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Graphische Analysis vermittelst des Linienbildes einer Funktion.
Von Prof. Dr. E. MEISSNER, E.T.H., ZBrich.

6. Ganze rationale Funktionen.
Eine ganze rationale Funktion n-tea Grades ist

dadurch ausgezeichnet, dass ihre ra-te Ableitung konstant
ist. Es ist daher die «-te Evolute ihres Linienbildes ein Kreis.
Die (n — i)te Evolute ist sonach eine gewöhnliche
Kreisevolvente, und indem man zu dieser ihre aufeinanderfolgenden

Evolventen zeichnet, gelangt man schliesslich

zum Linienbild der Funktion. Um praktisch das Linienbild
zu zeichnen, wird man zur Kontrolle einige Werte der
Funktion und damit die zugehörigen Stützgeraden g direkt
berechnen bezw. konstruieren. Aber wenn es sich darum
handelt, den Verlauf der Funktion in einem grössern
Intervall darzustellen, wird man das Linienbild
zweckmässig in der geschilderten Weise als Evolvente zeichnen.

Abb. 11

In Abb. ii ist die Funktion

/(«) 5 — 3" + 3«' ~ *h "s
dargestellt. Es ist p0 5, p0' — 3, p0" 6, p0"" —- 4,
und es ist daher C" ein Kreis vom Radius — 4.
Dementsprechend sind die Geraden g0, go', go". go'"
eingetragen und die Evolventen C, C und C" von C" gezeichnet.
C ist das Linienbild der gegebenen Funktion und in der
Abb. 11 für das, Intervall von o bis n dargestellt.

Von dieser Konstruktion wird bei der Integration
von Differentialgleichungen Gebrauch gemacht, wenn
ausnahmsweise für eine Funktion an einer Stelle die Funktion
und ihre ersten Ableitungen alle Null werden. Ist z. B.,
wie in Abb. ia dargestellt, für den Wert « a sowohl
p, wie p', p" und p'" gleich Null und erst pW a von
Null verschieden, so kann die Funktion in der Umgebung
jener Stelle angenähert durch den Ausdruck

(« — o)<

dargestellt werden. Ihre zweite Evolute ist dort angenähert

(Fortsetzung von Seite 335 letzten Bandes.)

ein Kreis vom Radius a und man hat hierzu nur die
zweite Evolvente durch den Punkt 0 zu zeichnen, wie die
Abb. 12 angibt.

7. Die harmonische Funktion.
Das einfachste Linienbild ist ein Punkt P. Sind seine

rechtwinkligen Koordinaten a, b, so ergibt sich aus Abb. 13
p{u) a cos (u) -\- b sin («)

d. h. die harmonische Funktion mit der Periode a n. Schreibt
man p in - der Form

p(u) A cos (« — e)

so ist die Amplitude A dargestellt durch die Länge der
Strecke OP, die Phase e ist der Winkel, den diese Strecke
mit der Polaraxe einschliesst. Die Bestimmungstücke der
harmonischen Schwingung werden aus dem Vektor OP
ersichtlich. Umgekehrt genügen alle harmonischen Schwingungen

von der Periode 2 n der Differentialgleichung
p(u)~\-p"(u) o, die nichts anderes aussagt, als dass der
Krümmungsradius q des Linienbildes stets gleich Null ist,
es sich also um einen Punkt handelt.

Durch Addition beliebig vieler solcher Schwingungen
erhält man wiederum eine Schwingung der selben Art,
und zwar wird sie dargestellt durch den Vektor, der sich
durch geometrische Addition der Vektoren der
Teilschwingung ergibt.

Die Lösung der Gleichung a cos (u) -f- b sin («) c

erfordert, jene Stützlinien durch den Punkt P (a, b) in
Abb. 14 zu zeichnen, die von O den Abstand c haben.
Man hat also einfach die Tangenten an den um O
geschlagenen Kreis vom Radius c von P aus zu legen.
Die Radien nach den Berührungspunkten schliessen mit
der Polaraxe jene Winkel « ein, die die Lösung der
Gleichung ergeben. Natürlich sind sie nur bis auf Multipla
von a 71 bestimmt.

