Zeitschrift: Schweizerische Bauzeitung

Herausgeber: Verlags-AG der akademischen technischen Vereine

Band: 99/100 (1932)

Heft: 13

Inhaltsverzeichnis

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 28.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

INHALT: Einige geometrische und kinematische Anwendungen der Stützfunktion. - Eigenheim des Architekten Prof. O. R. Salvisberg, Zürich. teilungen: Die Personen-Seilschwebebahn Chamonix-Brévent. Die bauliche Entwicklung der Stadt Paris. Kreiselwipper für 200 t/h. "Budd-Micheline". Die Kohle- und

Koks-Transportanlagen in der neuen Gaskokerei Basel. Internationale Kongresse für Neues Bauen. Der im Fluge verstellbare Propeller. — Wettbewerbe: Schulhaus-anlage an der Tannenrauchstrasse in Zürich-Wollishofen. — Literatur: Tragwerk und Raumabschluss. - Sitzungs- und Vortrags-Kalender.

Band 99

Der S. I. A. ist für den Inhalt des redaktionellen Tells seiner Vereinsorgane nicht verantwortlich. Nachdruck von Text oder Abbildungen ist nur mit Zustimmung der Redaktion und nur mit genauer Quellenangabe gestattet.

Nr. 13

Einige geometrische und kinematische Anwendungen der Stützfunktion.

Von Prof. Dr. E. MEISSNER, E. T. H., Zürich.

Anschliessend an die Artikelserie über graphische Analysis1) sollen noch einige Untersuchungen angedeutet werden, in denen mit Vorteil von der Stützfunktion einer Kurve Gebrauch gemacht wird. Der Kürze wegen beschränken wir uns auf konvexe, einfach geschlossene Kurven, sog. Ovale. Der Krümmungsradius o ist dann eine periodische nicht negative Funktion von u mit der Periode 2π. Er braucht nicht stetig zu sein, vielmehr wollen wir nur annehmen, dass er sich in eine Fourier-Reihe entwickeln lässt, die wir in der Form

$$\varrho(u) = \frac{a_0}{2} + \sum_{k=0}^{\infty} \left[a_k \cos(k u) + b_k \sin(k u) \right]$$

annehmen. Ist s wieder die Bogenlänge auf C und sind x, y die rechtwinkligen Koordinaten des Berührungspunktes P der Tangente g(u), so gelten die Formeln von Seite 42 $ds = \varrho(u) du$ $dx = -\varrho(u) \sin(u)$ $dy = \varrho(u) \cos(u)$ $ds = \varrho(u) du$ Da C eine einfach geschlossene Kurve ist, so ist ferner

$$\int_{c} dx = -\int_{0}^{2\pi} \varrho(u) \sin(u) du = 0 \qquad \int_{c} dy = \int_{0}^{2\pi} \varrho(u) \cos(u) du = 0$$

$$\int_{c} ds = \int_{0}^{2\pi} \varrho(u) du = L$$

unter L die Gesamtlänge des Ovals verstanden. Dies gibt für die Fourierreihe

$$b_1 = 0$$
 $a_1 = 0$ $a_0 \pi = L$

Multipliziert man die Reihe anderseits mit cos(u) und sin (u) und integriert, so ergeben sich die Formeln

$$x = \xi + \sum_{1}^{\infty} \left(-\frac{a_{k+1} - a_{k-1}}{2k} \cos(k u) - \frac{b_{k+1} - b_{k-1}}{2k} \sin(k u) \right)$$

$$y = \eta + \sum_{k=0}^{\infty} \left(-\frac{b_{k+1} + b_{k-1}}{2k} \cos(k u) + \frac{a_{k+1} + a_{k-1}}{2k} \sin(k u) \right)$$

Für die hier auftretenden Integrationskonstanten ξ , η ergibt sich durch Integrieren über das Intervall o bis 2n:

$$\xi = \frac{1}{2\pi} \int_{0}^{2\pi} x(u) du = \frac{1}{2\pi} \int_{0}^{2\pi} x(\frac{1}{\varrho}) ds$$

$$\eta = \frac{1}{2\pi} \int_{0}^{2\pi} y(u) du = \frac{1}{2\pi} \int_{0}^{2\pi} y(\frac{1}{\varrho}) ds$$

Somit sind ξ , η die Koordinaten des Schwerpunktes der Kurve C, wenn man sie sich mit Masse belegt denkt, die an jeder Stelle der Kurvenkrümmung 1/0 proportional ist; in allfälligen Ecken sind endlich grosse Massen proportional dem Eckenwinkel anzunehmen. Dieser von J. Steiner erstmals eingeführte Punkt heisst der Krümmungsschwerpunkt S* der Kurve C. Wenn man nun noch die Beziehungen

