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Biegungssteifigkeit EJ folgen die Einsenkungen z der
Stabaxe nach den Lehren der Baustatik bekanntlich der
Differentialgleichung

(1)
aH p

in der p die Belastung pro Längeneinheit bezeichnet. Durch
viermalige Integration ergibt sich daraus die Gleichung
der elastischen Linie als Potenzkurve vierter Ordnung.
Wenn die Einspannungsgrade beider Auflager gleich gross
sind, so ist die elastische Linie symmetrisch zur Mitte.

Statische Untersuchung quadratischer, allseitig elastisch eingespannter Platten.
Von Prof. Dr. M. RITTER, Zürioh.

Die rechteckige, auf allen Seiten gestützte, kreuzweise
armierte Platte bildet im Eisenbetonbau ein wichtiges
Konstruktionselement. Ihre statische Berechnung erfolgt in der
Praxis heute noch meist nach der sogenannten „ Streifen-
methode", die sich vermöge ihrer Einfachheit eingebürgert
hat und in zahlreichen Eisenbetonvorschriften empfohlen
wird. Indessen ist bekannt, dass die Streifenmethode lediglich

ein rohes Näherungsverfahren darstellt und ihrer Natur
nach nicht im Stande ist, das statische Verhalten einer
allseitig gelagerten, auf räumliche Biegung beanspruchten Platte
richtig wiederzugeben. Hierzu dient vielmehr die klassische
Elastizitätstheorie der ebenen Platten, wie sie vor mehr als
hundert Jahren durch Lagrange & Navier begründet und
später durch zahlreiche Forscher weiter ausgebaut wurde.

Die Anwendung der Plattentheorie im Eisenbetonbau
erfordert vor allem die zutreffende Berücksichtigung der
vorhandenen Auflagerung der Platte, da die Gestalt der
elastischen Fläche und die Biegungsmomente in hohem
Masse von den „Randbedingungen" der Platte abhängen.
In dieser Hinsicht befriedigen die klassischen Lösungen
der Plattentheorie den Eisenbetoningenieur nicht, denn sie
beschränken sich auf die Fälle der freien Auflagerung und
der vollständigen Einspannung der Plattenränder, also auf
Sonderfälle, die im Eisenbetonbau selten vorkommen. Hier
liegt meist der allgemeinere Fall der „teilweisen" oder
„elastischen" Einspannung vor, sei es, dass die Platte in
nachgiebige Mauern eingespannt ist, oder dass sie an den
Rändern in monolytischer Bauweise in elastische
Tragwerke (Randträger, Nebenfelder bei durchlaufenden Platten)
übergreift. Die analytische Behandlung der Platte mit
elastischer Einspannung bietet wesentliche Schwierigkeiten,
da die von Navier angegebene Integrationsmethode hier
versagt. Es bestand bisher die Möglichkeit, mit Hilfe der
Differenzenrechnung die elastische Fläche unter
Berücksichtigung eines beliebigen Einspannungsgrades näherungsweise

darzustellen. Die Literatur enthält Berechnungen
dieser Art {Nielsen, Markus u. a.), doch ist dieses Vorgehen
umständlich und gestattet nicht ohne weiteres, den wichtigen

Zusammenhang zwischen dem Einspannungsgrad und
den Biegungsmomenten zu erkennen.

Im folgenden wird die Berechnung der allseitig
elastisch eingespannten Platte für gleichförmig verteilte
Belastung vorgeführt. Die Lösung ergibt sich in einfacher
Weise, indem die elastische Fläche durch Potenzfunktionen
dargestellt wird, die den Randbedingungen der Platte
genügen. Streng genommen führt dieser Ansatz zwar zu
einer Näherungslösung, da die zugehörige Belastung nicht
gleichmässig, sondern in Form eines Hügels über die Platte
verteilt ist. Indessen lässt sich durch passende Wahl von
Koeffizienten erreichen, dass der Belastungshügel plateauartige

Gestalt annimmt und dann die gleichen Biegungsmomente

erzeugt, wie die konstante, spezifische Belastung.
Der Einfachheit halber bleibt nachstehend die Untersuchung
auf die quadratische Platte mit gleichem Einspannungsgrad
aller Randpunkte beschränkt; der eingeschlagene Weg
soll später zur Behandlung schwierigerer Aufgaben weiter
beschritten werden.

1. Einführung. Der elastisch eingespannte Balken.
Wir beginnen mit einer kurzen Erläuterung der Theorie

des elastisch eingespannten, gleichmässig belasteten
Balkens, da die Grundlagen dieser Theorie auch zur
Untersuchung der Platte benötigt werden. Bei konstanter

M */£=

Abb. 1.

