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Einige geometrische und kinematische Anwendungen der Stützfunktion
Von Prof. Dr. E. MEISSNER, E. T. H., Zürich.

Anschliessend an die Artikelserie Ober graphische
Analysis1) sollen noch einige Untersuchungen angedeutet
werden, in denen mit Vorteil von der Stützfunktion einer
Kurve Gebrauch gemacht wird. DerKürze wegen beschränken
wir uns auf konvexe, einfach geschlossene Kurven, sog.
Ovale. Der Krümmungsradius q ist dann eine periodische
nicht negative Funktion von u mit der Periode in. Er
braucht nicht stetig zu sein, vielmehr wollen wir nur
annehmen, dass er sich in eine Fourier-Reihe entwickeln
lässt, die wir in der Form

Ist ds die Länge eines in P liegenden Linienelementes PP*
von C (Abb. 43), so ist 1jip ds 1/^p q du der Flächeninhalt
des Elementardreiecks OPP* und somit ist der Flächeninhalt

J des Ovals gegeben durch

J l-JQ;u)f{u) du

was in der Fourierentwicklung ausgedrückt ergibt

^
«*2 + **»

J- t2'
q(u) — -Jr^[akcos(ku)-\-b/l sin (k u)]

1

annehmen. Ist s wieder die Bogenlänge auf C und sind

x, y die rechtwinkligen Koordinaten des Berührungspunktes
P der Tangente g(u), so gelten die Formeln von Seite 42

ds q(u) du dx 3= — q(u) sin (u) dy q(u) cos (u)
Da C eine einfach geschlossene Kurve ist, so ist ferner

2.-t 2.-r

I dx — / q(u) sin (u) du o / dy / q(u) cos (u) du — o

c ° c 0

99t

I ds 1 q(u) du — L
'c •

unter L die Gesamtlänge des Ovals verstanden. Dies gibt
für die Fourierreihe

bt o «i o a0 ti L
Multipliziert man die Reihe anderseits mit cos(w) und
sin(w) und integriert, so ergeben sich die Formeln

¦* e+2( ^ cos (An)-
I

1 ^T» / ^*4-I 4" ^A-1 / L \
y v+2( ~k cos (*«)-, 2k

z

Für die hier auftretenden Integrationskonstanten f, rj
ergibt sich durch Integrieren Ober das Intervall o bis Qn:

2k — sm(ku)\

.(ku))sin

rj

2.T 3»

Somit sind f, rj die Koordinaten des Schwerpunktes der
Kurve C, wenn man sie sich mit Masse belegt denkt, die
an jeder Stelle der Kurvenkrümmung i/g proportional ist;
in allfälligen Ecken sind endlich grosse Massen proportional
dem Eckenwinkel anzunehmen. Dieser von J. Steiner
erstmals eingeführte Punkt heisst der KrümmungsschwerpunktS*
der Kurve C. Wenn man nun noch die Beziehungen

p x cos (u) -f- y sin (u) p' — — * sin (u) -f- y cos (u)
mit den erhaltenen Reiben für x und y kombiniert, so kommt
für die Stützfunktion nach einiger Umrechnung die Reihe

P(m) — -+- £ cos (u) -\-1] sin (u) —

*-«
und für ihre Ableitung
p'\ 11) — | sin («) -f- rj cos («) —

A2-

kak

i'— 1

\(ku)\

iin (k u) j

A. Hurwitz2), von dem im wesentlichen diese letzten
Formeln stammen, hat daran anknüpfend den Beweis für das

sog. isoperimetrische Problem erbracht. In der Tat zeigt
der Ausdruck für /, das unter allen hier betrachteten
Ovalen von der selben Bogenlänge, also dem selben a0

dasjenige den grossten Flächeninhalt besitzt,. für das alle
übrigen Fourierkoeffizienten verschwinden, d. h. der Kreis
vom Durchmesser a0.

m

Abb. 43 Abb. 44

>) Vergl. Band 98, S. 287 ff.; Band 99, S. 27 ff. Auch als
Sonderabdruck erhältlich. Red.

