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Statische Untersuchung quadratischer, allseitig elastisch eingespannter Platten.

Von Prof. Dr. M. RITTER, Ztirich.

Die rechteckige, auf allen Seiten gestiitzte, kreuzweise
armierte Platte bildet im Eisenbetonbau ein wichtiges Kon-
struktionselement. Ihre statische Berechnung erfolgt in der
Praxis heute noch meist nach der sogenannten ,Streifen-
methode®, die sich vermdge ihrer Einfachheit eingebiirgert
hat und in zahlreichen Eisenbetonvorschriften empfohlen
wird. Indessen ist bekannt, dass die Streifenmethode ledig-
lich ein rohes Niherungsverfahren darstellt und ihrer Natur
nach nicht im Stande ist, das statische Verhalten einer all-
seitig gelagerten, auf raumliche Biegung beanspruchten Platte
richtig wiederzugeben. Hierzu dient vielmehr die klassische
Elastizitatstheorie der ebenen Platten, wie sie vor mehr als
hundert Jahren durch Lagrange & Navier begriindet und
spater durch zahlreiche Forscher weiter ausgebaut wurde.

Die Anwendung der Plattentheorie im Eisenbetonbau
erfordert vor allem die zutreffende Beriicksichtigung der
vorhandenen Auflagerung der Platte, da die Gestalt der
elastischen Fliche und die Biegungsmomente in hohem
Masse von den ,Randbedingungen® der Platte abbingen.
In dieser Hinsicht befriedigen die klassischen Lésungen
der Plattentheorie den Eisenbetoningenieur nicht, denn sie
beschrinken sich auf die Fille der freien Auflagerung und
der vollstindigen Einspannung der Plattenrénder, also auf
Sonderfille, die im Eisenbetonbau selten vorkommen. Hier
liegt meist der allgemeinere Fall der ,teilweisen“ oder
,elastischen® Einspannung vor, sei es, dass die Platte in
nachgiebige Mauern eingespannt ist, oder dass sie an den
Rindern in monolytischer Bauweise in elastische Trag-
werke (Randtrager, Nebenfelder bei durchlaufenden Platten)
iibergreift. Die analytische Behandlung der Platte mit
elastischer Einspannung bietet wesentliche Schwierigkeiten,
da die von Navier angegebene Integrationsmethode hier
versagt. Es bestand bisher die Moglichkeit, mit Hilfe der
Differenzenrechnung die elastische Fliche unter Bertick-
sichtigung eines beliebigen Einspannungsgrades néherungs-
weise darzustellen. Die Literatur enthalt Berechnungen
dieser Art (Nielsen, Markus u. a.), doch ist dieses Vorgehen
umstandlich und gestattet nicht ohne weiteres, den wich-
tigen Zusammenhang zwischen dem Einspannungsgrad und
den Biegungsmomenten zu erkennen.

Im folgenden wird die Berechnung der allseitig
elastisch eingespannten Platte fiir gleichformig verteilte
Belastung vorgefiihrt. Die Lésung ergibt sich in einfacher
Weise, indem die elastische Fliche durch Potenzfunktionen
dargestellt wird, die den Randbedingungen der Platte
gentigen. Streng genommen fiihrt dieser Ansatz zwar zu
einer Niherungslosung, da die zugehdrige Belastung nicht
gleichmassig, sondern in Form eines Higels tiber die Platte
verteilt ist. Indessen l4sst sich durch passende Wahl von
Koeffizienten erreichen, dass der Belastungshiigel plateau-
artige Gestalt annimmt und dann die gleichen Biegungs-
momente erzeugt, wie die konstante, spezifische Belastung.
Der Einfachheit halber bleibt nachstehend die Untersuchung
auf die quadratische Platte mit gleichem Einspannungsgrad
aller Randpunkte beschrdnkt; der eingeschlagene Weg
soll spiter zur Behandlung schwierigerer Aufgaben weiter
beschritten werden.

1. Einfithrung. Der elastisch eingespannte Balken.

Wir beginnen mit einer kurzen Erlduterung der Theo-
rie des elastisch eingespannten, gleichmissig belasteten
Balkens, da die Grundlagen dieser Theorie auch zur
Untersuchung der Platte bendtigt werden. Bei konstanter

Biegungssteifigkeit £/ folgen die Einsenkungen z der
Stabaxe nach den Lehren der Baustatik bekanntlich der
Differentialgleichung

atzy

m:%, o 5 S . s o 5 (I)
in der p die Belastung pro Langeneinheit bezeichnet. Durch
viermalige Integration ergibt sich daraus die Gleichung
der elastischen Linie als Potenzkurve vierter Ordnung.
Wenn die Einspannungsgrade beider Auflager gleich gross
sind, so ist die elastische Linie symmetrisch zur Mitte.

P

<

1 M,

Abb. 1.

