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Graphische Analysis vermittels des Linienbildes einer Funktion.

Voo Prof. Dr. E. MEISSNER, E.T.H., Ziirich.

Vorwort. In zwei Aufsitzen, die in der , Schweiz.
Bauzeitung® erschienen sind?!), habe ich ein graphisches
Integrationsverfahren fiir totale Differentialgleichungen ent-
wickelt, das seither in der Praxis Anwendung gefunden
hat und seit einiger Zeit auch regelmissig an der Abteilung
fir Maschineningenieure der E.T. H. beniitzt wird. Infolge-
dessen ist der als Sonderdruck im Buchhandel erschie-
nene grundlegende erste Aufsatz vergriffen. Statt ihn
einfach neu drucken zu lassen, erschien es mir zweckmissig,
seinen Inhalt mit jenem des zweiten Aufsatzes und mit
weiterm, in Vorlesungen vorgetragenem Stoff zusammen-
zuarbeiten. Es lag nahe, an anderer Stelle von mir publi-
zierte Dinge gelegentlich mit einzubeziehen. So ist die
vorliegende Arbeit entstanden. Ihr Stoff ist, soweit er
schon verdffentlicht wurde, den drei erwahnten Aufsitzen
entnommen. Die durchgefiihrten Beispiele und ebenso die
Figuren des Textes sind zum grossen Teil neu. Fiir die
Herstellung der letzten bin ich meinen Assistenten Druey,
Waldvogel und insbesondere Herrn Salzmann zu Dank
verpflichtet.

Der Aufsatz wendet sich an Ingenieure und Tech-
niker, die analytisch schwer oder gar nicht zugingliche
totale Differentialgleichungen numerisch zu 16sen haben.
Die Anwendungsbeispiele sind daher meist der Mechanik
entnommen.

1. Einleitung.

Die graphische Darstellung ist das ureigenste Aus-
drucksmittel und Handwerkszeug des Ingenieurs. Wo
immer es angeht, wird er die Anschaulichkeit der Zeich-
nung der abstrakten Blisse der Formel vorziehen. So
werden in der Statik der Baukonstruktionen die ver-
wickelten algebraischen Beziehungen durch die Krifte- und
Verschiebungsplidne geometrisch konstruiert und Aehnliches
gilt in andern Gebieten, wie Kinematik, Elektrotechnik,
usw. Allerdings hat die analytische Behandlung den un-
geheuren Vorteil, dass sie sich nicht auf eine ganz be-
stimmte Aufgabe festzulegen braucht, sondern dass sie
gerade die Abhingigkeit der Losung von den Parametern
des Problems zum Gegenstand der Untersuchung machen
kann. Man wird ihr daher nie entraten kénnen, umsomehr
auch, als sie allein die Losung mit unbegrenzter Genauigkeit
zu ermitteln erlaubt. Aber in den technischen Anwendungen
hat man es immer mit einem eindeutig bestimmten Sonder-
fall zu tun, und mehr als die allgemein giiltigen Eigen-
schaften der Lsung interessieren den Ingenieur die nume-
rischen Besonderheiten dieses Einzelfalles.

In der Mechanik und Physik fihren die meisten nicht
algebraischen Probleme auf Differentialgleichungen, aus
denen die unbekannten Funktionen bestimmt werden
miissen.?) Je nachdem diese von mehreren oder nur einer
einzigen Verdnderlichen abhingig sind, hat man es mit

1) ,Ueber graphische Integration von totalen Differentialgleichungen®,
erschienen in S, B.Z.%, Bd. 62, Nr. 15 und 16 (11./18. Oktober 1913).

,Zur Schwingungslebre®, erschienen in ,S.B.Z.“, Bd. 84, Nr. 23
und 24 (6 /13. Dezember 1924).

S. a. ,Ueber die Anwendung von Fourier-Reihen auf einige Auf-
gaben der Geometrie und Kinematik®, in der Vierteljahrsschrift der
Naturforschenden Gesellschaft in Ziirich, Jahrgang 54 (1909).