Bezieht man die Gleichung auf das in Abb. i angegebene
Koordinatensystem, so fallen der Symmetrie wegen die
Glieder mit ungeraden Potenzen weg, und die Gleichung
lässt sich in der Form schreiben

* «b (1 + Ci £ -r- ei J) (a)

wo #o die Einsenkung in Balkenmitte und a die halbe
Stützweite bedeutet. Die Momentenfläche sieht wie in
Abb. 1 skizziert aus; das Moment an der Stelle x berechnet
sich nach bekannter Formel zu

In Balkenmitte entsteht das grösste positive Moment, das

sogenannte Feldmoment

Ma -EJ2-^Cl;
an den Auflagern entstehen die negativen Einspannmomente

oder Randmomente

Mr=-EJ2-£(Cl + 6ca).

Die beiden Integrationskonstanten cx und c2 ergeben
sich aus den Auflager- oder Randbedingungen. An den
Auflagern ist die Einsenkung z o, daher

I + Cy -+- Ct — O (3)
Die elastische Einspannung der Trägerenden ist dadurch
gekennzeichnet, dass an den Auflagern die Neigung der
elastischen Linie proportional ist dem Einspannmoment,
also * „ M r T*'* t.\— =sMr=-eEJ^, (4)

worin s die Drehung der Einspannquerschnitte infolge
„Mr 1" bezeichnet. Mit Hilfe von Gl. (2) erhält man aus
dieser Beziehung

*-± (Cl -f- a c,) - e EJ^ (c, -4- 6 cs)

oder et (1+Ä)H-ac» (i-(-3*) o, (5)
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indem zur Abkürzung

k sEJ
(6)

gesetzt wird. Die Grösse k heisst „Einspannungsfaktor".
Die Auflösung der Gl. (3) und (5) liefert die Integrationskonstanten

zu
2(1 + 3*) I

C\ Oi
1 + 5* ' j 1 + 5*

Die Einsenkung z0 in Balkenmitte findet man, indem
man Gl. (2) viermal differentiert und in Gl. (1) einsetzt. Führt
man noch die Stützweite / 2a ein, so ergibt sich

384 EJ i+k
Zo) Ci und Ct in die Formeln

384 *-, EJ
Setzt man die Ausdrücke für
für das Feldmoment und die Einspannmomente ein, so folgt

pl* 1+3* fl2
12

M0 MT (8)
24 1 + k ' 12 1 + k

Mit k o und ^ 00 erhält man daraus die bekannten
Sonderwerte für vollständige Einspannung bezw. freie
Auflagerung; dazwischen liegen alle möglichen Fälle der
teilweisen Einspannung. Nicht der Drehwinkel e, sondern
einzig der Einspannungsfaktor k ist massgebend für die
Grösse dieser Momente. Als „Einspannungsgrad" definiert
man zweckmässig den Quotienten0 ^ 1 4- k

2. Die Streifenmethode.
Die vorstehende Theorie des elastisch eingespannten

Balkens ermöglicht die Näherungsberechnung der
rechteckigen, auf allen Seiten elastisch eingespannten Platte
nach der sogenannten Streifenmethode, die nachstehend
kurz dargelegt wird.

Die Platte trage die gleichmässig verteilte Belastung^
auf die Flächeneinheit. Wir denken uns aus der Platte
nach den beiden
Tragrichtungen zwei Streifen — —1 1 —B
von der Breite b 1

herausgeschnitten, die sich
an der Stelle der grossten

Einsenkung kreuzen,
(vergl. Abb 2). Die
Belastung^ zerfällt dann in
den Anteil pit der durch
den einen Streifen in
der Richtung h nach den
Auflagern übertragen wird
und in den Anteil pi,
der durch den andern Streifen in die Richtung /g übergeht.

Es ist p z=pl-\-pi. Zur Bestimmung dieser
Lastanteile dient die Bedingung, dass die beiden Streifen an
der Kreuzungsstelle dieselbe Einsenkung haben. Setzt man
voraus, dass sich die Streifen wie selbständige, elastisch
eingespannte Balken durchbiegen, so berechnet sich die
gemeinsame Einsenkung nach Gl. (7) zu

A /,¦' i + 5*i_ ?»hl i + 5*a
*° ~ 384 EJ 1 + *,

'

384 EJ 1 + *, '

wobei ki und k% die Einspannungsfaktoren der beiden
Streifen sind. Mit den Abkürzungen

1 + 5 *i

pi

— It-
Abb. 2.

und v%
5*.