Bezieht man die Gleichung auf das in Abb. 1 angegebene
Koordinatensystem, so fallen der Symmetrie wegen die
Glieder mit ungeraden Potenzen weg, und die Gleichung

lasst sich in der Form schreiben
4

~od &

2 =2 I+61§+C2;‘—), SN TR (2)
wo 2, die Einsenkung in Balkenmitte und @ die halbe
Stiitzweite bedeutet. Die Momentenfliche sieht wie in
Abb. 1 skizziert aus; das Moment an der Stelle x berechnet
sich nach bekannter Formel zu

213

d?s 6 %8
M=—E]r=—E] 3 (a+6a%)

In Balkenmitte entsteht das grdsste positive Moment, das
sogenannte Feldmoment

My=—EJ22c;
an den Auflagern entstehen die negativen Einspann-
momente oder Randmomente

M= —E]22(a+6a)

Die beiden Integrationskonstanten ¢; und ¢; ergeben
sich aus den Auflager- oder Randbedingungen. An den
Auflagern ist die Einsenkung s = o, daher

I =6 —les = al i L SR (3)

Die elastische Einspannung der Tragerenden ist dadurch

gekennzeichnet, dass an den Auflagern die Neigung der

elastischen Linie proportional ist dem Einspannmoment,

alsg Ly iy e (4)

dx r : FRa L, sl |\

worin ¢ die Drehung der Einspannquerschnitte infolge

oM, = 1 bezeichnet. Mit Hilfe von GI. (2) erhédlt man aus
dieser Beziehung

“"(cl-f«zcz)z—ij%"(cl—{—Gc,)
a@+hHFsa@t3h=0, i ()

a

oder
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indem zur Abkiirzung

MR g ok Lt S

gesetzt wird. Die Grosse £ heisst ,Einspannungsfaktor®.
Die Auflésung der GI. (3) und (5) liefert die Integrations-
konstanten zu
ot e 2 (1) 0F) e e i
T Tk ! i

Die Einsenkung %, in Balkenmitte findet man, indem
man Gl. (2) viermal differentiert und in GL. (1) einsetzt. Fiihrt
man noch die Stiitzweite /= 2a ein, so ergibt sich

I A L g
3846 EJ " 384k 1tk (7)
Setzt man die Ausdriicke fir 2y, ¢, und ¢ in die Formeln
fir das Feldmoment und die Einspannmomente ein, so folgt
22 143k pi2 X

Mo = 240 =k ) My = — Talol & - T o ®)
Mit 2= o0 und % = co erhilt man daraus die bekannten
Sonderwerte fiir vollstindige Einspannung bezw. freie
Auflagerung; dazwischen liegen alle moglichen Fille der
teilweisen Einspannung. Nicht der Drehwinkel ¢, sondern
einzig der Einspannungsfaktor %2 ist massgebend fiir die
Grosse dieser Momente. Als , Einspannungsgrad® definiert

man zweckmissig den Quotienten

21

50, —

I
+4
2. Die Streifenmethode.
Die vorstehende Theorie des elastisch eingespannten
Balkens ermoglicht die Naherungsberechnung der recht-
eckigen, auf allen Seiten elastisch eingespannten Platte

nach der sogenannten Streifenmethode, die nachstehend
kurz dargelegt wird.

Die Platte trage die gleichmissig verteilte Belastung
auf die Flacheneinheit. Wir denken uns aus der Platte
nach den beiden Trag-
richtungen zwei Streifen !
von der Breite b=1 [/
herausgeschnitten, die sich 1
an der Stelle der gross- ! |
ten Einsenkung kreuzen, —|———— -‘$z—a ''''''''' T &
(vergl. Abb. 2). Die Belas- P \
tung p zerfillt dann in |
den Anteil p,, der durch ]
den einen Streifen in {
der Richtung / nach den
Auflagern iibertragen wird
und in den Anteil p,,
der durch den andern Streifen in die Richtung /, tber-
geht. Es ist p = p, -+ p». Zur Bestimmung dieser Last-
anteile dient die Bedingung, dass die beiden Streifen an
der Kreuzungsstelle dieselbe Einsenkung haben. Setzt man
voraus, dass sich die Streifen wie selbstindige, elastisch
eingespannte Balken durchbiegen, so berechnet sich die
gemeinsame Einsenkung nach Gl.(7) zu
Piht 15k paht 145k
384 EJ 1-+k  384EJ 1tk !
wobei %, und k, die Einspannungsfaktoren der beiden
Streifen sind. Mit den Abkiirzungen

=

20:

S 1+ 54
U = - und v, =
4 1 - A 3 1 kg
folgt aus obiger Beziehung
iy vy by Sl %hh ]
P=p v it br=2 nht vyt

Werden diese Lastanteile in die Gleichungén (8) eingesetzt,
so lassen sich die Feldmomente und die Randmomente
beider Streifen leicht berechnen. Fir v, /4 = v, /4t wird
p1 = p2 = 12 p. Das trifft bei der quadratischen Platte zu,
wenn k; = ky; doch ist die Methode keineswegs auf diesen
Sonderfall beschrinkt.

