos p =« sin p —y cos ¢ = —i—;
bis auf eine harmonische Funktion mit der Periode 2=
genau die Funktionen w(p) und @'(p) dar.

In Abb. 26 ist das
Linienbild der so
gefundenen Funk-

tion w(¢p) von einem
Anfangspunkt O aus
\0 aufgetragen. Um die

Tl

wahre Funktion w
zu finden, sind jetzt
noch die Anfangs-
bedingungen zu be-
riicksichtigen. Das
geschieht nach fri-
herem durch Ver-
legung des Anfangs-
punktes nach einer
Stelle O, die ein-
deutig dadurch bestimmt ist, dass fiir die von dort aus
gemessene Stiitzfunktion der selben Kurve w(o) und w'(0)
verschwinden. Es ist jetzt
cw

— w(p) = 0Q — QP = u

womit die Verschiebungskomponenten wieder gefunden sind.
(Forts. folgt.)

Abb.26
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