4-*,

vllxi
*i V + vt /„«

pt von Punkt zu Punkt verschieden. Auch verhalten sich
die beiden Streifen nicht wie selbständige Balken, sondern
es treten an den lotrechten Seitenflächen wagrechte
Schubspannungen auf. Schliesslich lässt die Methode den
Einfluss der Querdehnung ausser acht. Der grosse Vorzug
der Streifenmethode besteht darin, dass sie in einfachster
Weise die Platte mit beliebigen Einspannungsfaktoren kx
und ki bewältigt und daher ganz besonders für durchlaufende
Platten geeignet ist. Für die Berechnungen in der Praxis
erscheint es deshalb wohl am Platze, die Streifenmethode
beizubehalten, jedoch lediglich im Sinne einer empirischen
Regel und nach Berichtigung durch den Vergleich mit der
genauem Plattentheorie.

ß. Grundlagen der Plattentheorie.
Eine eingehende Darlegung der Theorie elastischer

Platten überschreitet den Rahmen der vorliegenden Arbeit ;
wir beschränken uns hier auf eine gedrängte Zusammenstellung

der Grundlagen, soweit sie für die folgenden
Berechnungen benötigt werden und verweisen für nähere
Aufschlüsse auf die vorhandene, reichhaltige Literatur.1)

Die klassische Plattentheorie bezieht sich auf die
homogene, ebene Platte, deren Material dem Hooke'schen
Gesetze folgt. Bezeichnet man mit z die Einsenkung der
Mittelfläche an irgend einer Stelle mit den rechtwinkligen
Grundrisskoordinaten x und y, so gelten unter den
Annahmen von Navier für die Krümmungen der elastischen
Fläche die bekannten Ausdrücke

dx2 EJ V <" / I

(Q\

dy2 EJ \ m J

worin Mt und Mi die Biegungsmomente sind, die in den
Richtungen der Koordinaten auf die Einheit der Breite
wirken. J ist das Trägheitsmoment des Querschnittes auf
die Einheit der Breite; EJ heisst die Biegungssteifigkeit

folgt aus obiger Beziehung

A-^J+U'' p2=p
Werden diese Lastanteile in die Gleichungen (8) eingesetzt,
so lassen sich die Feldmomente und die Randmomente
beider Streifen leicht berechnen. Für v% h} v3 /»* wird
pt=p2 1/2 p. Das trifft bei der quadratischen Platte zu,
wenn kx k2; doch ist die Methode keineswegs auf diesen
Sonderfall beschränkt.

Die Stieifenmethode liefert aus mehreren Gründen
unrichtige Ergebnisse. Einmal sind die Lastanteile p1 und

p dx dy pdx dy

HM. H,\dx

..LT T

tQdu_ \Mudx

QBdx

dx -dy-
Abb. 3.

der Platte. Durch die Poissonzahl m kommt der Einfluss
der Querdehnung auf die Krümmungen zum Ausdruck.
Aus den Gleichungen (9) berechnen sich die Biegungsmomente

zu

M, -
iL

EJ

EJ

dh\

O'z

dx»

(10)

Eine einfache Betrachtung liefert auch noch einen Ausdruck
für die sogenannte Verdrillung der Querschnitte, die durch
die wagrecbten Schubspannungen zustande kommt, die in
den lotrechten Schnitten wirken und auf die Einheit der
Breite das Drillungsmoment

», EJ d*z
ir/8 3—3- (il)

1 _]_ _J_ dx dy v '
liefern. Denkt man sich weiter nach Abb. 3 ein
Plattenelement vom Grundrisse dx dy abgegrenzt, so folgt aus
den drei Gleichgewichtsbedingungen die sogenannte
Grundgleichung der Plattentheorie.

d*M, d» Mt d*Art
dx* ~t~ dy* ~*~ dx dy "'

wo p die im allgemeinen veränderliche spezifische Belastung
Love.') Vergl. die

Nadai, Pigeaud u. a.

Lehrbücher von Föppl, Lorenz, Mesnager,
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der Platte darstellt. Setzt man darin für die Momente die
Ausdrücke (10) und (11) ein, so erhält man die Differentialgleichung

der elastischen Fläche, die aber nur im Falle
einer konstanten Biegungssteifigkeit einfache Gestalt
annimmt, nämlich die Form von Lagrange

d*z d*z d*z p l 1 \
2 dx2 dy2~^ d^^Ejy1 ~^?) ' 12

Ox* I Ox* dy* ' dy*

Durch Integration mit Berücksichtigung der Randbedingungen

ergibt sich daraus die Gestalt der elastischen Fläche,
aus der schliesslich die Momente und Querkräfte an jeder
Stelle der Platte leicht zu berechnen sind.