Die Streifenmethode liefert aus mehreren Griinden
unrichtige Ergebnisse. Einmal sind die Lastanteile p, und

ps von Punkt zu Punkt verschleden Auch verhalten sich
die beiden Streifen nicht wie selbstindige Balken, sondern
es treten an den lotrechten Seitenflichen wagrechte Schub-
spannungen auf. Schliesslich lasst die Methode den Ein-
fluss der Querdehnung ausser acht. Der grosse Vorzug
der Streifenmethode besteht darin, dass sie in einfachster
Weise die Platte mit beliebigen Einspannungsfaktoren 4
und 4, bewiltigt und daher ganz besonders fiir durchlaufende
Platten geeignet ist. Fiir die Berechnungen in der Praxis
erscheint es deshalb wohl am Platze, die Streifenmethode
beizubehalten, jedoch lediglich im Sinne einer empirischen
Regel und nach Berichtigung durch den Vergleich mit der
genauern Plattentheorie.

3. Grundlagen der Plattentheorie.

Eine eingehende Darlegung der Theorie elastischer
Platten tiberschreitet den Rahmen der vorliegenden Arbeit;
wir beschranken uns hier auf eine gedringte Zusammen-
stellung der Grundlagen, soweit sie fiir die folgenden
Berechnungen bendtigt werden und verweisen fiir nihere
Aufschliisse auf die vorhandene, reichhaltige Literatur.?)

Die klassische Plattentheorie bezieht sich auf die
homogene, ebene Platte, deren Material dem Hooke’schen
Gesetze folgt. Bezeichnet man mit ¢ die Einsenkung der
Mittelfliche an irgend einer Stelle mit den rechtwinkligen
Grundrisskoordinaten x und y, so gelten unter den An-
nahmen von Navier fir die Krimmungen der elastischen
Fliache die bekannten Ausdriicke

gxz T ELJ( oy 4—12)‘ )
o e | T
P ;

worin M, und M, die Blegungsmomente sind, die in den
Richtungen der Koordinaten auf die Einheit der Breite
wirken. / ist das Tragheitsmoment des Querschnittes auf
die Einheit der Breite; £/ heisst die Biegungssteifigkeit

p dx dy pdx dy
nm HHTHTT
G dy
iy (e
Myl ,ff‘is'ﬁfi,,,, ) Mejey Medx
| |
Lol s
@ dx
S dx > A e >
Abb. 3.
der Platte. Durch die Poissonzahl # kommt der Einfluss

der Querdehnung auf die Krimmungen zum Ausdruck.
Aus den Gleichungen (9) berechnen sich die Biegungs-
momente zu

bk EJ (ﬁq-Lfﬁ) l

e mI‘: Ox2 m Oy?
EJ 0% 1 0%)
= (g o )
m2

Eine einfache Betrachtung liefert auch noch einen Ausdruck
fiir die sogenannte Verdrillung der Querschnitte, die durch
die wagrechten Schubspannungen zustande kommt, die in
den lotrechten Schnitten wirken und auf die Einheit der
Breite das Drillungsmoment

EJ (2~
Ma—_« e

i e ey Ox () (1)
' m

liefern. Denkt man sich weiter nach Abb. 3 ein Platten-
element vom Grundrisse dx dy abgegrenzt, so folgt aus
den drei Gleichgewichtsbedingungen die sogenannte Grund-
gleichung der Plaltml/u'oue

02 M, 2 My My

Ox* Pkt Ox Oy e o

WO p die im allgememen vexanderhche spezifische Belastung

(10)
My—= —

1

l) Vergl die Lehrbiicher von Foppl,
Nadai, Pigeaud u. a,

Lorenz, Love, Mesnager,
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der Platte darstellt. Setzt man darin fir die Momente die
Ausdriicke (10) und (11) ein, so erhdlt man die Differential-
gleichung der elastischen Fliche, die aber nur im Falle
einer konstanten Biegungssteifigkeit einfache Gestalt an-
nimmt, ndmlich die Form von Lagrange

04z 0z |, O ? I =

Oxt 2 Ot oxt 2 T Gt E—J(I—W) (13}
Durch Integration mit Beriicksichtigung der Randbedin-
gungen ergibt sich daraus die Gestalt der elastischen Fliche,
aus der schliesslich die Momente und Querkrafte an jeder
Stelle der Platte leicht zu berechnen sind.