2) Zwar ist hiufiz auch die Formulierung als Variationsproblem
moglich; doch wird man iiberall da, wo es sich nicht nur um den Ver-
lauf der Lésung im Ganzen, sondern um ihre  lokalen Besonderheiten
handelt, dic Bestimmung durch die Differentialgleichung vorziehen.

partiellen oder mit totalen Differentialgleichungen zu tun.
Diese letzten treten in der Mechanik besonders héufig auf;
sie sind dort meist von der zweiten Ordnung.

Fir die analytische Losung totaler Differentialgleich-
ungen liegen' eine Reihe von Integrationsmethoden vor,
die aber nur in den einfachern Fillen zum Ziele fihren,
d. h. fir die gesuchte Funktion einen Ausdruck in ele-
mentaren Funktionen (a7, ¢%, sin(x), cos(x), lg{x) usw.) zu
finden erlauben; denn in der Mehrzahl der Fille werden
durch die Differentialgleichungen neue Funktionen definiert,
die sich tberhaupt nicht elementar darstellen lassen. So
fihren viele Bewegungsaufgaben, z. B. das Pendel- und das
Kreiselproblem, auf elliptische Funktionen, wéhrend andere
wieder Funktionen ergeben, die auch dem Mathematiker
unbekannt sind (Dreikérperproblem der Himmelsmechanik).

Nun ist fir den Techniker und Physiker der Stand-
punkt gegeniiber solchen ,unldsbaren“ Differentialgleich-
ungen durchaus nicht der selbe wie fiir den Mathematiker.
Wihrend dieser nach der Existenz, dem Charakter und
den Eigenschaften der Lésung fragen wird, begniigt sich
der Techniker, wenn er bei gegebenen Anfangsbedingungen
den Verlauf der Funktion qualitativ, womdglich auch quanti-
tativ beurteilen kann, wobei es ihm auf Fehler von einigen
Prozenten im allgemeinen kaum viel ankommen diirfte.
Er wird also nach Verfahren suchen, die die Lo&sung
wenigstens mit Anniherung zu berechnen erlauben.

Zu diesem Zweck kann er einmal fiir die Losung
eine Potenzreihe (oder eine andere Funktionenreihe mit
geniigend vielen verfiigbaren Konstanten) ansetzen und so
der Differentialgleichung zu gentigen suchen. Aber diese
Methode ist selten praktisch durchfithrbar und man hat
hiufig Konvergenzschwierigkeiten.

Ein zweites Mittel besteht darin, schon die Differen-
tialgleichung zu vereinfachen, indem etwa Glieder ver-
nachlissigt werden, deren Einfluss voraussichtlich klein
ist. Das tut man z. B. bei der Behandlung der gewd&hn-
lichen Pendelschwingungen, wo die genaue Differential-
gleichung

a2 ;

T = — - sin(p)
unter Voraussetzung von kleinen Schwingungen durch die
viel einfachere

ae

7
ersetzt wird. Aber dieses Verfahren hat stets gewisse
Voraussetzungen, die nicht immer erfillt sind; auch ist
man im Unsichern tber den Geltungsbereich der gefun-
denen Losung.

Eine dritte Methode beniitzt das sogen. Differenzen-
verfahren. Sie ersetzt die Differentialgleichung durch eine
Differenzengleichung, die Differentiale durch endlich grosse,
wenn auch sehr kleine Differenzen und berechnet so
schrittweise die Funktion angendhert aus den gegebenen
Anfangswerten. Schon in einfachen Fillen kommt man
aber auf diese Weise zu umfangreichen Rechnungen und
mehr oder weniger uniibersichtlichen Zahlentabellen.

Es liegt nahe, den Gedanken, der hier zu Grunde
liegt, zu verwenden, um ein graphisches Verfahren darauf
aufzubauen. Das ist auch deswegen empfehlenswert, weil
gelegentlich die schon in der Differentialgleichung auf-
tretenden Funktionen und umsomehr die Losung sich
entweder garnicht oder nur umsténdlich analytisch beschrei-
ben lassen, wihrend sie graphisch einfach durch ein Dia-

g &
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gramm gegeben werden. Dies trifft z. B. zu, wenn die
Funktionen in verschiedenen Gebieten verschiedenen ana-
lytischen Gesetzen folgen (Biegungsmoment eines bela-
steten Stabes), oder wenn sie etwa aus den Aufzeichnungen
eines Instrumentes entnommen werden.