Die Lösung der Gleichung «, cos (u) -f- bt sin («)

aa cos («) -(- bt sin (u) wird analog durch die Verbindungsgerade

der Punkte P («,, b^) und P (aa, b%) gegeben (Abb. 15).
Das nächsteinfache Linienbild ist der Kreis vom

Radius r. Für ihn gilt p -\-p" r mit der allgemeinen
Lösung ~p(u) — r + a cos (u) -f- b sin («)
Zur harmonischen Funktion erscheint eine feste Konstante
addiert.

Verlegung des Anfangspunktes. Verlegt man bei
beliebigem Linienbild C den Anfangspunkt von O nach links
und unten um die Strecken a und b (Abb. 16), so tritt
an Stelle der Stützfunktion p(u) die neue Funktion

p(u) p(u) -f- a cos («) -f- b sin («).
Eine harmonische Funktion mit der Periode a n ist somit
ein unwesentlicher additiver Zusatz zur Stützfunktion.
Durch passende Verlegung des Anfangspunktes kann sie
stets beseitigt werden.
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1. Beispiel. Elastische Schwingungen eines
Massenpunktes auf einer Geraden bei konstanter Reibung.

Auf der Geraden OA (Abb. 17) sei ein Massenpunkt m
von der Masse 1, der von O aus proportional der
Entfernung p Om angezogen werde 0
(Proportionalitäts - Konstante k*). ' + A

Ausserdem wirke auf ihn entgegen- ^h 17
gesetzt der Bewegung der
konstante Reibungswiderstand R. Dann lautet die Bewegungsgleichung

wo das obere Zeichen für die Rückwärts-, das untere für
die Vorwärtsbewegung gilt, oder mit der Abkürzung
Rjk^ r und nach Einführung der neuen Veränderlichen
« kt

p" -\-p dor
Diese Gleichung aber sagt aus, dass das Linienbild C

von p(u) einen Krümmungsradius hat, der abwechselnd
bald gleich r, bald gleich — r ist, und dass der Wechsel
an den Stellen eintritt, wo p' o wird. Hat man etwa die
Anfangsbedingungen

P —Po p' — pt». für / o,
also

P=p0=a p'—kpo'—b für « o
und ist b wie in Abb. 18 positiv, so beginnt das Linienbild
als Kreis vom Radius — r, was bedeutet, dass der
Kreismittelpunkt im Sinne der negativen Richtung auf der
Geraden g' aufzutragen ist. Dies gilt solange p\u) positiv
bleibt, also bis zur Stelle P! der ersten Umkehrstelle.
Hier springt der Radius auf -{- r, d. h. der Kreis ist jetzt
auf die entgegengesetzte Stelle der Normalen zu zeichnen.
Dieser Kreis gilt bis zur nächsten Umkehrstelle P2, worauf
neue Halbkreisbögen Pa, P3 usw. sich anschliessen. Ein
endgültiger Stillstand der Bewegung tritt in jenem Punkte
(P4) ein, an dem zum ersten Mal die elastische Kraft ktp
kleiner wird als die vollentwickelte Reibung R, im Linienbild

also da, wo zum
ersten Mal \p \ <^ r
vorkommt. Das Linienbild
der Bewegung setzt
sich also aus einer
Anzahl Halbkreisbögen
zusammen, von denen
nur der erste
unvollständig bleibt. Man
erkennt mit einem
Blick, dass die
Schwingungsausschläge
arithmetisch abnehmen jeweilen um den Betrag 2?", aber man
kann, was wertvoller ist, aus dem Bild für jede beliebige
Zeit / (bezw. u) den Ort p und die Geschwindigkeit
dp/dt=kp' entnehmen. In Abb. 18 sind bespielsweise
die Geschwindigkeiten OQi, OQn beim Durchgang durch
den Nullpunkt und die zugehörigen »-Werte (Durchgangszeiten)

u\, un hervorgehoben.
2. Beispiel. Stösse eines Pendels gegen eine elastische

Wand.
Ein Pendel, dessen Schwingungen so klein sind,

dass sie als rein harmonisch angesehen werden können,
stosse beim Fallen auf eine schiefe, elastische Wand W
von der Neigung a. Durch den Stoss werde ein bestimmter
Bruchteil der Bewegungsenergie vernichtet, die Geschwindigkeit