Navier hat bereits im Jahr 1821 die Integration der
Differentialgleichung von Lagrange fir die rechteckige,
gleichmissig belastete Platte mit Hilfe einer zweidimen-
sionalen Fourier'schen Reihe durchgefiihrt. Da die Funk-
tionen sincx und coscx die Eigenschaft besitzen, dass ihre
zweiten Ableitungen bis auf einen Faktor mit den Funk-
tionen selbst tibereinstimmen, so gelten an den Platten-
rindern ausser der Bedingung z=o0 auch noch die Be-
ziehungen LQi = o bezw. ?;:—-_-o, d. h. die Navier'sche

Ox? ay’

Losung bezieht sich ausschliesslich auf die allseitig frei
aufliegende Platte. Die elastische Fliache der eingespannten,
rechteckigen Platte ist deshalb nicht durch trigonometrische
Doppelreihen darstellbar, bei denen jedes Glied die Rand-
bedingungen erfiillt. Die Aufgabe der allseitig eingespannten
Platte bietet durch diesen Umstand wesentliche Schwierig-
keiten und wurde erst in neuerer Zeit in mehreren theo-
retischen Arbeiten behandelt. Zu einer geeigneten Grund-
I6sung, die die Differentialgleichung von Lagrange, jedoch
nicht alle Randbedingungen befriedigt, wurden in Reihen-
form darstellbare Zusatzlésungen hinzugefiagt, die der
Differentialgleichung fiir p = o geniigen und die geforderten
Randbedingungen herstellen.1)

4. Anwendung auf die quadratische Platte.

Die erwihnte, exakte Integration liefert leider im
Falle der allseitig elastisch eingespannten Platte eine kom-
plizierte, wenig (bersichtliche Lésung, die den praktisch
so wichtigen Einfluss des Einspannungsgrades der Rander
nicht in genitigend einfacher Weise zum Ausdruck bringt.
Zur Berechnung der quadratischen Platte ziehen wir des-
halb — in Anlehnung an eine wertvolle Bemerkung von
A. Foppl?) — eine angendherte Losung der Aufgabe vor,
indem wir die elastische Fliche durch Potenzfunktionen
darstellen, die die Randbedin-
gungen streng erfiillen. Die Dif-
ferentialgleichung (12) ergibt
hierfiir eine verédnderliche, spezi-
fische Belastung p = f (x,y), an
die wir die Forderung stellen, —— X
dass sie im mittlern Bereich der ’
Platte nur ganz unbedeutend
variieren darf.

Mit Bezug auf das in Abb.4
angegebene Koordinatensystem
und Beachtung der Symmetrie-
Verhiltnisse ldsst sich die Einsenkung =
Flache durch den Ansatz darstellen

ir x2 xt x0 },2 yt },4'.
Z—Zo(l—i—ﬁ ;2+(2,§ -+ [:’a_“) (I+Cn {744‘52;, f-¢3 1;)1 (13)

worin %, die Einsenkung in Plattenmitte ist und ¢,, ¢z, ¢s
Koeffizienten darstellen, die vor allem den Randbedingungen
geniigen miissen. a bedeutet die halbe Stiitzweite der Platte.
Am Rande ist 2 = o, somit

I+¢ +¢c—+c¢g = o. (14)
Die elastische Einspannung der Plattenrinder wird in
gleicher Weise definiert, wie beim elastisch eingespannten
Balken, nur ist in Gl. (4) fiir das Einspannmoment der
entsprechende Ausdruck der Plattentheorie, aus GI. (10),

') Vergl. 4. Nadai: | Die elastischen Platten“, Seite 180 ff.
?) Vergl. 4. Fioppl:  Vorlesungen iiber technische Mechanik®, 5. Band,
1907, Seite 109 (unten).

Y

———-f
< N

Abb, 4.

der elastischen

einzusetzen. Fiir die Plattenrdnder parallel der y-Axe gilt
darnach die Beziehung
0z eEJ iz 1 0%
Pt e (e =i (15)
m2

wo ¢ die Neigung der elastischen Fliche, bezw. die Drehung
der Einspannstelle infolge M, = 1 bezeichnet. Wir be-
schrinken die Betrachtung auf den Fall, dass ¢ lings
den Auflagerbahnen konstant ist. Der Ansatz (13) liefert
fir x =+ a

oz 2 Zo

},2 }'4 },6

F (6 +2¢ + 363)<1Jr~clﬁ—|—52;—}—63;5),
(zz 2z 2 y4 95
— °(c,+6c»+r5ca>(r+c,ﬁ+cz;4+c3;.

