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Schwingungsdämpfer.
Von Prof. Pr. Ing. O. FÖPPL, Braunschweig, Wöhler-Inatitut.

Man hat sich in den letzten Jahren bemüht, die
Störungen, die an einem Maschinenteil durch Impulse im
Rhythmus der Eigenschwingungszabl angefacht werden,
durch zusätzliche Vorrichtungen zu dämpfen. Man kann
auf diese Weise z. B. Biegungsschwingungen mildern, die
durch eine umlaufende Maschine an einem Bauteil (z. B.
einem Träger) auftreten, oder man kann Drehschwingungen
in ihrem Ausschlag verringern, die etwa an einer Diesel-•
maschine infolge der Drehimpulse im Rhythmus der Eigen--
Schwingungszahl der Kurbelwelle auftreten. Die Aufgabe
ist in beiden Fällen die gleiche.1) Sie kann mit ganz
ähnlichen Mitteln gelöst werden. Wir können deshalb im
nachfolgenden beide Fälle zu gleicher Zeit behandeln.

Das vorliegende Problem hat gerade für die Kurbelwellen

von Dieselmaschinen oder Benzinmotoren besonders

grosse Bedeutung. Viele Dieselmotorenwellen, Autokurbelwellen

oder Flugzeugkurbelwellen erleiden im Betrieb plötzlich

und ohne vorhergehende Anzeichen einen Dauerbruch
infolge Drehschwingungen, der grosse Wiederherstellungskosten

verursacht und unter Umständen auch Menschenleben

gefährdet. Im Nachfolgenden werden einfache Mittel
besprochen, mit denen man diese Gefahr ganz wesentlich
vermindern kann.

Schwingungsdämpfer ohne Resonanz.
In Abb. i ist mi eine Masse, die an einer Feder ct

befestigt ist und die zu gradlinigen Schwingungen mit der

Eigenschwingungszahl n e= — V — angeregt wird. Um den

Schwingungsausschlag zu dämpfen, kann man an die
Masse m^ ein Verlängerungsstück c% befestigen und darauf
eine Masse mz führen, die durch Reibungskraft R an der
Bewegung von mx teilnimmt. Die gleiche Anordnung kann
man sich auch als Kurbelwelle vorstellen, bei der ct das
Stück Kurbelwelle rechts vom Knotenpunkt p und nti das

Trägheitsmoment der Schwungmasse ist. m% ist in diesem
Falle das-Trägheitsmoment einer Dämpfermasse, die durch
Reibung von der Kurbelwelle aus beschleunigt und
verzögert wird.
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Abb.1

Wir berechnen zunächst die dämpfende Wirkung
der Anordnung nach Abb. i. Wenn die Reibungskraft
R gleich o ist, dann nimmt die Masse m% an der
Bewegung der Masse m\ in keiner Weise teil. ,Der Dämpfer
hat keine Wirkung. Ebenso versagt der Dämpfer, wenn
die Reibung genügend gross ist: Dann macht m2 die
gleichen Bewegungen wie «h ohne Phasenverschiebung
mit, die Reibungskraft R legt keinen Weg relativ zur
Stange c» zurück. Es wird also auch keine Arbeit von der
Anordnung c% m$ in Wärme umgesetzt.

Wenn aber die Reibungskraft R einerseits nicht null
und anderseits nicht kleiner ist als die grösste auftretende
Beschleunigungskraft, dann findet eine Bewegung zwischen
W] und #?2 statt, die mit Energieumsetzung verbunden ist.
Wir suchen den Wert, den die Reibung annehmen muss,
damit die Dämpfungswirkung den grössten Wert erhält.

') O. Föppl: Grundlage der technischen Schwingungslehre, 3.
Auflage 1931.

Die Wege der Massen m{ und m3 gegen die Ruhelage

nennen wir ft bezw. £g. Wir setzen ferner voraus,
dass die Reibungskraft R verhältnisgleich mit der
Relativgeschwindigkeit der beiden Massen anwächst und schreiben :

R — k
dl (I)

k ist der Reibungsfaktor.
Wir nehmen an, die Masse mx sei beliebig gross

gegenüber der Dämpfermasse Wa, sodass die Eigenschwingungszahl

«1 sa: — |/—— der Anordnung Ci nti durch das

Aufsetzen des Dämpfers nicht beeinflusst wird. Wir setzen
ferner :

fi fio cos co t (3)
darin bedeuten f10 den Grösstausschlag der Masse mt-

und co die Winkelgeschwindigkeit 1/— der Schwingung.
r mi

Die dynamische Grundgleichung für die Masse tnt
lautet :

rfaf. List r.)^SBr^-k-^TT • •• (3)