jeweilen der Richtung nach umgekehrt und auf
den A-fachen Wert ihrer Grösse reduziert. Der echte Bruch X

kann als Mass für die Elastizität der Wand gelten. Wie
verläuft die Bewegung, wenn zu Anfang das Pendel um
den Winkel p0 abgelenkt ist und ohne Anfangsgeschwindigkeit

fallen gelassen wird?
Es sei (Abb. 19) p der Ausschlagwinkel des Pendels;

an Stelle der Zeit / werde die Veränderliche u 2 n t/T
benützt, wo T die Periode des ungehemmten Pendels
bedeutet. Das Pendel führt dann eine Reihe harmonischer
Schwingungen aus, die in u die Periode 2 n haben, deren
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Linienbilder also durch Punkte Pt, P» dargestellt
werden. Die Art dieser Schwingungen wechselt mit jedem
Stoss. Denn im Augenblick des Aufprallens springt die
Geschwindigkeit und damit das zu ihr proportionale p'
auf das A-fache ihres Wertes hinab unter Wechsel des
Vorzeichens. Im Anfang, für kleine Werte von u, wird
das Linienbild des Vorganges dargestellt durch den
Punkt Po, der durch die Anfangsbedingungen pip) po,
p'(p) o gekennzeichnet ist. Für die letzte der zugehörigen

Stützlinien g(<5)i ist p{dL) a, d. h. die Stützlinie
ist Tangente an dem um O gezogenen Kreis K vom
Radius a. Die nachfolgende harmonische Schwingung
wird durch das Linienbild Pi dargestellt, das man erhält,
indem man vom Berührungspunkte T0 das A-fache der

Strecke T0 Po auf
g(3i) nach entgegengesetzten

Richtung
abträgt, also Pi T0

X • T0 Po macht.
Dieses neue Linienbild

gilt wiederum
solange, bis p wieder

gleich a wird,
also bis die
zugehörige Stützgerade
g(f5a) durch Pj den
Kreis K berührt.

Das nachfolgende Linienbild P8 wird analog konstruiert,
d. h. man macht PgT!=A -Tt Px und so fährt man weiter.

Das Linienbild C des Vorganges wird sonach eine
Folge von Punkten, die, miteinander verbunden, ein dem
Kreis K umschriebenes Polygon P0 Pi P2 Ps • • ergeben,
dessen Seiten nach einer geometrischen Degression
abnehmen. Man erkennt leicht, dass sich infolgedessen die
Punkte Pj gegen eine bestimmte Stelle Pn des Kreis-
umfanges häufen, nach der sie konvergieren. Die Amplitude

OPi der verschiedenen Schwingungen, nehmen daher
mehr und mehr ab.

wWenn der Radius a des Kreises K von Null
verschieden ist, d. h. wenn die Wand nicht vertikal steht, so
konvergiert mit der Folge der Punkt Pj auch der im
Gesamten überstrichene Winkel u nach einem Grenzwert U.
Nur im Falle a o wird er ins Unendliche anwachsen.
Man erhält somit das bemerkenswerte Resultat:

Wenn die Wand nicht vertikal steht, so kommt die
Bewegung nach der endlichen Zeit T £//a n zum Stillstand.

8. Die Differentialgleichung der erzwungenen
Schwingung.

In vielen Teilen der Mechanik und Physik spielt eine
Differentialgleichung eine Rolle, die wir an einem
mechanischen Beispiel auseinandersetzen wollen.