(x
02

ot =<
Mit Einfihrung des ,Einspannungsfaktors“ (analog GI. 6)
L. L (16)
a (r— =)
geht GI. (15) iiber in
(1 +k+2c(1x+3~+36(0+5k=0. (17)

Die Beziehungen (14) und (17) gestatten, die Koeffizienten
ce und ¢; durch ¢ wie folgt auszudriicken:

by e e A8 B B SR T)
2 = 1494 )
2(1+3-+a(t+54)
149k

Es liegt nahe, zur Bestimmung des Koeffizienten ¢;
die Forderung aufzustellen, dass der Mittelwert der Be-
lastung p ldngs der Koordinatenaxen dem Wert p, in der
Plattenmitte gleich sein soll, also

a

[pdx=poa (19)

Die Erfilllung dieser Beziehung hat zur Folge, dass die
Belastung im mittlern Bezirk der Platte wenig verdnderlich
ist und nur gegen die Rander stirker abweicht, dass also
der Belastungshiigel zu einem Plateau wird. Man ké&nnte
auch daran denken, den Mittelwert der gesamten Belastung
gleich p, zu setzen, jedoch ist dann, wie man leicht erkennt,
die Gestalt des Belastungshiigels nicht so giinstig. Um die
Beziehung (19) auszuwerten, berechnen wir die Belastung p
als Funktion der Koordinaten, indem wir den Ansatz (13)
in die Differentialgleichung (12) einsetzen. Wir erhalten

{7(1——7%;):2‘;%[(59 —+ 15 ¢ 2) (1—}—01—24—59 —t-cg )

Sl (C‘a +15¢ ;:) ([ i 617+527+537,)

(18)

Cg =

1 x? x4
"?(Cl—}—662{?—}—1563?)(6\—{—662 | Isc—)] (20)
Auf die Plattenmitte (¥ =y = o) angewandt,
hieraus die grosste Einsenkung der Platte zu

o (1— 2

BE/ 1+ 64) (a1)
Lings der x-Axe (y = o) betrigt die Belastung, wenn
fiir 2, der Ausdruck (21) eingesetzt wird,

P_[li+6[ [Cl +6€2+9((;1 52+563)
+30Ga 53+€z),;+36263f,%].

Die Integration lings der x-Axe liefert

a Co €y
. c@+u+~+~+sz

ergibt sich

2o =

Die Bedingung (19) wird erfillt fiir
2

(e +Ca)+%+9[ﬂ + 56 =o.
Setzt man hier fiir ¢; und ¢; die Ausdriicke (18) ein, so
findet man schliesslich fir ¢, die folgende quadratische
Gleichung:
€2 (1813 k2 + 358 £+ 17) — 3 ¢; (2395 4? |- 826 £k +- 63)

— (10575 &? + 4590 & +- 383) = o. (22)

Im statischen Institut der E. T.H. wurde die nume-

rische Berechnung der Werte ¢, ¢, ¢; fiir verschiedene
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Einspannungsfaktoren %4 mit Hilfe einer Rechenmaschine
durchgefihrt. Die nachstehende Tab. 1 enthilt einen Auszug.

Tabelle 1: Koeffizienten nach Gl. (22).

3 | ¢ ‘ G ’ s l‘ G e
0 —1750 | 0502 | 0,249 55,5 19,4
1/, — 1,400 0,292 0,108 42,4 30,2
s — 1,359 0,265 0,094 40,5 33:5
s ‘ — 1,307 0,229 | 0,078 377 40,0
s “ — 1,275 0,207 1 0,068 36,0 46,5
1 | — 138 0,181 1 0,057 33,8 50,4
2 | — 1,194 0,149 0,045 3nI 97.7
2 — 1,142 0,II1 ’ 0,032 27,6 %)

5. Berechnung der Biegungsmomente.

Mit Hilfe der Gleichung (10) lassen sich die Biegungs-
momente #; und M, in Richtung der Koordinatenaxen und
damit auch in jeder andern Richtung an irgend einer
‘Stelle der Platte berechnen. Von besonderer Wichtigkeit
far die Dimensionierung ist das positive Biegungsmoment M,
in der Plattenmitte, das ,Feldmoment“, das in jeder Rich-
tung gleich gross ist, sowie das negative ,Einspannmo-
ment“ }/, am Rande in der Mitte jeder Auflagerbahn.

Die GI. (13) und (21) liefern fiir die Plattenmitte
Zod? ¢ (I — #)

0% 0% 2¢
WG N T Y E @t 6a)
Wird dieser Wert in Gl. (10) fiir x =y =o0, also in
E] 6% I
My == 1 — L 0 (H_;)
m2
eingesetzt, so ergibt sich fur das Feldmoment:
Do @® ¢ 1
My = 4(4®+6q) (I+;)

Fir die Mitte des Randes x = @ erhalt man

0% 22 20a2(cg + 65+ 15¢) 1
e atisa) == oy (I_W)
022
T
somit hat das Einspannmoment den Wert
Mo L EJ _6_22__ 2@ (e + 665+ 15 5)
T T G 4(@*+6¢) '

li==o
Nach Einfiihrung der Stiitzweite /= 22 und der Ab-
kiirzungen
o OGS 05) s — 10l 1 6a)
0 & d T a4+ 6+ 154
nehmen die Momente die fiir die Anwendung bevorzugte
Form an:

My =22 (14 ),

%

72
My=—2"

7

(23)