Aus dem Ausdruck für p(u) kann eine merkwürdige
Folgerung gezogen werden. Man denke sich zwei Ovale
Oi und Oa mit den Stützfunktionen pt und pi. Wenn sie
gleichen Umfang L haben, so ist der Fourierkoeffizient a0

in den Reihenentwicklungen von px und pi der selbe. Man
vereinige die Ovale nun irgendwie, aber so, dass ihre
Krümmungsschwerpunkte Si* und Sg* zusammenfallen.
Alsdann stimmen auch noch die Fourierkoeffizienten von
cos(u) und von sin (u) in beiden Reihenentwicklungen überein.
Die Funktion p(u) px (u) ¦—p%{ti) hat daher eine Fourier-
Entwicklung, deren niedrigste Glieder jene von cos(2«)
und sin (2 u) sind. Wendet man hierauf einen ebenfalls auf
Hurwitz1) zurückgehenden Satz an, dass eine solche Funktion,

wenn sie stetig ist, im Intervall von o bis 2jt
mindestens 4 mal gleich null wird, so folgt, dass die beiden
so zusammengelegten Ovale wenigstens vier gemeinsame
Tangenten haben, und hieraus wieder folgt, dass sie sich
in wenigstens vier Punkten schneiden; Es gilt sonach der
Säte: Haben zwei Ovale gleicher Länge die Krümmungs-
Schwerpunkte gemein, so schneiden sie sich in wenigstens
vier Punkten.

Der Inhalt dieses Satzes wird besonders hervorgehoben,
wenn man feststellt, dass er nicht mehr wahr ist, wenn
man an Stelle des Krümmungsschwerpunktes S* den
gewohnlichen Schwerpunkt S setzt. Dies zeigt folgendes
Beispiel: Eine Kurve C, (Abb. 44) bestehe aus einem
Halbkreis vom Radius r und Zentrum S und zwei
gleichlangen Strecken AD, BD von der Länge a. Man wähle a
so, dass der Schwerpunkt von Q nach S fällt.

\a =1"1'2 + 2V'7)

a) A. Hurwitt: Sur quelques applications g£ometriques des s6rica

de Fourier. Ann. de l'Ecole normale T. XIX (190s) page 371 ff.
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Abb. 1. Die Resteibergstrasse (aufwärts gesehen) mit Nachbarhäusern. Abb. 2. Nordwestfassade des Hauses Salvisberg (umgekehrt wie Abb. 1)

Ist R der Halbmesser des Kreises Ca der selben Länge
wie Q und vom Mittelpunkt S, so ergibt sich

+ J/2 +2 I/17
1,0093r 2 2jr

Cä schneidet Ct also nur in zwei Punkten P, und Pg auf
AD bezw. BD. Will man geradlinige Ränder und Ecken
bei Q vermeiden, so ersetze man AD und BD durch
genügend flache Kreisbogen und runde die Ecken fein,
etwa durch kleine Kreise ab.

In einem bessern Sinne als der Schwerpunkt kann
somit der Krümmungsschwerpunkt eines Ovals als eine
Art Mittelpunkt desselben angesehen werden. Es ist noch
zu beachten, dass die Zahl 4 der Schnittpunkte der Ovale
erhalten bleibt, wenn man sie um den Krümmungsmittelpunkt

gegen einander dreht.

Eine kinematische Aufgabe.
Es seien die sämtlichen Ovale zu suchen, die einem

gegebenen regulären «-Eck so einbeschrieben sind, dass
sie alle Vieleckseiten berühren und die (unter
Aufrechterhaltung aller Berührungsstellen) sich noch mit einem
Freiheitsgrad im Vieleck bewegen lassen.