Um die Grundlagen fiir eine solche ,graphische
Analysis“ zu schaffen, miissen augenscheinlich zeichnerisch
einfache Methoden fiir das Differentieren und das Integrieren
einer graphisch gegebenen Funktion angegeben werden.

Wenn man die Grundoperationen der Funktionen-
rechnung, namlich die Bildung des Differentialquotienten
und des Integrals einer Funktion, graphisch durchfihren
will, so muss man die Funktion irgendwie zeichnerisch
darstellen. Man kann dazu Kurven, Flichen oder Winkel
verwenden. Gewdhnlich beniitzt man die Darstellung der
Funktion in rechtwinkligen Koordinaten x, y. Alsdann ist
der Differentialquotient der Tangens des Neigungswinkels
der Kurventangente zur Abszissenaxe. Der Prozess des
Differentierens wird mit dem Legen der Kurventangente
identisch, wobei der Beriihrungspunkt vorgeschrieben ist.
Das Integral der Funktion wird durch den Flicheninhalt
dargestellt, der zwischen Kurve, Endordinaten und Abs-
zissenaxe liegt. Wiahrend die Funktion selbst durch eine
Linge gemessen wird (die Kurvenordinate), braucht es fir
die Ableitung das Verhiltnis zweier Lingen bezw. eine
Winkelmessung, und fiir das Integral hat man eine Flichen-
messung vorzunehmen. Will man gar die zweite Ableitung
der Funktion ermitteln, so hat man den Krimmungsradius g
der Kurve zu bestimmen und jene aus der Beziehung
i (r -1-{12,3/2

J
zu errechnen. Ho6here Ableitungen hingen in noch ver-
wickelterer Art mit den Aenderungen der Kriimmung
zusammen, und hohere Integrale wiirden sich aus dieser
Darstellung iberhaupt nicht direkt ermitteln lassen.

Wenn nun z. B. die Funktion als Ldsung einer Dif-
ferentialgleichung zu bestimmen ist, so sind fiir ihr
Kurvenbild Beziehungen zwischen Abszisse, Ordinate und
Ableitungen vorgeschrieben,
und es wird sich jetzt kom-
plizierend geltend machen,
dass diese letzten in unan-
schaulicher und verwickelter
Art mit der Kurve in Be-

Q

ziehung stehen. Eine gra-
phische Konstruktion des 0 AR
durch die Differentialglei- Abb.1

chung geforderten Zusam-

menhanges wird, wenigstens bei Gleichungen hoherer als
erster Ordnung, nur in Ausnahmefillen moglich sein und
selten einfach werden.

Ein Hauptgrund fir das Versagen der Darstellung
liegt darin, dass die verschiedenen Ableitungen verschie-
dene Dimensionen haben, und dies rithrt davon her, dass
als unabhéngige Variable eine dimensionsbehaftete Grosse,
die Linge der Abszisse, gewéhlt wurde.

Waihlt man zur Darstellung der Funktion Polarkoor-
dinaten r, ¢ (Abb. 1), so ist dieser Uebelstand beseitigt.
Alle Ableitungen haben jetzt die Dimension einer Lénge.
lsuist 7. 15

r
tgr = —

7/
also die erste Ableitung #' von » nach ¢ durch die Linge
der Strecke OQ in Abbildung 1 dargestellt. Indessen ist
der Zusammenhang der zweiten Ableitung mit der Kurven-
kriimmung wieder nicht einfach, da der Kriimmungsradius o
durch den Ausdruck

&=

(+2 + 72yl

ri 278 —rr"

dargestellt wird. Auch die Polarkoordinatendarstellung
eignet sich daher nicht allgemein zur graphischen Analyse.

g “ ¥
a) 3 b)
.
Ou
3
u Se \gu UL 90
[ (]
plu)=a >0 Qy plu)=-a<0
Y %
c) d)
@y
rusT ol
} T \ g%
= %
Guen
. u plu+m)=a>0 3 plu+n)=-3<0
Jura Abb. 3