Ein System mit einem Freiheitsgrad und der Lage-
kobrdinate z sei fähig, gedämpfte harmonische Schwingungen

auszuführen, für die dann eine Gleichung von
der Form

ä + zXz+k^z o

gilt. X ist die sog. Dämpfungskonstante, Punkte bedeuten
Ableitungen nach der Zeit. Wenn jetzt von aussen her
eine zeitlich veränderliche Kraft hinzutritt, hat man als
Bewegungsgleichung

s-\-aXz + k»z=f(t)
Um sie der graphischen Integration zugänglich zu machen,
setzen wir zunächst st e~upt worauf sie übergeht in

p + {k* — X*) p =ßf) e"
Wir führen noch einen neuen Zeitmasstab ein, indem wir
/ durch u ]/k2—X'11 ersetzen und erhalten schliesslich

p"-\-p F(u) (9)
wo jetzt die Striche wiederum Ableitungen nach »
bedeuten, und F(u) die Abkürzung für die rechte Gleichungseite

ist, wenn man dort t durch u ersetzt und durch
(*» — X%) dividiert.
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In der Folge dürfen wir uns auf die Behandlung
dieser letzten GleichuDg beschränken, die wir als die
Differentialgleichung der erzwungenen Schwingunghzzeichnexi.

Das Linienbild C der Lösung ist eine Kurve, für die
q(u) F(u)

d. h. für die der Krümmungshalbmesser q eine gegebene
Funktion des Richtungswinkels u ist.

Wenn man den Bereich der Veränderlichen u in
genügend kleine Intervalle at, aa, a8, einteilt, sodass
innerhalb eines Intervalls a,- die Funktion F(u) als
konstant Qi) angesehen werden kann, so hat man einfach
zu den Zentriwinkeln ai mit den Radien qi eine Folge
von stetig und mit stetiger Tangente aneinanderschlies-
senden Kreisbogen zu zeichnen, die dann das gesuchte
Linienbild mit Annäherung darstellen. Das kommt darauf
hinaus, die Funktion F(u) durch eine stückweise konstante
Funktion zu ersetzen, sodass deren Funktionsbild in
rechtwinkligen Koordinaten eine Treppenkurve wird (Abb. 20).
In gewissen Fällen mag das nicht genau genug scheinen.
Man kann aber wohl immer mit genügender Genauigkeit

rfaj m

Abb. 20 Abb. 21

die Funktion durch ein Polygon ersetzen (Abb. 21).
Alsdann ist aber ihre Ableitung durch eine Treppenkurve
ersetzt und es lässt sich infolgedessen die Evolute C von
C durch eine Folge von Kreisbogen wie beschrieben
konstruieren. Man hat dann einfach nachträglich noch zu C
die Evolvente zu zeichnen, um zum gesuchten Linienbild C

zurückzugelangen.
Der beschriebenen Konstruktion, die wir als die

Konstruktion aus den Krümmungsradien bezeichnen, kann
eine zweite an die Seite gestellt werden, die wir die
Evolventenkonstruktion nennen wollen. Sie illustriert einfach
den Umstand, dass man das Integral einer linearen, nicht
homogenen Differentialgleichung durch blosse Quadraturen
finden kann, wenn die Lösung der homogenen Gleichung
bekannt ist, was hier der Fall ist. Wir werden auf die
anschaulichste Weise zu dieser Darstellung gelangen,
indem wir auf die geometrische Deutung zurückgehen.

Seien wie früher x, y (Abb. 4) die rechtwinkligen
Koordinaten des Berührungspunktes P„ von g(u) mit dem
Linienbild C. Sei ferner s die auf C gemessene Bogenlänge,

ds das Linienelement Pu P„'*, das der
Winkeländerung du entspricht. Dann gelten die Formeln

ds q du F(u) du,
dx — ds sin («),
dy -j- ds 00s (w)

und also
dx dy
du — F(M) sin («) ^ F(u) cos (")

— F(u) sin («) und F(u) cos («) sind also die
Stützfunktionen für zwei Kurven Cx und Cy, deren Evolventen
die Funktionen x(u) und y{u) zu Stützfunktionen haben.
Sind sie ermittelt, so ergibt'sich direkt ohne neue
Integration

piu) x(u) cos («) -f-jK«) sin («)
p'(u) — x(u) sin (*/) 4- jc(») cos («)

Da sich Evolventen mit grosser Genauigkeit zeichnen
lassen, wird es sich gelegentlich empfehlen, trotz der
etwas grössern Zeichenarbeit diese Evolventenmethode
anzuwenden.

Anwendung auf die Biegung eines halbkreisförmigen
Stabes.

