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Graphische Analysis vermittels des Linienbildes einer Funktion.
Von Prof. Dr. E. MEISSNER, E.T. H., Zürich.

Vorwort. In zwei Aufsätzen, die in der „ Schweiz.
BauzeituDg" erschienen sindJ), habe ich ein graphisches
Integrationsverfahren für totale Differentialgleichungen
entwickelt, das seither in der Praxis Anwendung gefunden
hat und seit einiger Zeit auch regelmässig an der Abteilung
für Maschineningenieure der E. T. H. benutzt wird. Infolgedessen

ist der als Sonderdruck im Buchhandel erschienene

grundlegende erste Aufsatz vergriffen. Statt ihn
einfach neu drucken zu lassen, erschien es mir zweckmässig,
seinen Inhalt mit jenem des zweiten Aufsatzes und mit
weiterm, in Vorlesungen vorgetragenem Stoff
zusammenzuarbeiten. Es lag nahe, an anderer Stelle von mir
publizierte Dinge gelegentlich mit einzubeziehen. So ist die
vorliegende Arbeit entstanden. Ihr Stoff ist, soweit er
schon veröffentlicht wurde, den drei erwähnten Aufsätzen
entnommen. Die durchgeführten Beispiele und ebenso die'
Figuren des Textes sind zum grossen Teil neu. Für die
Herstellung der letzten bin ich meinen Assistenten Druey,
Waldvogel und insbesondere Herrn Salzmann zu Dank
verpflichtet.

Der Aufsatz wendet sich an Ingenieure und
Techniker, die analytisch schwer oder gar nicht zugängliche
totale Differentialgleichungen numerisch zu lösen haben.
Die Anwendungsbeispiele sind daher meist der Mechanik
entnommen.

1. Einleitung.
Die graphische Darstellung ist das ureigenste

Ausdrucksmittel und Handwerkszeug des Ingenieurs. Wo
immer es angeht, wird er die Anschaulichkeit der Zeichnung

der abstrakten Blässe der Formel vorziehen. So
werden jn der Statik der Baukonstruktionen die
verwickelten algebraischen Beziehungen durch die Kräfte- und
Verschiebungspläne geometrisch konstruiert und Aehnliches
gilt in andern Gebieten, wie Kinematik, Elektrotechnik,
usw. Allerdings hat die analytische Behandlung den
ungeheuren Vorteil, dass sie sich nicht auf eine ganz
bestimmte Aufgabe festzulegen braucht, sondern dass sie
gerade die Abhängigkeit der Lösung von den Parametern
des Problems zum Gegenstand der Untersuchung machen
kann. Man wird ihr daher nie entraten können, umsomehr
auch, als sie allein die Lösung mit unbegrenzter Genauigkeit
zu ermitteln erlaubt. Aber in den technischen Anwendungen
hat man es immer mit einem eindeutig bestimmten Sonderfall

zu tun, und mehr als die allgemein gültigen
Eigenschaften der Lösung interessieren den Ingenieur die
numerischen Besonderheiten dieses Einzelfalles.

In der Mechanik und Physik führen die meisten nicht
algebraischen Probleme auf Differentialgleichungen, aus
denen die unbekannten Funktionen bestimmt werden
müssen.2) Je nachdem diese von mehreren oder nur einer
einzigen Veränderlichen abhängig sind, hat man es mit

*) „lieber graphische Integration von totalen Differentialgleichungen",
erschienen in „S. B. Z.", Bd. 62, Nr. 15 und 16 (1 r./18. Oktober 1913).

„Zur Schwingungalebre", erschienen in „S. B.Z.", Bd. 84, Nr. 23
und 24 (6/13. Desember 1924).

S. a. „Ueber die Anwenduog von Fourier-Reihen auf einige
Aufgaben der Geometrie und Kinematik", in der Vierteljahrsschrift der
Naturforschenden Gesellschaft in Zürich, Jahrgang 54 (1909).