Navier hat bereits im Jahr 1821 die Integration der
Differentialgleichung von Lagrange für die rechteckige,
gleichmässig belastete Platte mit Hilfe einer zweidimensionalen

Fourier'schen Reihe durchgeführt. Da die
Funktionen sin er und cos ex die Eigenschaft besitzen, dass ihre
zweiten Ableitungen bis auf einen Faktor mit den
Funktionen selbst übereinstimmen, so gelten an den
Plattenrändern ausser der Bedingung 2 0 auch noch die

Beziehungen jT obezw. tT=Oi d. h. die Navier'sche0 Ox2 oy* '

Lösung bezieht sich ausschliesslich auf die allseitig frei
aufliegende Platte. Die elastische Fläche der eingespannten,
rechteckigen Platte ist deshalb nicht durch trigonometrische
Doppelreihen darstellbar, bei denen jedes Glied die
Randbedingungen erfüllt. Die Aufgabe der allseitig eingespannten
Platte bietet durch diesen Umstand wesentliche Schwierigkeiten

und wurde erst in neuerer Zeit in mehreren
theoretischen Arbeiten behandelt. Zu einer geeigneten
Grundlösung, die die Differentialgleichung von Lagrange, jedoch
nicht alle Randbedingungen befriedigt, wurden in Reihenform

darstellbare Zusatzlösungen hinzugefügt, die der
Differentialgleichung für p o genügen und die geforderten
Randbedingungen herstellen.1)

4. Anwendung auf die quadratische Platte.
Die erwähnte, exakte Integration liefert leider im

Falle der allseitig elastisch eingespannten Platte eine
komplizierte, wenig übersichtliche Lösung, die den praktisch
so wichtigen Einfluss des Einspannungsgrades der Ränder
nicht in genügend einfacher Weise zum Ausdruck bringt.
Zur Berechnung der quadratischen Platte ziehen wir
deshalb — in Anlehnung an eine wertvolle Bemerkung von
A. Pöppl*) — eine angenäherte Lösung der Aufgabe vor,
indem wir die elastische Fläche durch Potenzfunktionen
darstellen, die die Randbedingungen

streng erfüllen. Die
Differentialgleichung (12) ergibt
hierfür eine veränderliche,
spezifische Belastung p =/ (x,y), an
die wir die Forderung stellen,
dass sie im mittlem Bereich der
Platte nur ganz unbedeutend
variieren darf.

Mit Bezug auf das in Abb. 4
angegebene Koordinatensystem
und Beachtung der Symmetrie-
Verhältnisse lässt sich die Einsenkung
Fläche durch den Ansatz darstellen

i
rp

1

Abb. 4.

der elastischen

einzusetzen. Für die Plattenränder parallel der y-Axe gilt
darnach die Beziehung

dz tEJ td*z 1 d»z\ >_=e^ ___^_+__ji (15)
m»

wo e die Neigung der elastischen Fläche, bezw. die Drehung
der Einspannstelle infolge Mr 1 bezeichnet. Wir
beschränken die Betrachtung auf den Fall, dass e längs
den Auflagerbahnen konstant ist. Der Ansatz (13) liefert
für x + a

Ox
d»z

dx*
d2z

y

¦= o.

Mit Einführung des „Einspannungsfaktors" (analog Gl. 6)
*EJ

7—r^; (l6)Abgeht

Gl. (15) über in

| (1 -f- k) +- 2 c2 (1 + 3 k) +- 3 cB (1 + 5 k) o (17)
Die Beziehungen (14) und (17) gestatten, die Koeffizienten
et und c8 durch Ci wie folgt auszudrücken:

3(1 + 5^ + 2^(1 + 7*)
Ct

CB

1 +9*
*(' + 3*) + '.(« + 5*) (18)

i+9*
Es liegt nahe, zur Bestimmung des Koeffizienten d

die Forderung aufzustellen, dass der Mittelwert der
Belastung p längs der Koordinatenaxen dem Wert p0 in der
Plattenmitte gleich sein soll, also

a

fpdx=p0a (19)
0

Die Erfüllung dieser Beziehung hat zur Folge, dass die
Belastung im mittlem Bezirk der Platte wenig veränderlich
ist und nur gegen die Ränder stärker abweicht, dass also
der Belastungshügel zu einem Plateau wird. Man könnte
auch daran denken, den Mittelwert der gesamten Belastung
gleich po zu setzen, jedoch ist dann, wie man leicht erkennt,
die Gestalt des Belastungshügels nicht so günstig. Um die
Beziehung (19) auszuwerten, berechnen wir die Belastung p
als Funktion der Koordinaten, indem wir den Ansatz (13)
in die Differentialgleichung (ia) einsetzen. Wir erhalten

t(<
+ (ft +15 <, (1 + „.i + c.S+e.J)