2. Linienbild und Stiitzfunktion.

Im folgenden soll eine graphische Darstellung einer
Funktion verwendet werden, die erlaubt, in einfachster
und vollkommen gleichartiger Weise alle Ableitungen und
Integrale daraus zu entnebhmen. Diese Darstellung heisse
das Linienbild der Funktion, die zu einer Kurve als Linien-
bild gehérige Funktion heisse umgekehrt Stilsfunktion
dieser Kurve. '

Als unabhingige Verinderliche wird ein Winkel #
gewiahlt, der von einer vorgegebenen Polaraxe OA aus im
Gegenzeigersinn positiv aufgetragen wird (Abb. 2). Der
Winkel # kann alle positiven und negativen Werte an-
nehmen. Sein beweglicher Schenkel bildet einen Halbstrahl,
auf dem wir die Richtung von O aus nach -aussen als
positiv bezeichnen wollen, und den wir nachtriglich durch
einen negativen Halbstrahl zu einen Vollstrahl erginzen,
der nun wie eine Koordinatenaxe einen positiven und
einen negativen Teil hat. Die zu den Winkeln # und # + =
gehorigen Strahlen unterscheiden sich dann gerade durch
den auf ihnen festgelegten Richtungsinn, wahrend die zu
den Winkeln # und #- 27n (n = ganze Zahl) gehdrenden
Strahlen identisch sind.

Die darzustellende Funktion sei p = p(u).

Auf dem freien Schenkel des Winkels # tragen wir
die Strecke OQ, = /p(#)/ auf, und zwar nach der positiven
oder negativen Seite, je nachdem p positiv oder negativ
ist (Abb. 3). Die Gesamtheit aller so erhaltenen Punkte Q,
bildet eine Kurve, die mit dem frither erwahnten Polar-
diagramm identisch ist, jedoch hier keine Rolle spielt.
Vielmehr errichten wir jetzt in Q, die Normale zu OQ,,
eine Gerade, die wir mit g(u) oder g, bezeichnen wollen,
und auf der wir durch einen Pfeil einen Richtungsinn
festlegen. Dieser Richtungsinn soll derjenige sein, den der
Halbstrahl # angibt, wenn er im Gegenzeigersinn um go°
gedreht wird. Die Geraden g(#) und g(u —+ x) fallen zu-
sammen, wenn p(# ) == — p(u) ist, aber sie unterscheiden
sich dann immer noch durch den Pfeil.

Die Gleichung der Geraden g(#) in rechtwinkligen
Koordinaten x, y ist

g(m) = x cos(u)+y sin(u) —pu) =o . . (1)

Zu jedem Werte von # gehort eine solche Gerade,
eine Stiitzlinie, und die Gesamtheit dieser Stiitzlinien um-
hallt eine Kurve C, deren Form fir die Funktion p(u)
charakteristisch ist, und die das Linienbild von p(u) heisst.
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% Umgekehrt kann aus
5 der Kurve C die Stitz-
funktion p(#) wieder ent-
nommen werden, indem
o man den Abstand vom

P (& Anfangspunkt O fiir jene
¢ Tangente  konstruiert,

Ya Y die mit der y-Axe den
i Winkel # einschliesst.

Abb. &4 Die Gerade g(u) be-
rihrt die KurveC in
einem PunkteP, (Abb. 4), der nach bekannten Prinzipien
auch auf der durch
g'(n)=—x sin(u) +y cos(u) —p'(w) =0 . (2)
gegebenen Kurve liegt.1)) Aber diese Gleichung ist iden-
tisch mit

&)= —+ux cos(u —|—77> —+y sin (u -b ;) —p’(u)‘= o (2)

und diese stellt eine Gerade g,/ dar, die zu g, normal steht.
Es ist also g, die Kurvennormale von C in P, Aber g
ist die Statzlinie der Funktion p'(#), wenn man die Polar-
axe aus der urspriinglichen Lage um einen rechten Winkel
im Gegenzeigersinn dreht, also den Winkel # von der
y-Axe aus nimmt. Ihr Abstand OQ, von O, auf dem Strahl
im vereinbarten Sinn positiv gerechnet, ist folglich gleich
der Ableitung p'(#), und man hat in Abb. 4 die Beziehung
OQu’ e QuPu :/’I(”)'

Die Kurve C', die von den Geraden g’ umhillt wird,
das Linienbild der Funktion p'(#) von der y-Axe aus ge-
rechnet, ist demnach nichts anderes als die Evolute der
Kurve C, und es gilt der Satz: Das Linienbild der Ablei-
tung einer Funktion ist die Evolute des Linienbildes der
Funktion.