Ein krummer Stab von Halbkreisform ABCDE
(Abb. 22) sei an einem Ende A eingespannt und durch
drei Kräfte, K in D, zK am freien Ende E und %K in C

belastet. Die beiden
ersten wirken radial
nach aussen, die letzte
radial nach innen. Es
sei die Deformation
des Stabes zu suchen.

Der Schwerpunkt
eines zum beliebigen
Winkel <p gehörigen
Querschnittes verschiebe

sich um den
Betrag u in der Richtung
tangential zur Stabaxe
im Sinne des wachsenden

Winkels <p, und um
den Betrag w radial
nach aussen. Es
bezeichne M(cp) das
Biegungsmoment für diesen

Querschnitt. Die
Theoriekreisförmig
gekrümmter Stäbe1) führt
dann für w und u zu den
Differentialgleichungen
von Boussinesq:

dw
O <f

Hier ist a der Halbmesser des Kreises, in den die
Stabaxe gebogen ist, B ist die sogen. Biegungsteifigkeit
des Stabes. Es genügt sonach w der Gleichung der
erzwungenen Schwingung und es stimmt die Störungsfunktion

F der allgemeinen Theorie abgesehen vom kon-

stanten Faktor — mit dem Biegungsmoment überein.

Es ist indessen zu beachten, dass der Winkel u der Theorie

hier durch q> und die Funktion p durch w ersetzt ist,
und dass der Buchstabe u hier eine andere Bedeutung hat.

5K

K ^

Abb. 22

3K

iM

<M

2K F

Abb. 23

In Abb. 23 ist zunächst ein Polardiagramm des
Biegungsmomentes unter Mitberücksichtigung des Faktors
-j- ai/B dargestellt, d. h. es sind die Krümmungsradien q
des zu konstruierenden Linienbildes in jedem Schnitt q>

vom Zentrum O des Kreises aus aufgetragen. Da das
Biegungsmoment für jedes der drei Felder AC, CD, DE
von der Form

/ cos (<p) -f- m sin (<p)

ist, setzt sich das Polardiagramm aus drei Kreisbogen
zusammen, die durch das Zentrum O gehen. Man findet
die Mittelpunkte M,, M«, Ms der Kreise in den Ecken des

Vektorpolygons, das entsteht, wenn man die radial
wirkenden Kräfte der Reihe nach um einen rechten Winkel
dreht, mit dem Faktor a*/aB multipliziert und
zusammensetzt.

Das Intervall von o bis 1800 wurde in zwölf Intervalle

von 150 eingeteilt und als konstanter Mittelwert des
Krümmungsradius in einem Intervall wurde der Wert von <_>

für die Intervallmitte gewählt. So ergaben sich zwölf

') Vergl. hierzu etwa: Handbuch der Physik, Bd. VI, S. 181, 18z.

Man hat in der Formel (2) S. 181 die AzialdehntiDg t o zu setzen.



3° SCHWEIZERISCHE BAUZEITUNG Bd. 99 Nr. 3

T

Abb. 24

Krümmungsradien q1 bis o,a (Abb. 22 und 24). Es ist zu
beachten, dass das Biegungsmoment an zwei Stellen Null
wird, am freien Ende E und an der Stelle B.

Abb. 24 zeigt nun die Konstruktion der Lösung
aus den Krümmungsradien. Vom Punkte A ausgehend,
wo w{p) o, w\o) o ist (wegen der Einspannung), sind
Kreisbogen von je 150 geschlagen, deren Halbmesser
sukzessive mit den Grössen 01, ga, qb übereinstimmen.
In der Nähe der Stelle B werden indessen die Radien so
klein, dass die Konstruktion einer Ergänzung bedarf. Das
Linienbild hat dort eine Spitze, die sich aus den kleinen
Radien nur ungenau zeichnen lassen würde. Es ist
deshalb dort die Evolute gezeichnet, die einen nicht
verschwindenden Krümmungsradius

_
os dM

® ~B~dlf~

hat, und das Linienbild in der Umgebung von B wird
durch die Evolvente dieser Kurve ersetzt. Der gleiche
Kunstgriff ist verwendet, um am freien Ende E das
Linienbild zu zeichnen. Endlich ist in Abb. 24 noch die
Evolvente A B*C*D*E* gezeichnet, die der
Anfangsbedingung w'(p) o entspricht. Sie gibt, gemäss den
angeschriebenen Formeln, abgesehen vom Vorzeichen, die
Verschiebung « in der Stabaxenrichtung.