£)(*+ 6ca- 15^a+- j(ci+6cg;
Auf die Plattenmitte (x y o) angewandt, ergibt sich
hieraus die grösste Einsenkung der Platte zu

8 EJ(Cl» + 6tj
Längs der x-Axe (y =*= o) beträgt die Belastung, wenn
für Zq der Ausdruck (21) eingesetzt wird,

«0

(20)

(21)

p < + 64<2L
C\ä + 6 et -f 9 (c, ca -f- 5 ca) •

!;=*o(iM '?)(I+*$+*S- 1 ~ij > (*3) Die Integration längs der «-Axe liefert
3(5CiC8+-cV)J+3Ci!c8^].

worin z0 die Einsenkung in Plattenmitte ist und cu ca, cs
Koeffizienten darstellen, die vor allem den Randbedingungen
genügen müssen, a bedeutet die halbe Stützweite der Platte.

Am Rande ist 0 o, somit
1 + c. 4 Ca -f- cB o (14)

Die elastische Einspannung der Plattenränder wird in
gleicher Weise definiert, wie beim elastisch eingespannten
Balken, nur ist in Gl. (4) für das Einspannmoment der
entsprechende Ausdruck der Plattentheorie, aus Gl. (10),

') Vergl. A. Nadai: „Die elastischen Platten", Seite 180 ff.
*) Vergl. A. Foppt: „Vorlesungen übe* technische Mechanik", 5. Band,

1907, Seite 109 (unten),

Jp dx po a[i +3
<i '« 4 <i <a + — + -T-5- 4 S h

c2 + 6 c2

Die Bedingung (19) wird erfüllt für

ct (c2 -f- Co) -h-y-f-^y5- + 5 c8 o.

Setzt man hier für c2 und c3 die Ausdrücke (18) ein, so
findet man schliesslich für C\ die folgende quadratische
Gleichung:
Cl* (1813 £« + 358 k -4-17) — 3 c, (2395 k* 4- 826 k 4- 63)

— (10 575 k* -+ 4590 £4-383) 0. (aa)
Im statischen Institut der E. T. H. wurde die numerische

Berechnung der Werte c,, ct, c8 für verschiedene
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Einspannungsfaktoren k mit Hilfe einer Rechenmaschine
durchgeführt. Die nachstehende Tab. i enthält einen Auszug.

Tabelle i: Koeffizienten nach Gl. (22).

k Cl fr 's 1 Cr

0 — I.75I 0,502 0,249 55,5 '9,4
1 — I,4O0 0,292 0,108 42,4 30,2

1 — '.359 0,265 0,094 40,5 33-5

1 - 1,307 0,229 0,078 37,7 UBapTQjH

¦ Vi — i,375 0,207 0,068 3°,° 46,5

I - ',238 0,181 0,057 33,8 59,4

2 — ','94 0,149 0,045 3',i 97.7
GO — 1,14z 0,111 0,032 27,6 00

/. Berechnung der Biegungsmomente.
Mit Hilfe der Gleichung (10) lassen sich die Biegungsmomente

Mi und Mi in Richtung der Koordinatenaxen und
damit auch in jeder andern Richtung an irgend einer
Stelle der Platte berechnen. Von besonderer Wichtigkeit
für die Dimensionierung ist das positive Biegungsmoment M0
in der Plattenmitte, das „Feldmoment", das in jeder Richtung

gleich gross ist, sowie das negative „Einspannmoment"

Mr am Rande in der Mitte jeder Auflagerbahn.
Die Gl. (13) und (21) liefern für die Plattenmitte

o*
dx dy=*o- 4 EJ{c,2 + 6 fr)

Wird dieser Wert in Gl. (10) für x=y o, also in
** EJ d3z { I \

m»

eingesetzt, so ergibt sich für das Feldmoment:

M0 — At a" fr ('+$¦mgmm
Für die Mitte des Randes x — a erhält man

-j- (ct 4- 6 c2 4-15 cs) 1 Po"2(<i + 6 fr + 15 fr)
4 EJ (cx2 + 6 fr)dx2

&>z

df=°'
somit hat das Einspannmoment den Wert

EJ d*z p0 fl2 (fr + 6 fr + 15 fr)

i1-^)

Mr — dx' 4 (fr" + 6 fr)

Ab-Nach Einführung der Stützweite / za und der
kürzungen

_
16 (fr'+ 6 fr) 16 (fr"+ 6 fr)

0
fr ' | fr + 6fr+15 fr

nehmen die Momente die für die Anwendung bevorzugte
Form an:

K^AJLU+ JL), Mr -*?- (a3)

In Tabelle 1 sind die Nennerwerte c0 und cr für die
verschiedenen Einspannungsfaktoren ebenfalls zusammengestellt.