Wenn man diesen Satz wieder auf die Funktion p'(x)
anwendet, so folgt, dass die Evolute C” der Kurve C’, die
wir als die zweite Evolute der Kurve C bezeichnen wollen,
das Linienbild der zweiten Ableitung p”(x) darstellt, und
indem so weiter gegangen wird, ergibt sich: Die nf¢ Evo-
lute C" der Kurve C ist das Linienbild der nten Ableitung
P(u) der Funktion p(u). Die Polaraxe ist um n rechte
Winkel in positivem Sinne gedreht.

In den Abb. 5a und 5b ist dies zur Darstellung
gebracht. In 5a sind alle Ableitungen positiv, in 5b sind
positiv p(#) und p""(u), wiahrend p, " und p” negativ
ausfallen.

Da der Kriimmungsradius einer Kurve immer v¢ 1
Kurvenpunkte bis zur Evolute hinreicht, ist der Krimmun -
radius g (#) der Kurve C in P, durch die Strecke Pyry/
dargestellt. Rechnen wir einen Krimmungsradius allgemein
positiv, wenn er von dem Kurvenpunkt aus auf der Nor-
malen in ihrem Pfeilsinn aufgetragen wird, negativ im
andern Fall, so ist mithin

oM =p)+p"w) . . . . . (3)

Der Kriimmungsradius wird also in einfachster Weise

linear, namlich durch Addition der zweiten Ableitung zur
Stitzfunktion, erhalten.

!) Hier und im folgenden immer, wenn nichts besonders bemerkt
ist, bedeaten beigefiigte Striche Ableitungen nach der Verinderlichcn #.

Abb. 5b

Auf der Einfachheit dieser Bezichung beruht die Ver-
wendbarkeit des Linienbildes gur graphischen Analyse.

Die Anwendung dieser Formel auf die Funktion p'(x)
und ihr Linienbild ergibt, dass der Krimmungsradius der
Kurve C' im Punkte P/, d. h. die Strecke P, P,” durch
den Ausdruck

P') 4 p"(w)
gegeben ist. Dies ist aber gerade die Ableitung von po(x).
Es gilt also der Satz: Die n'e Ableitung des Kriimmungs-
halbmessers der Kurve C ist gleich dem Kriimmungsradius
der wn'en Evolute C dieser Kurve.
(3)

o) = p) + pr+u)

3. Graphisches Differentieren und Integrieren.

1. Differentiation. Es sei fiir eine gegebene Funktion
p(u) die Ableitung p'(#) zu finden.

Wie man in rechtwinkligen Koordinaten ein Funk-
tionsbild punktweise aufzeichnet, wird hier das Linienbild C
von p(u) linienweise gezeichnet, indem man von der Schar
der Geraden g(#) so viele konstruiert, dass mit geniigender
Genauigkeit in das von ihpen gebildete Polygon die
Kurve C einbeschrieben werden kann.

Wihrend man bei rechtwinkligen Koordinaten zur
Ermittlung der Ableitung in einem vorgegebenen Kurven-
punkte die Tangente ziehen muss, so muss hier zu einer
gegebenen Geraden g(#) der Berihrungspunkt P, ge-
funden werden. Es ist alsdann die Strecke Q,P, gleich
#(u) (Abb. 4).

Die Konstruktionen verlaufen vollkommen dual. Indem
man in den Kurvenpunkten P, idberall die Normalen
errichtet, erhilt man die Geradenschar g¢'(x), aus der man
in ganz analoger Weise die Kurve C' gewinnt, die von
&4 in P, beriihrt wird. Alsdann ist auch die zweite Ab-
leitung p"(#) gewonnen; sie ist durch die Strecke Q, P,
dargestellt usw.