2) Zwar ist häufig auch die Formulierung als Variationsproblem
möglich ; doch wird man Überall da, wo es sich nicht nur um den Verlauf

der Losung im Ganzen, sondern um ihre lokalen Besonderheiten
handelt, die Bestimmung durch die Differentialgleichung vorziehen.

partiellen oder mit totalen Differentialgleichungen zu tun.
Diese letzten treten in der Mechanik besonders häufig auf ;

sie sind dort meist von der zweiten Ordnung.
Für die analytische Lösung totaler Differentialgleichungen

liegen eine Reihe von Integrationsmethoden vor,
die aber nur in den einfachem Fällen zum Ziele führen,
d. h. für die gesuchte Funktion einen Ausdruck in eler
mentaren Funktionen (xn, ex, sin (x), cos (x), lg (x) usw.) zu
finden erlauben; denn in der Mehrzahl der Fälle werden
durch die Differentialgleichungen neue Funktionen definiert,
die sich überhaupt nicht elementar darstellen lassen. So
führen viele Bewegungsaufgaben, z. B. das Pendel- und das
Kreiselproblem, auf elliptische Funktionen, während andere
wieder Funktionen ergeben, die auch dem Mathematiker
unbekannt sind (Dreikörperproblem der Himmelsmechanik).

Nun ist für den Techniker und Physiker der Stand*
punkt gegenüber solchen „unlösbaren" Differentialgleichungen

durchaus nicht der selbe wie für den Mathematiken
Während dieser nach der Existenz, dem Charakter und
den Eigenschaften der Lösung fragen wird, begnügt sich
der Techniker, wenn er bei gegebenen Anfangsbedingungen
den Verlauf der Funktion qualitativ, womöglich auch quantitativ

beurteilen kann, wobei es ihm auf Fehler von einigen
Prozenten im allgemeinen kaum viel ankommen dürfte.
Er wird also nach Verfahren suchen, die die Lösung
wenigstens mit Annäherung zu berechnen erlauben.

Zu diesem Zweck kann er einmal für die Lösung
eine Potenzreihe (oder eine andere Funktionenreihe mit
genügend vielen verfügbaren Konstanten) ansetzen und so
der Differentialgleichung zu genügen suchen. Aber diese
Methode ist selten praktisch durchführbar und man hat
häufig Konvergenzschwierigkeiten.

Ein zweites Mittel besteht darin, schon die
Differentialgleichung zu vereinfachen, indem etwa Glieder
vernachlässigt werden, deren Einfluss voraussichtlich klein
ist. Das tut man z. B. bei der Behandlung der gewöhnlichen

Pendelschwingungen, wo die genaue Differentialgleichung

__ =_ --sinfa)
unter Voraussetzung von kleinen Schwingungen durch die
viel einfachere

da.g>

dt*
g

ersetzt wird. Aber dieses Verfahren hat stets gewisse
Voraussetzungen, die nicht immer erfüllt sind ; auch ist
man im Unsichern über den Geltungsbereich der gefundenen

Lösung.
Eine dritte Methode benützt das sogen. Differenzenverfahren.

Sie ersetzt die Differentialgleichung durch eine
Differenzengleichung, die Differentiale durch endlich grosse,
wenn auch sehr kleine Differenzen und berechnet so
schrittweise die Funktion angenähert aus den gegebenen
Anfangswerten. Schon in einfachen Fällen kommt man
aber auf diese Weise zu umfangreichen Rechnungen und
mehr oder weniger unübersichtlichen Zahlentabellen.

Es liegt nahe, den Gedanken, der hier zu Grunde
liegt, zu verwenden, um ein graphisches Verfahren darauf
aufzubauen. Das ist auch deswegen empfehlenswert, weil
gelegentlich die schon in der Differentialgleichung
auftretenden Funktionen und umsomehr die Lösung sich
entweder garnicht oder nur umständlich analytisch beschreiben

lassen, während sie graphisch einfach durch ein Dia-
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gramm gegeben werden. Dies trifft z. B. zu, wenn die
Funktionen in verschiedenen Gebieten verschiedenen
analytischen Gesetzen folgen (Biegungsmoment eines
belasteten Stabes), oder wenn sie etwa aus den Aufzeichnungen
eines Instrumentes entnommen werden.