In Tabelle 1 sind die Nennerwerte ¢, und ¢, fiir die ver-
schiedenen Einspannungsfaktoren ebenfalls zusammenge-
stellt. Man erkennt aus den beiden Zahlenreihen, dass
sich ¢, und ¢, mit guter Genauigkeit durch folgende For-
meln darstellen lassen:
%%%, ¢ =20 (2 k- 1)

Damit ergeben sich fiir die Momente einfache Naherungs-
ausdriicke, namlich:

Co =217

__ P (3% 1) !
T i T e )
Einspannmoment M, = — Pl (24
g 20(2k+1) °

Die Poissonzahl » ist von Einfluss auf das Feldmoment,
nicht aber auf die Randmomente. Fiir die praktische An-
wendung im Eisenbeton diirfte es zweckmiassig sein, mit
m = 4 zu rechnen. Zwar lisst sich zeigen, dass im Stadium
der Rissebildung . wesentlich grosser ausfillt, Die vor-
liegende Theorie bezieht sich indessen auf die Platte aus
homogenem Baustoff mit konstanter Biegungssteifigkeit.
Mit diesen Voraussetzungen erscheint die Annahme einer
hohern Poissonzahl » unvereinbar. Die Annahme m=co,

die in der Eisenbetonliteratur mehrfach empfohlen wurde,
lasst sich wohl begriinden fiir den Fall der Platte ohne
Drillungswiderstand (Theorie des Balkenrostes), jedoch
nicht im Verein mit den in dieser Abhandlung beniitzten
Voraussetzungen der klassischen Plattentheorie.

6. Nachweis der Lastverteilung.

Es bleibt noch zu zeigen, dass die variable Belastung
nach Gleichung (20) mit geniigender Genauigkeit als Ersatz
fiir eine gleichm#ssig verteilte Belastung dienen kann. Zu

diesem Zwecke berechnet man
Y am einfachsten fiir verschiedene
Lastpunkte den Quotienten p/p,
und iiberzeugt sich, dass im mitt-
lern Bereich der Platte dieser
Wert nur unwesentlich von 1
abweicht. Gegen die Platten-
rander und namentlich in den
Ecken ist die Abweichung gross,
indessen sind die dort befind-
lichen Lasten tiberhaupt nur von
geringem Einflusse auf die Bie-
gungsmomente. Die Tabelle 2
enthdlt auszugsweise das Ergebnis dieser Berechnung und
zwar fiir die Einspannungsfaktoren 2= o, 1/; und co, und
die Lastpunkte x/a = o, 1/,, '/, 8/, 1, sowie die entspre-
chenden Werte von y/a, vergl. Abb. 5.

Tabelle 2: Lastverteilung p/p,, vergl. Abb. 5.

7 2 3 4 5
Ar T

Abb. 5.

Lastl\;;unkt = i Y= A k=00
r a a | 3
1 ° 1,00 1,00 1,00
2 1/4 1,03 1,02 Lol
3 A o 1,08 1,04 1302
4 84 \ 1,02 1,01 1,01
5 1 ‘ 0,65 0,81 0,90
6 1, } 1,04 1,02 1ot
7 l/? |/ 1,04 r,02 5o
4
8 8/, ‘ 0,94 0,96 0,97
5 - | o60 0,74 0,84
10 /s l ” 0,94 0,95 0,96
. Y, oo | o8 081 g2
1|
12 I [ | o052 0,58 9,05
13 34 8/ | 0,717 0,62 0,66
kK
14 I 1,38 0,48 0,36
15 T I 4,11 0778 el

Es ist leicht moglich, diese Lastverteilung noch zu
verbessern, indem man die Potenzfunktionen der GI. (13)
um ein oder mehrere Glieder erweitert. Die numerische
Berechnung ergab jedoch, dass diese Erweiterung iiber-
flassig ist, weil bereits die vorliegende Darstellung die
Biegungsmomente mit grosser Anniherung so liefert, wie
sie bei konstanter spezifischer Belastung entstehen. Fir
die Fille der freien Auflagerung (# = o) und der totalen
Einspannung (4 = o) {iberzeugt man sich hiervon auch
leicht durch den Vergleich mit den exakten, durch Aus-
wertung der trigonometrischen Reihen erhaltenen Ergeb-
nissen der Elastizititstheorie, die aus der Literatur bekannt
sind. Bei freier Auflagerung betrigt darnach der exakte
Wert fiir das Feldmoment

I
(I + 7) )

M(] = ﬁlz
37,3

bei vollstindiger Einspannung aller Rinder lauten die

exakten Werte nach H. Leilz?1)

P2 [ 1 p8

54.3 (I+7)‘ o= =gy

Man erkennt, dass unsere Berechnung mit Potenzfunktionen

nur ganz unbedeutende Fehler mit sich bringt. Selbst die

0=

) H. Leitz: | Berechnung ebener Platten“, Betonkalender 1928.
Im neuesten Jahrgang dieses Taschenbuches finden sich die Tabellen von
Leitz nicht mehr,
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iberaus einfachen Niherungsausdriicke (24) ergeben Re-
sultate, die um weniger als 3°/, von den Ergebnissen der
mathematischen Elastizitdtstheorie abweichen.