Dieser Forderung wird genügt, wenn alle dem Oval
umschriebenen gleichwinkligen »-Ecken auch regulär sind,
und dies ist auch eine notwendige Bedingung.
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Abb. 45

K

Abb. 46

Ist a infn so sind g(u — et), g{u) und g(u -f- a) drei
aufeinander folgende Seiten eines solchen Polygons. Die
in g(u) liegende Polygonseite hat die Länge

s "Üd^T Wu + a) -+-P(U — a) — 2 p(u) cos (et)]

da sie sich (Abb. 45) aus den Strecken AiQg und AäQ2
zusammensetzt, für die sich ergibt

AjQg sin (ct) p(u — et) — p(u) cos (et)

AiQü sin (et) p(u -f- a) —p(u) cos (et)

Führt man nun die Fourier-Entwicklung für p(u) ein, so wird
I — COS (t%)

sin (a)8= a0

„ 2 [cos(ka) — oo»(a)] r2, ÄTZT— [«* cos (*«) bk sin (£»)]

wird, wenn also die sämtlichen in der Reihe für s
auftretenden Fourier-Koeffizienten mit Ausnahme des ersten
verschwinden. Es können also von den Grössen a* und
bk nur diejenigen von null verschieden bleiben, für die

cos (k a) — cos(ot) o
wird. Dies ist aber dann und nur dann der Fall, wenn k
durch n geteilt den Rest + 1 oder — 1 lässt; k hat die
Form (gn -4- 1) wo g eine ganze Zahl ist und es wird

p(u) — -j-^ cos («) -(- r\ sin (») —

¦ikJSff- xcos lfr»±')»]+ J±7y-, *»Kg«±')«]}-
s=i
Dieser Ausdruck, in dem die verbleibenden Koeffizienten
ganz beliebige Werte haben können, erfüllt die für p
erhaltene Funktionalgleichung und gibt ihre allgemeine
Lösung. Die Forderung, dass es sich um ein Oval handeln
soll, schränkt den Bereich der aft und bk-Werte noch ein.8)

Beispiele.
Die Fälle n 2 und n 4 sind identisch. Die

Koeffizienten mit geradem Index müssen verschwinden. Man
erhält die Kurven konstanter Breite «0. Sie haben bei
gleicher Breite auch gleichen Umfang und sie lassen sich
noch zwangläufig im Innern eines Quadrates bewegen.

Abb. 46 zeigt z. B.
die Kurve, für die

P{U) I+yC0S(3«)
q(u) I — cos (u).

Sie ist in dem Quadrat

aß y d mit einem
Freiheitsgrad beweglich.

Und zwar sind
die zwei Polbahnen
der Bewegung die
dort angegebenen
Kreise AT, und Kt.
Der Fall n 3 ist in
Abb. 47 dargestellt,
die die durch

Abb. 47

p(u) I -\ cos (2«)

s. ist im allgemeinen eine Funktion von u. Unserer Forderung

wird dann und nur dann genügt, wenn s konstant

q(u) I — cos (2«)

gegebene Kurve wiedergibt. Wieder sind beide Polbahnen
der Bewegung Kreise, die feste ist der dem gleichseitigen
umschriebenen Dreieck einbeschriebene.*)

8) Die Reibe für q(u) darf keine negativen Werte annehmen. Die
Bedingung dafür bei C. Caratktodory: Math. Ann. Bd. 64 (1907) S. 95 ff.

4) Näheres siehe Ueber die Anwendung von Fourier-Reihen auf
einige Aufgaben der Geometrie und Kinematik", in der Vierteljahrschrift
der Naturforachenden Gesellschaft in Zürich, Jahrgang 54 (1909).

Ausdehnungen dieses und analoger Probleme findet man in den
Aufsätzen des Verfassers: „Ueber Punktmengen konstanter Breite".
Vierteljahrschrift der Naturforsch. Gesellschaft Zürich. Jahrg. 56 (1911) S. 42.

„Ueber die durch reguläre Polyeder nicht stützbaren Körper" die
selbe Zeitschrift Jahrg, 63 (1918) S. 544.

„Ueber positive Darstellungen von Polynomen". Math. Ann. 70, S. 244.
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