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Einige geometrische und kinematische Anwendungen der Stiitzfunktion.

Von Prof. Dr. E. MEISSNER, E. T. H., Ziirich,

Anschliessend an die Artikelserie iiber graphische
Analysis!) sollen noch einige Untersuchungen angedeutet
werden, in denen mit Vorteil von der Stiitzfunktion einer
Kurve Gebrauch gemacht wird. DerKiirze wegen beschrinken
wir uns auf konvexe, einfach geschlossene Kurven, sog.
Ouvale. Der Kriimmungsradius p ist dann eine periodische
nicht negative Funktion von z mit der Periode 27 Er
braucht nicht stetig zu sein, vielmehr wollen wir nur an-
nehmen, dass er sich in eine Fourier-Reihe entwickeln
lasst, die wir in der Form

o(u) = 529 4= 5' [ax cos (ku) +- by sin (ku)]

annehmen. Ist s wieder die Bogenlinge auf C und sind
x, y die rechtwinkligen Koordinaten des Beriihrungspunk-
tes P der Tangente g(x), so gelten die Formeln von Seite 42
ds = o(u) du dx = — o(u) sin () dy = o(u) cos ()
Da C eine einfach geschlossene Kurve ist, so ist ferner

fa’x = _j:;("‘) sin(#)du= o /a’y =./2‘Z)(u) cos (u) du=o

27

[ds = [ow)dn =L
z v

unter L die Gesamtlinge des Ovals verstanden. Dies gibt
fiir die Fourierreihe

by =o0
Multipliziert man die Reihe anderseits mit cos(#) und
sin () und integriert, so ergeben sich die Formeln

s=4 > (— cos (k1) — "= = sin (k1)

ay =0 aynw=1L

Apt1 — Aj—1
2k

y =+ > (— ﬂ%ﬂ‘;‘- cos (k u) +—a'—*':;$ sin (/eu))

Far die hier auftretenden Integrationskonstanten &, » er-
gibt sich durch Integrieren iiber das Intervall o bis 2x:

El= -I—j;(u) dn = zi_znr(é) ds

I :1 1 231 1
Ma— ;[]y(u) dn = E/y(@_) ds
0 0

Somit sind &, 7 die Koordinaten des Schwerpunktes der
Kurve C, wenn man sie sich mit Masse belegt denkt, die
an jeder Stelle der Kurvenkriimmung 1/¢ proportional ist;
in allfalligen Ecken sind endlich grosse Massen proportional
dem Eckenwinkel anzunehmen. Dieser von ]. Steiner erst-
mals eingefithrte Punkt heisst der Kriimmungsschwerpunkt S*
der Kurve C. Wenn man nun noch die Beziehungen
p = x cos (1) + y sin (u) p = — x sin (1) 4y cos ()

mit den erhaltenen Reihen fiir x und ¥ kombiniert, so kommt
far die Stitzfunktion nach einiger Umrechnung die Reihe

plu) = Z‘f ~- & cos (1) ~+ 9 sin (1) —
-1 ay by
k_z (/}‘2_  cos (ku) + 55—
und fir ihre Ableitung
p'(n) = — & sin (1) 9 cos (n) —
\'( L PP (ku) — //"/ . sin(# u))

— I
h=2

1) Vergl, Baud 98, S. 287 fi.; Band g9, S. 27 fi. Auch als Sonder-
abdruck erhiltlich,  Red.

; sin (& u))

Ist ds die Lange eines in P liegenden Linienelementes PP*
von C (Abb. 43), soist 1/, p ds = 1/, p o du der Flacheninhalt
des Elementardreiecks OPP* und somit ist der Flachen-
inbalt J des Ovals gegeben durch

o= %f@fu) Pp(u) du

was in der Fourierentwicklung ausgedriickt ergibt

T <ol +ud

T - a0 = R —1

A. Hurwitz?), von dem im wesentlichen diese letzten For-
meln stammen, hat daran ankniipfend den Beweis fiir das
sog. isoperimetrische Problem erbracht. In der Tat zeigt
der Ausdruck fiir /, das unter allen hier betrachteten
Ovalen von der selben Bogenlinge, also dem selben a,
dasjenige den grossten Flacheninbalt besitzt, fiir das alle
tibrigen Fourierkoeffizienten verschwinden, d. h. der Kreis
vom Durchmesser a.