Man erkennt aus den beiden Zahlenreihen, dass
sich Co und cr mit guter Genauigkeit durch folgende
Formeln darstellen lassen:

c° a7 -3TTT ' cr 20 (2 * -4- 1).

Damit ergeben sich für die Momente einfache Näherungsausdrücke,

nämlich:

Mo--?m^{^\Feldmoment
27 (3 * 4 2)

Einspannmoment Mr= —
(34)

20(2 k 4 0
Die Poissonzahl m ist von Einfluss auf das Feldmoment,
nicht aber auf die Randmomente. Für die praktische
Anwendung im Eisenbeton dürfte es zweckmässig sein, mit
m 4 zu rechnen. Zwar lässt sich zeigen, dass im Stadium
der Rissebildung m wesentlich grösser ausfällt. Die
vorliegende Theorie bezieht sich indessen auf die Platte aus
homogenem Baustoff mit konstanter Biegungssteifigkeit.
Mit diesen Voraussetzungen erscheint die Annahme einer
höhern Poissonzahl m unvereinbar. Die Annahme m oo.

die in der Eisenbetonliteratur mehrfach empfohlen wurde,
lässt sich wohl begründen für den Fall der Platte ohne
Drillungswiderstand (Theorie des Balkenrostes), jedoch
nicht im Verein mit den in dieser Abhandlung benützten
Voraussetzungen der klassischen Plattentheorie.

6. Nachweis der Lastverteilung.
Es bleibt noch zu zeigen, dass die variable Belastung

nach Gleichung (20) mit genügender Genauigkeit als Ersatz
für eine gleichmässig verteilte Belastung dienen kann. Zu

diesem Zwecke berechnet man
am einfachsten für verschiedene
Lastpunkte den Quotienten p/po
und überzeugt sich, dass im mittlem

Bereich der Platte dieser
Wert nur unwesentlich von 1

abweicht. Gegen die Plattenränder

und namentlich in den
Ecken ist die Abweichung gross,
indessen sind die dort befindlichen

Lasten überhaupt nur von
geringem Einflüsse auf die
Biegungsmomente. Die Tabelle 2

enthält auszugsweise das Ergebnis dieser Berechnung und
zwar für die Einspannungsfaktoren k o, >/8 und 00, und
die Lastpunkte x\a o, y4l Va, 8/*> x> sowie die
entsprechenden Werte von yja, vergl. Abb. 5.

.y
15

13 14-

10 TI 12

6 7 3 9

1 2 3 4 5

Abb. 5.

Tabelle 2: Lastverteilung p/p0, vergl. Abb 5-

Lastpunkt
Nr

X

a

V II

I 3
4 00

I 0 1,00 1,00 1,00

2 V« 1,03 1,02 t,OI
3 1 O 1,08 1,04 1,02

4 »/« I,OJ 1,01 1,01

5 0,65 0,81 0,90
6 Vi 1,04 1,02 1,0 [

7

8 8A
Vi 1,04

0,94

1,02

0,96

I,OI

°,97
9 1 0,60 o,74 0,84

10 V. 0,94 o,95 0,96

11 | Vs 0,78 0,81 0,86

12 1 0,53 0,58 0,65

13 Vi 8/ 0.77 0,62 o,66

14 I 1,38 0,48 0,36

15 I I 4,11 0,78 0,00

Es ist leicht möglich, diese Lastverteilung, noch zu
verbessern, indem man die Potenzfunktionen der Gl. (13)
um ein oder mehrere Glieder erweitert. Die numerische
Berechnung ergab jedoch, dass diese Erweiterung
überflüssig ist, weil bereits die vorliegende Darstellung die
Biegungsmomente mit grosser Annäherung so liefert, wie
sie bei konstanter spezifischer Belastung entstehen. Für
die Fälle der freien Auflagerung (k 00) und der totalen
Einspannung (k o) überzeugt man sich hiervon auch
leicht durch den Vergleich mit den exakten, durch
Auswertung der trigonometrischen Reihen erhaltenen Ergebnissen

der Elastizitätstheorie, die aus der Literatur bekannt
sind. Bei freier Auflagerung beträgt darnach der exakte
Wert für das Feldmoment

^0=^i(I+ _L);
27,2 \ m

bei vollständiger Einspannung aller Ränder lauten die
exakten Werte nach H. Leite*)

54.3 V ' m ¦ 19,4
Man erkennt, dass unsere Berechnung mit Potenzfunktionen
nur ganz unbedeutende Fehler mit sich bringt. Selbst die

') H. Ltitz: „Berechnung ebener Platten", Betonkalender 19*8.
Im neuesten Jahrgang dieses Taschenbuches finden sich die Tabellen von
Leiti nicht mehr.