7. Vergleich der Plattentheorie mit der Streifenmethode.

In Tabelle 3 sind die nach der Plattentheorie (Gl. 24
mit m == 4) berechneten Feldmomente und Einspann-
momente den Ergebnissen der Streifenmethode fiir ver-
schiedene Einspannungsfaktoren gegeniiber gestellt.

5 2
Tabelle ;: Nenner ¢ in M= ]>£ .
. I »\‘
Einspannungs- | Einspannungs i Plattentheorie Streifenmethode
faktor grad

® ’ : 11 My | o M, o,

I B S & ' S | SRA | O P | I
o ‘ 1 ‘ 43,2 — 20,0 48,0 — 24,0
A i, | 339 — 300 | 343 | —300
s | % 324 — 33,3 32,0 — 32,0
1”2 i 2/’; ‘ 3012 - 40)0 28)8 - 360
2/, | 3/5 ‘ 28,8 — 46,7 26,7 \ — 40,0
I [ /g | 27,0 — 60,0 24,0 — 48,0
2 Vs | 24,7 —100,0 20,6 — 72,0
co o | 21,6 oo | 160 oo

Wie man sieht, weichen bei den gréssern Einspan-
nungsgraden die Ergebnisse der Streifenmethode von der
Plattentheorie wenig ab. Bei schwacher Einspannung und
besonders bei freier Auflagerung liefert aber die Streifen-
methode viel zu grosse Feldmomente.

Die Theorie der elastisch eingespannten Platte bildet
die Grundlage zur Berechnung der durchlaufenden Platten,
die im Eisenbetonbau von grosser Bedeutung sind. In der
Praxis berechnete man bisher die durchlaufenden Platten
notgedrungen stets nach der Streifenmethode und tber-
schitzte darnach die Feldmomente wesentlich. Es ist nam-
lich zu beachten, dass der Einspannungsgrad eines Platten-
feldes hier durch die Formanderung der Nachbarfelder zu
Stande kommt und deshalb einen hdhern Wert erreicht,
als nach der Balkentheorie zu erwarten ist. Theoretische
und experimentelle Untersuchungen im Institut fiir Bau-
statik an der E. T. H. haben gezeigt, dass man die bekannten
Ausdriicke fiir die Auflagerdrehwinkel eines Balkens infolge
,M = 1“ wenigstens halbieren muss, um die entsprechen-
den Werte bei der allseitig gelagerten Platte zu erhalten.
Diese Korrektur ergibt sich bei der Anwendung der Strei-
fenmethode auf durchlaufende Platten in einfacher Weise,
indem man bei der Bestimmung der Festpunkte jeder
Oeffnung die Nachbarfelder mit ungefihr dem doppelten
Tragheitsmoment in die Rechnung einfiihrt. Eine ein-
gehendere Erliuterung und Begriindung dieser Regel, die
die genauere statische Untersuchung durchlaufender Platten
wesentlich erleichtert, bleibt einer besondern Abhandlung
vorbehalten.

Internationale Vereinigung fiir Briickenbau
und Hochbau.

Die Internationale Vereinigung fiir Briicken- und Hoch-
bau, tber deren Griindung wir auf Seite 278 von Band 94
(30. November 1929). berichteten, wird ihren ersten Kon-
gress vom 19. bis 25. Mai in Paris abhalten. Es ist der
Vereinigung gelungen, einige der bekanntesten Vertreter
der Wissenschaft und des Bauwesens zu gewinnen, die
die Diskussionen der einzelnen Fragen, die auf dem Pro-
gramm des Kongresses vorgesehen sind, einleiten werden.
Der Kongress umfasst eine Eréffnungssitzung, sieben Ar-
beitssitzungen und eine Schlussitzung, in der die am Ende
der Arbeitssitzungen festgelegten Schlussfolgerungen noch-
mals vorgetragen werden sollen.

Das Kongressprogramm ist so aufgestellt worden,
dass die Kongressteilnehmer sich sowohl an der Bespre-
chung der Fragen des Stahlbaues, als auch des Eisenbeton-
baues beteiligen konnen. Fiir jedes der acht vorgesehenen

Themata wurden verschiedene Referate vorbereitet, die
vollinhaltlich im ,Vorbericht“, der an alle Kongressteil-
nehmer verschickt wird, verdffentlicht werden. Die Refe-
renten werden in den Sitzungen jeweils nur eine kurze
Zusammenfassung ihrer Arbeit geben. Die Kognressteil-
nehmer, die sich an der Diskussion zu beteiligen wiinschen,
haben sich bei den Generalsekretiren der Vereinigung
(Prof. Dr. L. Karner, Prof. Dr. M. Ritter, E.T.H,, Zirich)
anzumelden. Die Sprechdauer jedes Redners wird entspre-
chend der fiir die Diskussion zur Verfiigung stehenden
Zeit streng begrenzt.