Dem Differentiationsprozess entspricht das Zeichnen
der Evoluten des Linienbildes.

Man hat dieses Verfahren nur riickwirts auszufiihren,
um von der Funktion zu ibhrem Integral zu kommen.

2. Integration. Es sei die Funktion p(x) gegeben und
ihr erstes Integral

pi(n) = a +[p(u) du

zu finden, das fiir #=a den Wert ¢ annimmt, und dessen
Linienbild C; sei. Fiir diese Kurve ist C die Evolute (Abb.6);
C; ist mithin eine Evolvente der gegebenen Kurve C, und
zwar die eindeutig bestimmte, fiir die p(¢) =a wird. Dabei
ist zu beachten, dass die Polaraxe, von der aus # gerechnet
wird, fiir die Kurve C; um einen rechten Winkel im
Zeigersinn nach riickwirts gedreht ist, also mit der
negativen y-Axe zusammenfallt.
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Dem Prozess des Iutegrierens entspricht das Zeichnen
der Ewolvente des Linienbildes.

Den unendlich vielen méglichen Anfangswerten der
Integralfunktion (Integrationskonstante) entsprecherd gibt
es unendlich viele Evolventen, die aber alle Parallelkurven
sind, sodass sich die Stiitzfunktionen nur um eine additive
Konstante voneinander unterscheiden.

4. Graphische Ausfiihrung der Integration.

Man zeichnet zunichst vom Linienbild C der Funk-
tion p(x) eine geniigend dichte Schar von Stitzlinien g(x).
Im allgemeinen wird man den Zwischenwinkel zwischen je
zwei aufeinanderfolgenden Stiitzlinien gleich nehmen. Wenn
irgendwo die Genauigkeit kleinere Winkelintervalle erfor-
dert, kdnnen weitere Stiitzlinien eingeschaltet werden. Ist
das Winkelintervall klein genug, so kann jetzt der Evol-
ventenbogen zwischen zwei benachbarten Stiitzlinien g an-
gendhert durch einen Kreisbogen ersetzt werden, dessen
Mittelpunkt im Schnitt der zwei Stitzlinien liegt. Da
die einzelnen Kreisbégen gar nicht gezeichnet, vielmehr
nur ihre Endpunkte mit dem Zirkel abgestochen werden
missen, ist das Verfahren rasch und einfach. Seine Ge-
nauigkeit hilt den Vergleich mit den Resultaten der
bekannten Integraphenapparate aus. Das Integrieren ist
hier identisch mit dem Abwickeln eines Kurvenbogens auf
eine Gerade, fusst also auf dem anschaulichen Begriff der
Bogenlinge.

Beispiel 1. (Abb. 7) Integration von p'(x) = 1/cos (u).

In Abb.7 wurde OQ," =1 dm gemacht und Q,'Q,'=
0,'Q: = Q,Qy = Q,'Qy = QJ/Qs' = 0,2 dm abgetragen.
Die Normalen g; auf die Linien OQ, geben dann Stiitz-
linien an das Linienbild der Funktion p'=1/cos (#). Nunmehr
wurde die Evolvente C konstruiert, die der Annahme
p(0) = o entspricht, also das Integral

u

e Isinze 4
P00 =Sl T n =g eotg (T — )

darstellt. Nachfolgend sind die gemessenen Werte Q/P; mit
den nachtraglich berechneten zusammengestellt.

Gemessen Berechnet Fehler
0,195 0,197 — 0,002
0,390 0,390 0,000
0,570 0,570 0,000
0,738 0,733 0,005
0,886 0,881 0,005
Die Ziffer der letzten
Zeile, 0,886, stellt den Wert A
der Funktion fiir # = % dar, ¢

also den Ausdruck

. et

—lg (3-+]2).
Die Genauigkeit betragt dort
noch etwa 1/; 9/,.