Abb. 43

Abb. 44

Aus dem Ausdruck fiir p(x) kann eine merkwirdige
Folgerung gezogen werden, Man denke sich zwei Ovale
O, und O, mit den Stiitzfunktionen p; und p,. Wenn sie
gleichen Umfang L haben, so ist der Fourierkoeffizient a,
in den Reihenentwicklungen von p; und p, der selbe. Man
vereinige die Ovale nun irgendwie, aber so, dass ihre
Kriimmungsschwerpunkte S;* und S,* zusammenfallen.
Alsdann stimmen auch noch die Fourierkoeffizienten von
cos (#) und von sin (#)in beiden Reihenentwicklungen iiberein.
Die Funktion p(i) = p, (1) — po(1) hat daher eine Fourier-
Entwicklung, deren niedrigste Glieder jene von cos (2 «)
und sin (2 #) sind. Wendet man hierauf einen ebenfalls auf
Hurwitz®) zuriickgehenden Satz an, dass eine solche Funk-
tion, wenn sie stetig ist, im Intervall von o bis 27 min-
destens 4 mal gleich null wird, so folgt, dass die beiden
so zusammengelegten Ovale wenigstens vier gemeinsame
Tangenten haben, und hieraus wieder folgt, dass sie sich
in wenigstens vier Punkten schneiden. Es gilt sonach der
Satz: Haben szwei Ovale gleicher Linge die Kritmmungs-
Schwerpunkte gemein, so schneiden sie sich in wenigstens
vier Punkten.

DerInhalt dieses Satzes wird besonders hervorgehoben,
wenn man feststellt, dass er nicht mehr wahr ist, wenn
man an Stelle des Kriimmungsschwerpunktes S* den ge-
wohnlichen Schwerpunkt S setzt. Dies zeigt folgendes
Beispiel: Eine Kurve C; (Abb. 44) bestehe aus einem
Halbkreis vom Radius » und Zentrum S und zwei gleich-
langen Strecken AD, BD von der Linge . Man wihle a
so, dass der Schwerpunkt von C; nach S fillt.

((7 = 12 l"z —{—z I/;’;)

%) A. Hurwitz. Sur quelques applications géométriques des sérics
de Fourier, Ann. de 'Ecole normale T. XIX (19o2) page 371 fl.
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Abb. 1. Die Restelbergstrasse (aufwirts gesehen) mit Nachbarhdusern.

Ist R der Halbmesser des Kreises C, der selben Linge
wie C; und vom Mittelpunkt S, so ergibt sich
R 1 -+ 2
72?_*_1/2.2*”1/'7 = I,0093 > I
C; schneidet C, also nur in zwei Punkten P, und P, auf
AD bezw. BD. Will man geradlinige Rander und Ecken
bei C; vermeiden, so ersetze man AD und BD durch
gentigend flache Kreisbogen und runde die Ecken fein,
etwa durch kleine Kreise ab.

In einem bessern Sinne als der Schwerpunkt kann
somit der Kriimmungsschwerpunkt eines Ovals als eine
Art Mittelpunkt desselben angesehen werden. Es ist noch
zu beachten, dass die Zahl 4 der Schnittpunkte der Ovale
erhalten bleibt, wenn man sie um den Kriimmungsmittel-
punkt gegen einander dreht.

Eine kinematische Aufoabe.

Es seien die siamtlichen Ovale zu suchen, die einem
gegebenen reguldren #-Eck so einbeschrieben sind, dass
sie alle Vieleckseiten berithren und die (unter Aufrecht-
erhaltung aller Beriihrungsstellen) sich noch mit einem
Freiheitsgrad im Vieleck bewegen lassen.

Dieser Forderung wird geniigt, wenn alle dem Oval
umschriebenen gleichwinkligen #-Ecken auch regulir sind,
und dies ist auch eine notwendige Bedingung.