Nachträglich sind in Abb. 22 die ermittelten
Verschiebungskomponenten u, w für jeden Punkt der Stabaxe
in stark vergrössertem Masstab aufgetragen worden. Die
gestrichelte Kurve, die die so erhaltenen Punkte verbindet,
gibt das stark übertrieben dargestellte Bild der
deformierten Stabaxe.

Wenn auch zu bemerken ist, dass in dem behandelten

Beispiel die Lösung analytisch streng gefunden
werden könnte, so ist es doch ein Vorteil dieser
graphischen Methode, dass sie selbst bei ganz beliebiger
Lastverteilung einfach und übersichtlich bleibt, während schon
in dem hier behandelten Beispiel von nur drei Lasten
die analytischen Rechnungen umständlich werden. Denn
das Biegungsmoment folgt in den drei Feldern drei
verschiedenen analytischen Gesetzen. Man hat daher die
Differentialgleichungen dreimal zu integrieren und, was
besonders umständlich ist, die Teillösungen stetig und mit
stetiger Ableitung aneinander anzupassen. Dieser Prozess
wird für grössere Lastenzahl praktisch fast undurchführbar.
Die Verhältnisse sind denen beim geraden Stab ganz
analog. In der graphischen Darstellung entspricht der
Culmannschen Momentenfläche das aus Kreisbogen sich
zusammensetzende Polardiagramm des Biegungsmomentes.

Losung der gleichen Aufgabe mit der Evolventenkonstruktion.

Die Abb. 25 enthält zunächst wieder das Polar»
diagramm des Krümmungshalbmessers 0 für das zu
konstruierende Linienbild von w. Für den hervorgehobenen

SS

dw

V

dw
6 cp

Abb. 25

Winkel cp ist er negativ, sein Absolutwert ist durch die
Strecke OA dargestellt. Es sind nun die zu den
Funktionen — q sin (9?) und q cos (cp) gehörigen Stützlinien g'
und g' konstruiert. Dazu hat man die Strecke OA auf OB

übertragen und durch B die Parallele g' bezw. die Normale g'
zu OA gezogen. Sie haben von O die Abstände —q cos (99)

und — q sin (95). Dementsprechend ergeben sich für die
Stützlinien die in der Figur eingezeichneten Pfeile.

Zum System der Geraden g' ist nun irgend eine
Evolvente ea gezeichnet, die also bis auf eine Integrationskonstante

genau die Funktion y(cp) darstellt, und zwar hat
man, entsprechend dem Pfeilsinn der Stützlinien, die
Beziehung

— ^ OJ=DE.
Analog liefert die Orthogonaltrajektorie ej zu den
Geraden g' bis auf eine additive Integrationskonstante genau
die Funktion x{cp) und zwar ist

* JG CF
Demgemäss stellen die Strecken

HG JG cos 95 — JO sin 93 x cos 95 -f- y sin <p — w
und

HO JG sin 95 -f- JO cos 93 x sin cp —y cos cp

bis auf eine harmonische Funktion mit der Periode 2 n
genau die Funktionen w{cp) und w\cp) dar.

Ia Abb. 26 ist das
Linienbild der so
gefundenen Funktion

w(cp) von einem

Anfangspunkt O aus
aufgetragen. Um die
wahre Funktion w
zu finden, sind jetzt
noch die
Anfangsbedingungen zu
berücksichtigen. Das
geschieht nach
früherem durch
Verlegung des Anfangspunktes

nach einer
Stelle O, die

eindeutig dadurch bestimmt ist, dass für die von dort aus
gemessene Stützfunktion der selben Kurve w(o) und w'(o)
verschwinden. Es ist jetzt

-««» OQ _-^=QP M

womit die Verschiebungskomponenten wieder gefunden sind.
(Forts, folgt.)
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