Um die Grundlagen für eine solche „graphische
Analysis" zu schaffen, müssen augenscheinlich zeichnerisch
einfache Methoden für das Differentieren und das Integrieren
einer graphisch gegebenen Funktion angegeben werden.

Wenn man die Grundoperationen der Funktionenrechnung,

nämlich die Bildung des Differentialquotienten
und des Integrals einer Funktion, graphisch durchführen
will, so muss man die Funktion irgendwie zeichnerisch
darstellen. Man kann dazu Kurven, Flächen oder Winkel
verwenden. Gewöhnlich benützt man die Darstellung der
Funktion in rechtwinkligen Koordinaten x, y. Alsdann ist
der Differentialquotient der Tangens des Neigungswinkels
der Kurventangente zur Abszissenaxe. Der Prozess des
Differentierens wird mit dem Legen der Kurventangente
identisch, wobei der Berührungspunkt vorgeschrieben ist.
Das Integral der Funktion wird durch den Flächeninhalt
dargestellt, der zwischen Kurve, Endordinaten und
Abszissenaxe liegt. Während die Funktion selbst durch eine
Länge gemessen wird (die Kurvenordinate), braucht es für
die Ableitung das Verhältnis zweier Längen bezw. eine
Winkelmessung, und für das Integral hat man eine
Flächenmessung vorzunehmen. Will man gar die zweite Ableitung
der Funktion ermitteln, so hat man den Krümmungsradius q
der Kurve zu bestimmen und jene aus der Beziehung

zu errechnen. Höhere Ableitungen hängen in noch ver-
wickelterer Art mit den Aenderungen der Krümmung
zusammen, und höhere Integrale würden sich aus dieser
Darstellung überhaupt nicht direkt ermitteln lassen.

Wenn nun z. B. die Funktion als Lösung einer
Differentialgleichung zu bestimmen ist, so sind für ihr
Kurvenbild Beziehungen zwischen Abszisse, Ordinate und
Ableitungen vorgeschrieben,
und es wird sich jetzt
komplizierend geltend machen,
dass diese letzten in
unanschaulicher und verwickelter
Art mit der Kurve in
Beziehung stehen. Eine
graphische Konstruktion des
durch die Differentialgleichung

geforderten
Zusammenhanges wird, wenigstens bei Gleichungen höherer als
erster Ordnung, nur in Ausnahmefällen möglich sein und
selten einfach werden.

Ein Hauptgrund für das Versagen der Darstellung
liegt darin, dass die verschiedenen Ableitungen verschiedene

Dimensionen haben, und dies rührt davon her, dass
als unabhängige Variable eine dimensionsbehaftete Grösse,
die Länge der Abszisse, gewählt wurde.

Wählt man zur Darstellung der Funktion Polarkoordinaten

r, cp (Abb. i), so ist dieser Uebelstand beseitigt.
Alle Ableitungen haben jetzt die Dimension einer Länge.
Es ist z. B.

r

also die erste Ableitung r1 von r nach cp durch die Länge
der Strecke OQ in Abbildung 1 dargestellt. Indessen ist
der Zusammenhang der zweiten Ableitung mit der
Kurvenkrümmung wieder nicht einfach, da der Krümmungsradius q
durch den Ausdruck

(.»-fr'»)»/,

Abb.1

Q + af"
dargestellt wird. Auch die Polarkoordinatendarstellung
eignet sich daher nicht allgemein zur graphischen Analyse.

0

11*211

0/* i

Abb. 2

p/ul-a>o PfU/--3<0

U*Jlu+x

p(u+xj='a>o pfu*jt/°~a<v

Va«r Abb. 3

2. Linienbild und Stützfunktion.
Im folgenden soll eine graphische Darstellung einer

Funktion verwendet werden, die erlaubt, in einfachster
und vollkommen gleichartiger Weise alle Ableitungen und
Integrale daraus zu entnehmen. Diese Darstellung heisse
das Linienbild der Funktion, die zu einer Kurve als Linienbild

gehörige Funktion heisse umgekehrt StiUzfunklion-
dieser Kurve.