Das Programm umfasst folgende Themata:

1. Stabilitit und Festigkeit von auf Druck und Bie-
gung beanspruchten Bauteilen. 1. Einleitendes Referat (Prof.
Dr. L. Karner, Zirich); 2. Frage des Knickens aussermittig
oder querbelasteter gerader Stabe (Prof. Dr. Ro$, Zirich);
3. Das Ausbeulen der Stegbleche gedriickter Stabe (Dr.
F. Bleich, Wien); 4. Das Ausbeulen der Stegbleche von
auf Biegung beanspruchten Tragern (Prof. S. Timoshenko,
Ann Arbor, U. S. A).

II. Platten und Schalen im Eisenbetonbau. 1. Einlei-
tendes Referat (Prof. Dr. M. Ritter, Ziirich); 2. Rechteckige,
allseitig aufliegende Platten (Prof. Dr. Gehler, Dresden);
3. Pilzdecken (Prof. Dr. Huber, Warschau); 4. Schalen,
Scheiben und Faltwerke (Dr. W. Petry, Obercassel-Siegkreis).

III. Schweissen im Stahlbau. 1. Allgemeines Referat
(Prof. T. Godard, Pau); 2. Festigkeit, Berechnung und bau-
liche Durchbildung von geschweissten Stahlkonstruktionen
(Dir. Dr. Kommerell, Berlin); 3. Erfahrung bei der prak-
tischen Anwendung (mit Einschluss der Wirtschaftlichkeit)
(Dir. L. Kope¢ek und Dr. Ing. F. Faltus, Plzen); 4. Zu-
sammenwirken von Niet und Schweissverbindungen (Prof.
H. Dustin, Bruxelles).

IV. Grossere Balkenbriicken in Eisenbeton. 1. Allge-
meines Referat (Henry Lossier, Argenteuil); 2. Besondere
Konstruktionen (Prof. Dr. Ing. e. h. Spangenberg, Min-
chen); 3. Besondere Konstruktionen (Ministerialrat M. Gom-
bos, Budapest).

V. Briickendynamik. 1. Allgemeines Referat (Reichs-
bahnoberrat Homann, Minchen); 2. Apparate zur Erzeu-
gung und Messung von Schwingungen (Reichsbahnrat Dr.
Ing. Bernhard, Berlin); 3. Berechnung des Einflusses dyna-
mischer Lasten auf Bauwerke: a) Theoretische Grundlagen
(Dr. F. Bleich, Wien; b) Anwendung und Ergebnisse im
Hochbau (David Cushman Coyle, New York).

VI. Ausbau der Statik des Eisenbeton mit Riicksicht
auf die Baustoffeigenschaften. 1. Einleitendes Referat (Prof.
F. Campus, Littich); 2. Elastizitat, Plastizitat und Schwinden
(Dr. Oscar Faber, London).

VII. Verbindung von eisernen Trigern mit Befon. I.
Einleitendes Referat (Prof. L. Santarella, Milano); 2. Ver-
bundséulen (Stahlstitzen mit Ummantelung in Beton und
Eisenbeton) (Oberbaurat Dr. techn. e, h. F.v. Emperger,
Wien); 3. Einbetonierte Stahlsiulen und ibre Bedeutung
fir den Stahlskelettbau (Prof. Dr. Ing. Hawranek, Briinn);
4. Profiltriager, kombiniert mit Beton oder Eisenbeton, auf
Biegung beansprucht (Dr. C. H. Lobban, 1 ondon).

VIII. Baugrundforschung. 1. Tragfihigkeit der Flach-
griindungen (Prof. Dr. Ing. K. v. Terzaghi, Wien).

DieVereinigung bezweckt die internationale Zusammen-
arbeit der Vertreter der Wissenschaft, der Industrie und des
Bauwesens auf dem Gebiete des Ingenieurbaues in Stahl,
Eisenbeton oder andern Baustoffen. Zur Erreichung dieses
Zweckes werden unter anderem Kongresse in Zeitraumen
von drei bis fiinf Jahren durchgefiihrt. Ausserdem ver-
difentlicht die Vereinigung von Zeit zu Zeit wissenschaft-
liche Abhandlungen. Sie gibt Anregung zu wissenschaft-
lichen Untersuchungen und praktischen Versuchen oder
fithrt diese selbst aus.

Die Zusammensetzung des Vorstandes dieser Ver-
einigung ist aus unserer frihern Mitteilung ersichtlich.
Anstelle des unterdessen verstorbenen J. Mitchell Monecrieff
ist Prof. Sir Thomas Hudson Beare (Grossbritannien) zum
Vizeprasidenten ernannt worden.
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