Abb. 46 %

Abb. 45

Ist @ = 27/n so sind g(u — a), g(«) und g(« - a) drei
aufeinander folgende Seiten eines solchen Polygons. Die
in g(u) liegende Polygonseite hat die Linge

aiﬁl(&T [p(ee 4+ @) 4 p(s — a) — 2 p(u) cos (a)]
da sie sich (Abb. 45) aus den Strecken A;Q, und A,Q,
zusammensetzt, fiir die sich ergibt

A1Qq sin (o) = p(u — a) — p(u) cos ()

A3Q; sin (a) = p(u —+ a) — p(u) cos (a)

Fthrt man nun die Fourier-Entwicklung fiir p(#) ein, so wird
1 — cos (a) L

#5340 sin (&)
> M-(k;)_—_lcmmj [ax cos (k) —+ by sin (k)]
k=2

s ist im allgemeinen eine Funktion von «. Unserer Forde-
rung wird dann und nur dann geniigt, wenn s konstant

Abb. 2. Nordwestfassade des Hauses Salvisberg (umgekehrt wie Abb. 1).

wird, wenn also die simtlichen in der Reihe fiir s auf-
tretenden Fourier-Koeffizienten mit Ausnahme des ersten
verschwinden. Es kénnen also von den Gréssen a, und
by nur diejenigen von null verschieden bleiben, fir die
cos (k a) — cos(a) = o
wird. Dies ist aber dann und nur dann der Fall, wenn 2
durch » geteilt den Rest -+ 1 oder — 1 ldsst; 4 hat die
Form (g7 4 1) wo g eine ganze Zahl ist und es wird

) = % —+ & cos (%) 4 1 sin (u) —

- cos [(gnt1)u]+ e sin [(gnil)u]}

o Qgp+1 byn1
Sl
f)ieser Ausdruck, in dem die verbleibenden Koeffizienten
ganz beliebige Werte haben konnen, erfillt die fir p
erhaltene Funktionalgleichung und gibt ihre allgemeine
Loésung. Die Forderung, dass es sich um ein Oval handeln
soll, schrankt den Bereich der aj und b,-Werte noch ein.5)

Beispiele.
Die Falle » = 2 und # = 4 sind identisch. Die Ko-
effizienten mit geradem Index miissen verschwinden. Man
erhialt die Kurven Fkonstanter Breite a,. Sie haben bei
gleicher Breite auch gleichen Umfang und sie lassen sich
noch zwangldufig im Innern eines Quadrates bewegen.
Abb. 46 zeigt z. B.
die Kurve, fiir die
() = 1+ cos (3u)
o) = 1 — cos (n).
Sie ist in dem Qua-
drat aff y 6 mit einem

Freiheitsgrad beweg-
lich. Und zwar sind

die zwei Polbahnen
der Bewegung die
dort angegebenen

Kreise K, und Kj.
Der Fall # =3 ist in
Abb. 47 dargestellt,
die die durch

pn) =1 —+——;— cos (2u)
gegebene Kurve wiedergibt. Wieder sind beide Polbahnen

der Bewegung Kreise, die feste ist der dem gleichseitigen
umschriebenen Dreieck einbeschriebene.4)

o(#) = 1 — cos (2u)

%) Die Reihe fiir g(#) darf keine negativen Werte annehmen. Die
Bedingung dafiir bei C. Caratheodory: Math. Ann. Bd. 64 (1907) S. 95 f.

%) Niheres siche | Ueber die Anwendung von Fourier-Reihen auf
einige Aufgaben der Geometrie und Kinematik®, in der Vierteljahrschrift
der Naturforschenden Gesellschaft in Ziirich, Jahrgang 54 (1909).

Ausdebnungen dieses und analoger Probleme findet man in den
Aufsiitzen des Verfassers: | Ueber Punktmengen konstanter Breite®. Viertel-
jahrschrift der Naturforsch. Gesellschaft Ziirich. Jahrg. 56 (1911) S. 42.

pUeber die durch regulire Polyeder nicht stiitzbaren Korper* die
selbe Zeitschrift Jahrg, 63 (1918) S. 544.

,Ueber positive Darstellungen von Polynomen". Math. Ann. 70, S. 244.
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