Als unabhängige Veränderliche wird ein Winkel u
gewählt, der von einer vorgegebenen Polaraxe OA aus im
Gegenzeigersinn positiv aufgetragen wird (Abb. 2). Der
Winkel u kann alle positiven und negativen Werte
annehmen. Sein beweglicher Schenkel bildet einen Halbstrahl,
auf dem wir die Richtung von O aus nach -aussen als
positiv bezeichnen wollen, und den wir nachträglich durch
einen negativen Halbstrahl zu einen Vollstrahl ergänzen,
der nun wie eine Koordinatenaxe einen positiven und
einen negativen Teil hat. Die zu den Winkeln « und « -f- n
gehörigen Strahlen unterscheiden sich dann gerade durch
den auf ihnen festgelegten Richtungsinn, während die zu
den Winkeln u und u-\-znn (n ganze Zahl) gehörenden
Strahlen identisch sind.

Die darzustellende Funktion sei p />(»).
Auf dem freien Schenkel des Winkels u tragen wir

die Strecke OQu //(«)/ auf, und zwar nach der positiven
oder negativen Seite, je nachdem p positiv oder negativ
ist (Abb. 3). Die Gesamtheit aller so erhaltenen Punkte Qu
bildet eine Kurve, die mit dem früher erwähnten
Polardiagramm identisch ist, jedoch hier keine Rolle spielt.
Vielmehr errichten wir jetzt in Qu die Normale zu OQu,
eine Gerade, die wir mit g(u) oder gu bezeichnen wolleD,
und auf der wir durch einen Pfeil einen Richtungsinn
festlegen. Dieser Richtungsinn soll derjenige sein, den der
Halbstrahl u angibt, wenn er im Gegenzeigersinn um 900
gedreht wird. Die Geraden g(u) und g(u-\-ji) fallen
zusammen, wenn p(u-\-n) ~ —p(u) ist, aber sie unterscheiden'
sich dann immer noch durch den Pfeil.

Die Gleichung der Geraden g(u) in rechtwinkligen
Koordinaten x, y ist

g(u) x cos(u)-\-y sin(») —p(u) =0 (1)
Zu jedem Werte von u gehört eine solche Gerade,

eine Stützlinie, und die Gesamtheit dieser Stützlinien
umhüllt eine Kurve C, deren Form für die Funktion />(/<)

charakteristisch ist) und die das Linienbild von p(u) heisst.
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Umgekehrt kann aus
der Kurve C die
Stützfunktion p(u) wieder
entnommen werden, indem
man den Abstand vom
Anfangspunkt O für jene
Tangente konstruiert,
die mit der y-Axe den
Winkel u einschliesst.

Abb.4 Die Gerade g(u) be¬

rührt die KurveC in
einem PunktePu (Abb. 4), der nach bekannten Prinzipien
auch auf der durch

g'(«) — x sin(«) my cos(«) —p'(u) 0 (2)
gegebenen Kurve liegt.1) Aber diese Gleichung ist identisch

mit

g'{u) — -\~x cosi»-f- —\-\-y sinlw-f- —)—p\u) o (2')

und diese stellt eine Gerade g' dar, die zu gu normal steht.
Es ist also g' die Kurvennormale von C in Pu. Aber gû
ist die Stützlinie der Funktion p\u), wenn man die Polar-
axe aus der ursprünglichen Lage um einen rechten Winkel
im Gegenzeigersinn dreht, also den Winkel u von der
y-Axe. aus nimmt. Ihr Abstand OQu' von O, auf dem Strahl
im vereinbarten Sinn positiv gerechnet, ist folglich gleich
der Ableitung p'(u), und man hat in Abb. 4 die Beziehung
OQu' QUPU /(»).