2. Beispiel. Integration von p'(u) = tg(u)
mit p(o) = o, also Ermittlung der Funktion

3
P(M) S lg cos (%)

Es wurden in der gleichen Abbildung 7 die Strecken
0Q;# gleich den Strecken Q,'Q,/ abgetragen und in ihren
Endpunkten die Normalen zu den Richtungen OQ/* ge-
zogen. Sie umbhiillen das Linienbild C* der Funktion
p'(u) = tg(u). Die der Anfangsbedingung p(o) = o geni-
gende Evolvente ist C¥. Sie liefert das Linienbild der
Funktion p(#). Es ergab sich fir die Q/*P;*:

Gemessen Berechnet Feller
0,017 0,018 — 0,001
0,070 0,074 — 0,004
0,154 0,154 0,000
0,249 0,247 0,002

10,348 0,347 0,00T

Die letzte Ziffer, 0,348, ist ein Wert von 1/, Ig (2).
Er ergibt sich auf etwa 3%/, genau.

Die Uebereinstimmung ist sonach in beiden Fillen
sehr gut und fiir praktische Zwecke wohl geniigend. Dass
sich beim Fortsetzen der Integration die Fehler anhiufen,
liegt in der Natur der Sache. (Forts. folgt.)

Von den Volkerbund-Gebiuden in Genf.

Vor kurzem las man in der Tagespresse (,N.Z.Z.“
vom 5. Okt. d. J., Nr. 1884) einen besorgniserregenden Be-
richt iiber die voraussichtlichen Kosteniiberschreitungen
beim Bau des Valkerbundgebiaudes. Der Korrespondent
bezog sich auf die Berichterstattung des schwedischen Dele-
gierten Boheman vor der Volkerbundsversammlung tber
einen Sonderbericht der ,Kontrollkommission“, Unter-
kommission der ,Budgetkommission“, wonach der letzt-
jahrige Voranschlag fiir das Vilkerbundgebiude nach neue-
sten Berechnungen der Architekten um etwa 7 Mill. Fr.
tberschritten werden diirfte. Zusammen mit der (auf Rech-
nung der Schenkung Rockefeller gehenden) Bibliothek ware
mit insgesamt 35,3 Mill. Fr. Baukosten zu rechnen. Nach
dem gleichen Bericht denke die Budgetkommission an die
yenergischsten Massnahmen®, wie voriibergehende génzliche
Einstellung der Bauten und Aenderung der Bauleitung, die
den fiinf Architekten abzunehmen und in eine Hand zu
legen wire. — Sodann verbreitete die Schweiz. Depeschen-

agentur am 1. November die Mitteilung, dass der

erste Teil (!) der Arbeiten fir die Zufahristrassen zum

Ariana-Areal einen Kostenvoranschlag von 4 Mill. Fr.

aufweise, an die Bund und Kanton Genf erhebliche

Beitrige leisten werden. Endlich soll die das Areal

im untern Teil durchquerende Eisenbahnlinie Genf-

Lausanne mit einem Kostenaufwand von rd. 830000 Fr.
p bergwirts in einen Einschnitt verlegt und dadurch
von obenher unsichtbar gemacht werden.

Diese allerdings alarmierenden Nachrichten haben

uns veranlasst, an zustindiger Stelle Erkundigungen
einzuziehen. Wir erhielten auch einen heute giiltigen
Uebersichtsplan (Abb. 2); die Abb. 1 (wiederholt aus
Bd. 94) moge die allgemeine Situation in Erinnerung
rufen (in der aber die Orientierung der Gebiude
ungenau ist).

Was die ,Architektur” der Volkerbund-Gebdude
angeht, ist zu sagen, dass sie sich um vieles einfacher
prasentieren wird, als die Mehrzahl der urspriing-
lichen pramiierten Entwirfe befiirchten liess. Wir
hoffen in Bilde die Unterlagen zu ihrer Darstellung
zu erhalten, sodass wir heute darauf nicht ndher ein-
treten. Dass diese Architektur immerhin noch keines-

Abb. 7

(Masstab 1:2,)

wegs neuzeitlich ist, liegt in der baukiinstlerischen
Auffassung der Architekten und im Willen der Bau-
herrschaft begriindet. Es geht dies schon aus dem
Uebersichtsplan (Abb. 2) hervor, der auf einem
System kreuz und quer streng rechtwinkliger Axen
aufgebaut ist, die bis in Einzelheiten der Parkwege
in den untern Teilen ausstrahlen. Seine Orientierung
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