Mo
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überaus einfachen Näherungsausdrücke (24) ergeben
Resultate, die um weniger als 3 °/0 von den Ergebnissen der
mathematischen Elastizitätstheorie abweichen.

7. Vergleich der Plattentheorie mit der Streifenmethode.

In Tabelle 3 sind die nach der Plattentheorie (Gl. 24
mit m 4) berechneten Feldmomente und Einspannmomente

den Ergebnissen der Streifenmethode für
verschiedene Einspannungsfaktoren gegenüber gestellt.

* /'Tabelle 1: Nenner c in M=——.

Einspannungs¬
faktor

Einspannungs¬
grad

Plattentheorie Streifenmethode

k 1

i + ft
^/0 il/r M0 Mr

0 1 43,2 — 20,0 48,0 24,0

Vi 1 33,9 - 30,0 34,3 — 30,0

1 Vi 32,4 — 33,3 32,0 — 32,0

¦'2 1 30,2 — 40,0 28,8 — 36.°

/s m 28,8 — 46,7 26,7 — 40,0

1 % 27,0 — 60,0 24,0 — 48,0

2 1 24,7 —100,0 20,6 — 72,0

00 0 21,6 00 m^j^pi OO

Wie man sieht, weichen bei den grössern Einspan-
nungsgraden die Ergebnisse der Streifenmethode von der
Plattentheorie wenig ab. Bei schwacher Einspannung und
besonders bei freier Auflagerung liefert aber die Streifenmethode

viel zu grosse Feldmomente.
Die Theorie der elastisch eingespannten Platte bildet

die Grundlage zur Berechnung der durchlaufenden Platten,
die im Eisenbetonbau von grosser Bedeutung sind. In der
Praxis berechnete man bisher die durchlaufenden Platten
notgedrungen stets nach der Streifenmethode und
überschätzte darnach die Feldmomente wesentlich. Es ist nämlich

zu beachten, dass der Einspannungsgrad eines Plattenfeldes

hier durch die Formänderung der Nachbarfelder zu
Stande kommt und deshalb einen höhern Wert erreicht,
als nach der Balkentheorie zu erwarten ist. Theoretische
und experimentelle Untersuchungen im Institut für
Baustatik an der E. T. H. haben gezeigt, dass man die bekannten
Ausdrücke für die Auflagerdrehwinkel eines Balkens infolge
„M — 1" wenigstens halbieren muss, um die entsprechenden

Werte bei der allseitig gelagerten Platte zu erhalten.
Diese Korrektur ergibt sich bei der Anwendung der
Streifenmethode auf durchlaufende Platten in einfacher Weise,
indem man bei der Bestimmung der Festpunkte jeder
Oeffnung die Nachbarfelder mit ungefähr dem doppelten
Trägheitsmoment in die Rechnung einführt. Eine
eingehendere Erläuterung und Begründung dieser Regel, die
die genauere statische Untersuchung durchlaufender Platten
wesentlich erleichtert, bleibt einer besondern Abhandlung
vorbehalten.

Internationale Vereinigung für Brückenbau
und Hochbau.

Die Internationale Vereinigung für Brücken- und Hochbau,

über deren Gründung wir auf Seite 278 von Band 94
(30. November 1929). berichteten, wird ihren ersten
Kongress vom 19. bis 25. Mai in Paris abhalten. Es ist der
Vereinigung gelungen, einige der bekanntesten Vertreter
der Wissenschaft und des Bauwesens zu gewinnen, die
die Diskussionen der einzelnen Fragen, die auf dem
Programm des Kongresses vorgesehen sind, einleiten werden.
Der Kongress umfasst eine Eröffnungssitzung, sieben
Arbeitssitzungen und eine Schlussitzung, in der die am Ende
der Arbeitssitzungen festgelegten Schlussfolgerungen nochmals

vorgetragen werden sollen.
Das Kongressprogramm ist so aufgestellt worden,

dass die Kongressteilnehmer sich sowohl an der Besprechung

der Fragen des Stahlbaues, als auch des Eisenbetonbaues

beteiligen können. Für jedes der acht vorgesehenen

Themata wurden verschiedene Referate vorbereitet, die
vollinhaltlich im „Vorbericht", der an alle Kongressteilnehmer

verschickt wird, veröffentlicht werden. Die
Referenten werden in den Sitzungen jeweils nur eine kurze
Zusammenfassung ihrer Arbeit geben. Die Kognressteil-
nehmer, die sich an der Diskussion zu beteiligen wünschen,
haben sich bei den Generalsekretären der Vereinigung
(Prof. Dr. L. Karner, Prof. Dr. M. Ritter, E.T.H., Zürich)
anzumelden. Die Sprechdauer jedes Redners wird entsprechend

der für die Diskussion zur Verfügung stehenden
Zeit streng begrenzt.