Die Kurve C, die von den Geraden g' umhüllt wird,
das Linienbild der Funktion p'(u) von der jy-Axe aus
gerechnet, ist demnach nichts anderes als die Evolute der
Kurve C, und es gilt der Satz : Das Linienbild der Ableitung

einer Funktion ist die Evolute des Linienbildes der
Funktion.

Wenn man diesen Satz wieder auf die Funktion p'(u)
anwendet, so folgt, dass die Evolute C" der Kurve C, die
wir als die zweite Evolute der Kurve C bezeichnen wollen,
das Linienbild der zweiten Ableitung p"(u) darstellt, und
indem so weiter gegangen wird, ergibt sich: Die nte Evolute

C der Kurve C ist das Linienbild der nten Ableitung
pW(u) der Funktion p(u). Die Polaraxe ist um n rechte
Winkel in positivem Sinne gedreht.

In den Abb. 5 a und 5 b ist dies zur Darstellung
gebracht. In 5 a sind alle Ableitungen positiv, in 5 b sind
positiv p(u) und p"'\u), während p', p" und p"' negativ
ausfallen.

Da der Krümmungsradius einer Kurve immer vi 1

Kurvenpunkte bis zur Evolute hinreicht, ist der Krümmun .-
radius q (u) der Kurve C in Pu durch die Strecke Puru'
dargestellt. Rechnen wir einen Krümmungsradius allgemein
positiv, wenn er von dem Kurvenpunkt aus auf der
Normalen in ihrem Pfeilsinn aufgetragen wird, negativ im
andern Fall, so ist mithin

Q{u)=p(u)~\-p"(u) (3)
Der Krümmungsradius wird also in einfachster Weise

linear, nämlich durch Addition der zweiten Ableitung zur
Stützfunktion, erhalten.

') Hier und im folgenden immer, wenn nichts besonders bemerkt
ist, bedeuten beigefügte Striche Ableitungen nach der Veränderliche n u.

Su ffi

Auf der Einfachheit dieser Beziehung beruht die
Verwendbarkeit des Linienbildes zur graphischen Analyse.

Die Anwendung dieser Formel auf die Funktion p'(u)
und ihr Linienbild ergibt, dass der Krümmungsradius der
Kurve C im Punkte Pu', d. h. die Strecke PU'PU" durch
den Ausdruck

p\u) +p'"(u)
gegeben ist. Dies ist aber gerade die Ableitung von q(u).
Es gilt also der Satz: Die nte Ableitung des Krümmungshalbmessers

der Kurve C ist gleich dem Krümmungsradius
der nien Evolute Oni dieser Kurve.

QC)(u)=p("\u)+p(n + '\u) (3')

3. Graphisches Differentieren und Integrieren.
1. Differentiation. Es sei für eine gegebene Funktion

p(u) die Ableitung p'(u) zu finden.
Wie man in rechtwinkligen Koordinaten ein

Funktionsbild punktweise aufzeichnet, wird hier das Linienbild C
von p(u) linienweise gezeichnet, indem man von der Schar
der Geraden g(ü) so viele konstruiert, dass mit genügender
Genauigkeit in das von ihnen gebildete Polygon die
Kurve C einbeschrieben werden kann.

Während man bei rechtwinkligen Koordinaten zur
Ermittlung der Ableitung in einem vorgegebenen Kurvenpunkte

die Tangente ziehen muss, so muss hier zu einer
gegebenen Geraden g(u) der Berührungspunkt Pu
gefunden werden. Es ist alsdann die Strecke QUPU gleich
p'(u) (Abb. 4).

Die Konstruktionen verlaufen vollkommen dual. Indem
man in den Kurvenpunkten Pu überall die Normalen
errichtet, erhält man die Geradenschar g'(u), aus der man
in ganz analoger Weise die Kurve C gewinnt, die von
gü in Pu' berührt wird. Alsdann ist auch die zweite
Ableitung p"{u) gewonnen; sie ist durch die Strecke QU'PU'
dargestellt usw.

Dem Differenliationsprozess entspricht das Zeichnen
der Evoluten des Linienbildes.

Man hat dieses Verfahren nur rückwärts auszuführen,
um von der Funktion zu ihrem Integral zu kommen.