 $p' = -x \sin(u) + y \cos(u)$ $p = x \cos(u) + y \sin(u)$ mit den erhaltenen Reihen für x und y kombiniert, so kommt für die Stützfunktion nach einiger Umrechnung die Reihe

$$p(u) = \frac{a_0}{2} + \xi \cos(u) + \eta \sin(u) - \sum_{k=2}^{\infty} \left(\frac{a_k}{k^2 - 1} \cos(k u) + \frac{b_k}{k^2 - 1} \sin(k u) \right)$$

und für ihre Ableitung

$$p'(u) = -\xi \sin(u) + \eta \cos(u) -$$

that for three Ableitung
$$p'(u) = -\xi \sin(u) + \eta \cos(u) - \sum_{k=2}^{\infty} \left(\frac{k b_k}{k^2 - 1} \cos(k u) - \frac{k a_k}{k^2 - 1} \sin(k u) \right)$$

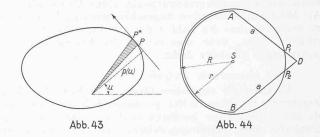
Ist ds die Länge eines in P liegenden Linienelementes PP* von C (Abb. 43), so ist $1/2 p ds = 1/2 p \varrho du$ der Flächeninhalt des Elementardreiecks OPP* und somit ist der Flächeninhalt J des Ovals gegeben durch

$$J = \frac{1}{2} \int_{0}^{2\pi} \varphi(u) \, p(u) \, du$$

was in der Fourierentwicklung ausgedrückt ergibt

$$J = \frac{a_0^2 \pi}{4} - \frac{\pi}{2} \sum_{k=1}^{\infty} \frac{a_k^2 + b_k^2}{k^2 - 1}$$

 $J=\frac{{a_0}^2\,\pi}{4}-\frac{\pi}{2}\,\sum_2^\infty\frac{{a_k}^2\,+\,b_k{}^2}{k^2-1}$ A. Hurwitz²), von dem im wesentlichen diese letzten Formeln stammen, hat daran anknüpfend den Beweis für das sog. isoperimetrische Problem erbracht. In der Tat zeigt der Ausdruck für J, das unter allen hier betrachteten Ovalen von der selben Bogenlänge, also dem selben a_0 dasjenige den grössten Flächeninhalt besitzt, für das alle übrigen Fourierkoeffizienten verschwinden, d. h. der Kreis vom Durchmesser a_0 .



Aus dem Ausdruck für p(u) kann eine merkwürdige Folgerung gezogen werden. Man denke sich zwei Ovale O_1 und O_2 mit den Stützfunktionen p_1 und p_2 . Wenn sie gleichen Umfang L haben, so ist der Fourierkoeffizient ao in den Reihenentwicklungen von p_1 und p_2 der selbe. Man vereinige die Ovale nun irgendwie, aber so, dass ihre Krümmungsschwerpunkte S_1^* und S_2^* zusammenfallen. Alsdann stimmen auch noch die Fourierkoeffizienten von cos (u) und von sin (u) in beiden Reihenentwicklungen überein. Die Funktion $p(u) = p_1(u) - p_2(u)$ hat daher eine Fourier-Entwicklung, deren niedrigste Glieder jene von $\cos(2 u)$ und sin (2 u) sind. Wendet man hierauf einen ebenfalls auf Hurwitz⁶) zurückgehenden Satz an, dass eine solche Funktion, wenn sie stetig ist, im Intervall von o bis 2π mindestens 4 mal gleich null wird, so folgt, dass die beiden so zusammengelegten Ovale wenigstens vier gemeinsame Tangenten haben, und hieraus wieder folgt, dass sie sich in wenigstens vier Punkten schneiden. Es gilt sonach der Satz: Haben zwei Ovale gleicher Länge die Krümmungs-Schwerpunkte gemein, so schneiden sie sich in wenigstens vier Punkten.

Der Inhalt dieses Satzes wird besonders hervorgehoben, wenn man feststellt, dass er nicht mehr wahr ist, wenn man an Stelle des Krümmungsschwerpunktes S* den gewöhnlichen Schwerpunkt S setzt. Dies zeigt folgendes Beispiel: Eine Kurve C₁ (Abb. 44) bestehe aus einem Halbkreis vom Radius r und Zentrum S und zwei gleichlangen Strecken AD, BD von der Länge a. Man wähle a so, dass der Schwerpunkt von C1 nach S fällt.

$$\left(a = \frac{r}{2} \sqrt{2 + 2 \sqrt{17}}\right)$$

¹⁾ Vergl. Band 98, S. 287 ff.; Band 99, S. 27 ff. Auch als Sonderabdruck erhältlich. Red.

²⁾ A. Hurwitz: Sur quelques applications géométriques des séries de Fourier. Ann. de l'Ecole normale T. XIX (1902) page 371 ff.