Das Programm umfasst folgende Themata:
/. Stabilität und Festigkeit von auf Druck und

Biegung beanspruchten Bauteilen. 1. Einleitendes Referat (Prof.
Dr. L. Karner, Zürich); 2. Frage des Knickens aussermittig
oder querbelasteter gerader Stäbe (Prof. Dr. Roä>, Zürich);
3. Das Ausbeulen der Stegbleche gedrückter Stäbe (Dr.
F. Bleich, Wien); 4. Das Ausbeulen der Stegbleche von
auf Biegung beanspruchten Trägern (Prof. S. Timoshenko,
Ann Arbor, U. S. A.).

II. Platten und Schalen im Eisenbetonbau. 1. Einleitendes

Referat (Prof. Dr. M. Ritter, Zürich); 2. Rechteckige,
allseitig aufliegende Platten (Prof. Dr. Gehler, Dresden);
3. Pilzdecken (Prof. Dr. Huber, Warschau); 4. Schalen,
Scheiben und Faltwerke (Dr. W.Petry, Obercassel-Siegkreis).

III. Sehweissen im Stahlbau. 1. Allgemeines Referat
(Prof. T. Godard, Pau); 2. Festigkeit, Berechnung und
bauliche Durchbildung von geschweissten Stahlkonstruktionen
(Dir. Dr. Kommereil, Berlin); 3. Erfahrung bei der
praktischen Anwendung (mit Einschluss der Wirtschaftlichkeit)
(Dir. L. Kopecek und Dr. Ing. F. Faltus, Plzen); 4.
Zusammenwirken von Niet- und Schweissverbindungen (Prof.
H. Dustin, Bruxelles).

IV. Grössere Balkenbrücken in Eisenbeton. 1.
Allgemeines Referat (Henry Lossier, Argenteuil); 2. Besondere
Konstruktionen (Prof. Dr. Ing. e. h. Spangenberg,
München) ; 3. Besondere Konstruktionen (Ministerialrat M. Gom-

bos, Budapest).
V. Brückendynamik. 1. Allgemeines Referat

(Reichsbahnoberrat Homann, München); 2. Apparate zur Erzeugung

und Messung von Schwingungen (Reichsbahnrat Dr.
Ing. Bernhard, Berlin); 3. Berechnung des Einflusses
dynamischer Lasten auf Bauwerke: a) Theoretische Grundlagen
(Dr. F. Bleich, Wien; b) Anwendung und Ergebnisse im
Hochbau (David Cushman Coyle, New York).

VI. Ausbau der Statik des Eisenbeton mit Rücksicht

auf die Baustoffeigenschaften. 1. Einleitendes Referat (Prof.
F. Campus, Lüttich); 2. Elastizität, Plastizität und Schwinden
(Dr. Oscar Faber, London).

VII. Verbindung von eisernen Trägern mit Beton. 1.

Einleitendes Referat (Prof. L. Santarella, Milano); 2.
Verbundsäulen (Stahlstützen mit Ummantelung in Beton und

Eisenbeton) (Oberbaurat Dr. techn. e. h. F. v. Emperger,
Wien); 3. Einbetonierte Stahlsäulen und ihre Bedeutung
für den Stahlskelettbau (Prof. Dr. Ing. Hawranek, Brunn);
4. Profilträger, kombiniert mit Beton oder Eisenbeton, auf

Biegung beansprucht (Dr. C. H. Lobban, London).
VIII. Baugrundforschung. 1. Tragfähigkeit der

Flachgründungen (Prof. Dr. Ing. K. v. Terzaghi, Wien).
DieVereinigung bezweckt die internationale Zusammenarbeit

der Vertreter der Wissenschaft, der Industrie und des

Bauwesens auf dem Gebiete des Ingenieurbaues in Stahl,
Eisenbeton oder andern Baustoffen. Zur Erreichung dieses

Zweckes werden unter anderem Kongresse in Zeiträumen
von drei bis fünf Jahren durchgeführt. Ausserdem
veröffentlicht die Vereinigung von Zeit zu Zeit wissenschaftliche

Abhandlungen. Sie gibt Anregung zu wissenschaftlichen

Untersuchungen und praktischen Versuchen oder
führt diese selbst aus.

Die Zusammensetzung des Vorstandes dieser
Vereinigung ist aus unserer frühern Mitteilung ersichtlich.
Anstelle des unterdessen verstorbenen J. Mitchell Moncrieff
ist Prof. Sir Thomas Hudson Beare (Grossbritannien) zum

Vizepräsidenten ernannt worden.
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