2. Integration. Es sei die Funktion p(u) gegeben und
ihr erstes Integral

Pi(u) +Jp(u) du

zu finden, das für «=a den Wert a annimmt, und dessen
Linienbild Q sei. Für diese Kurve ist C die Evolute (Abb. 6);
Cr ist mithin eine Evolvente der gegebenen Kurve C, und
zwar die eindeutig bestimmte, für die p(a) a wird. Dabei
ist zu beachten, dass die Polaraxe, von der aus u gerechnet
wird, für die Kurve Q um einen rechten Winkel im
Zeigersinn nach rückwärts gedreht ist, also mit der
negativen y-Axe zusammenfällt.

9« Abb. 5 a Abb. 5 b

\ U

jDIa-3

Pm

Abb. 6
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Dem Prozess des Integrierens entspricht das Zeichnen
der Evolvente des Linienbildes.

Den unendlich vielen möglichen Anfangswerten der
Integralfunktion (Integrationskonstante) entsprechend gibt
es unendlich viele Evolventen, die aber alle Parallelkurven
sind, sodass sich die Stützfunktionen nur um eine additive
Konstante voneinander unterscheiden.

4. Graphische Ausführung der Integration.
Man zeichnet zunächst vom Linienbild C der Funktion

p(u) eine genügend dichte Schar von Stützlinien g[u).
Im allgemeinen wird man den Zwischenwinkel zwischen je
zwei aufeinanderfolgenden Stützlinien gleich nehmen. Wenn
irgendwo die Genauigkeit kleinere Winkelintervalle erfordert,

können weitere Stützlinien eingeschaltet werden. Ist
das Winkelintervall klein genug, so kann jetzt der Evol-
ventenbogen zwischen zwei benachbarten Stützlinien g
angenähert durch einen Kreisbogen ersetzt werden, dessen
Mittelpunkt im Schnitt der zwei Stützlinien liegt. Da
die einzelnen Kreisbögen gar nicht gezeichnet, vielmehr
nur ihre Endpunkte mit dem Zirkel abgestochen werden
müssen, ist das Verfahren rasch und einfach. Seine
Genauigkeit hält den Vergleich mit den Resultaten der
bekannten Integraphenapparate aus. Das Integrieren ist
hier identisch mit dem Abwickeln eines Kurvenbogens auf
eine Gerade, fusst also auf dem anschaulichen Begriff der
Bogenlänge.

Beispiel 1. (Abb. 7) Integration von />'(«) i/cos («).
In Abb. 7 wurde OQ0' 1 dm gemacht und Qo'Qi'=

Qi'Q2' Qs'Qä' Q^'Qi' Qi'Qs' 0,2 dm abgetragen.
Die Normalen g[ auf die Linien OQ/ geben dann Stützlinien

an das Linienbild der Funktion p'= i/cos (»). Nunmehr
wurde die Evolvente C konstruiert, die der Annahme
^(o) o entspricht, also das Integral

1 I -f sin « t it u\p[u) =—lg !—: lgCOtg*v/ 2 ° 1 — sin« D \ 4 2/
darstellt. Nachfolgend sind die gemessenen Werte Q/P,- mit
den nachträglich berechneten zusammengestellt.

Gemessen Berechnet Fehler

o,^ 0,197 — 0,002
0,390 0,390 0,000
°>57°
0.738
0,886

Ziffer der

0,57°
0.733
0,881

letzten

0,000
0,005
0,005

Die
Zeile, o,886, stellt den Wert
der Funktion für »

also den Ausdruck

Die Genauigkeit beträgt dort
noch etwa !/a °/0.

2. Beispiel. Integration von p'(u) tg(»)
mit ^(o) o, also Ermittlung der Funktion

p(u) lgr\"> » cos («)
Es wurden in der gleichen Abbildung 7 die Strecken

OQ/* gleich den Strecken Qo'Q/ abgetragen und in ihren
Endpunkten die Normalen zu den Richtungen OQ/*
gezogen. Sie umhüllen das Linienbild C* der Funktion
p'{ti) tg(»). Die der Anfangsbedingung p (o) o
genügende Evolvente ist C*. Sie liefert das Linienbild der
Funktion p(u). Es ergab sich für die Q/* P,* :

Gemessen Berechnet Fehler

0,017 0,018 — 0,OOI
0,070 0,074 — 0,004
0,154 0,154 0,000
0,249 0,247 0,002
0,348 0,347 0,001

Die letzte Ziffer, 0,348, ist ein Wert von 1/ä lg (2).
Er ergibt sich auf etwa 3 0/u0 genau.

Die Uebereinstimmung ist sonach in beiden Fällen
sehr gut und für praktische Zwecke wohl genügend. Dass
sich beim Fortsetzen der Integration die Fehler anhäufen,
liegt in der Natur der Sache. (Forts, folgt.)

dar

N-

p:

97.

Abb. 7 (Masstab 1

Von den Völkerbund-Gebäuden in Genf.
Vor kurzem las man in der Tagespresse („N. Z. Z."

vom 5. Okt. d. J., Nr. 1884) einen besorgniserregenden
Bericht über die voraussichtlichen Kostenüberschreitungen
beim Bau des Völkerbundgebäudes. Der Korrespondent
bezog sich auf die Berichterstattung des schwedischen
Delegierten Boheman vor der Völkerbundsversammlung über
einen Sonderbericht der „Kontrollkommission",
Unterkommission der „Budgetkommission", wonach der
letztjährige Voranschlag für das Völkerbundgebäude nach neuesten

Berechnungen der Architekten um etwa 7 Mill. Fr.
überschritten werden dürfte. Zusammen mit der (auf Rechnung

der Schenkung Rockefeiler gehenden) Bibliothek wäre
mit insgesamt 35,3 Mill. Fr. Baukosten zu rechnen. Nach
dem gleichen Bericht denke die Budgetkommission an die
„energischsten Massnahmen", wie vorübergehende gänzliche
Einstellung der Bauten und Aenderung der Bauleitung, die
den fünf Architekten abzunehmen und in eine Hand zu
legen wäre. — Sodann verbreitete die Schweiz. Depeschen¬

agentur am 1. November die Mitteilung, dass der
erste Teil der Arbeiten für die Zufahrtstrassen zum
Ariana-Areal einen Kostenvoranschlag von 4 Mill. Fr.
aufweise, an die Bund und Kanton Genf erhebliche
Beiträge leisten werden. Endlich soll die das Areal
im untern Teil durchquerende Eisenbahnlinie Genf-
Lausanne mit einem Kostenaufwand von rd. 830 000 Fr.
bergwärts in einen Einschnitt verlegt und dadurch
von obenher unsichtbar gemacht werden.

Diese allerdings alarmierenden Nachrichten haben
uns veranlasst, an zuständiger Stelle Erkundigungen
einzuziehen. Wir erhielten auch einen heute gültigen
Uebersichtsplan (Abb. 2); die Abb. 1 (wiederholt aus
Bd. 94) möge die allgemeine Situation in Erinnerung
rufen (in der aber die Orientierung der Gebäude

ungenau ist).
Was die „Architektur" der Völkerbund-Gebäude

angeht, ist zu sagen, dass sie sich um vieles einfacher
präsentieren wird, als die Mehrzahl der ursprünglichen

prämiierten Entwürfe befürchten Hess. Wir
\^ hoffen in Bälde die Unterlagen zu ihrer Darstellung

zu erbalten, sodass wir heute darauf nicht näher
eintreten. Dass diese Architektur immerbin noch keineswegs

neuzeitlich ist, liegt in der baukünstlerischen
Auffassung der Architekten und im Willen der
Bauherrschaft begründet. Es geht dies schon aus dem
Uebersichtsplan (Abb. 2) hervor, der auf einem
System kreuz und quer streng rechtwinkliger Axen
aufgebaut ist, die bis in Einzelheiten der Parkwege
in den untern Teilen ausstrahlen. Seine Orientierung
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