Bei der Bewegung wird auf das relative Wegstück

dt
dt die Arbeit dA umgesetzt, die gleich ist Kraft

mal Wegänderung. Während einer vollen Schwingung
wird also der Arbeitsbetrag A umgesetzt, den wir gleich
setzen können :

A J> d(h-h) <i(U-h)
dt dl

dt (4)

Das Integral ist zu erstrecken von der Zeit o bis zur Zeit
¦ • Wir setzen fa ;, m und —r- w. Aus Gl. (X)

dt
wird dann unter Berücksichtigung von Gl. (a):

— m% fio coa cos co t -\- k w omt
dw
Ut ¦ (5)

Die Lösung dieser Differentialgleichung lautet

w C-i sm co t-\- Ct cos co t (6)

Die Integrationkonstanten Cx und Ca bestimmen wir durch
Einsetzen von Gleichung (6) in Gleichung (5):

Ci m% co cos co t — C%ntg co sin co t -f- Cx k sin co t -f-
Ca k cos co t — m<i fio co2 cos co t o (7)

Die Glieder, die sin co t enthalten, und diejenigen, die
cos co t enthalten, müssen je für sich zur Befriedigung der
Gleichung verschwinden. Daraus folgt

Cl=H_^C2 (8)

c.(^-M)= «.fi.»-; Ca=^£!%- (9)und
,«,» a)! -|- k*

Wir setzen die Werte aus Gleichung (8) und (9) in
Gleichung (6) ein und erhalten:

(k cos co t ~\- mt co sin et» t) (10)
«,* ca» + *«

Nach Gleichung (4) wird
37t

a =/a w* d{cot)=4;»x% (*8 *+».¦ <*>")
0

" >»,'<¦>' + » fl° • • • • (»)
Um das Maximum an Dämpfungsarbeit, die auf eine

Schwingung umgesetzt wird, zu erhalten, setzen wir
dA
-rr o. Der so ausgezeichnete Wert für den

Reibungskoeffizienten k0 ist
k0 >«ä co (ia)
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Die zugehörige grösste umgesetzte Dämpfungsarbeit Ao ist

4,= Jt ms (u9
fio* (13)

Wir bezeichnen ferner die Phasenverschiebung zwischen
den Bewegungen der Massen mt und ma mit a und setzen
entsprechend Gleichung (a):

f« fao cos (co/— a) (14)
Es ist also nach Gl. (a), (3), (12) und (14) für den Fall
der günstigsten Reibung ko '•

fao cos (co t — a) + f20 sin (co t — a) fio sin co / (15)
Diese Gleichung ist nur für einen bestimmten Wert a
gültig, der zum Wert k0 gehört. Das Verhältnis der grössten
Massenwege fs0 : fio nennen wir z und schreiben

sin o> tfao : fio —¦ Z
cos (ca t — a) -f- sin (u> t — a)

sin w t (16)
cos w t (00s a — sin o) + sin a> t (sin a + cos a) v

Das Verhältnis der Grösstausschläge ist aber unabhängig
von cot. Die Gleichung (16) kann also nur dann bestehen,
wenn a gleich 450 gesetzt wird. Dann ist sin a cos a

1

und: f2y fso f,0 yr (17)

Wir kommen also zum Ergebnis, dass wir den
Reibungsfaktor k, um möglichst günstige Wirkung zu erzielen,
gleich setzen müssen mt co, mit dem Erfolge, dass wir in
diesem Fall den aus Gleichung (13) ersichtlichen günstigsten
Wert für die umgesetzte Reibungsarbeit erhalten.

Schwingungsdämpfer unter Benutzung der Resonanz. ')
In Abb. 2 ist die gleiche schwingende Anordnung wie

in Abb. 1 aufgezeichnet, nur ist die Masse m% des Dämpfers
im Gegensatz zur Abb. 1 durch eine Feder Ct mit der
Masse m3 verbunden. Die Feder c2 muss so bemessen
sein, dass die Anordnung c2 m2 etwa die gleiche
Eigenschwingungszahl nt hat wie die Anordnung Cy my. Zu

diesem Zwecke muss —*- gleichgemacht werden -3-. In der

Praxis ist die Masse »«2 klein gegenüber my. Sie mag '/ioo
oder noch weniger von jener Masse betragen. Infolgedessen
ist auch c% entsprechend klein gegen Cy. Wenn wir statt
der Federkonstanten c die reduzierte Federlänge ^ed
einführen unter Verwendung einer Einheitsfeder c0 nach der
Gleichung

¦="--11 bezw. ca -^- (18)
•redi treat

so erhalten wir für. die Feder a eine mindestens hundertmal

so grosse reduzierte Länge wie für Feder 1.

1 \1 77g

Abb. 2

Es lässt sich zeigen9), dass die Eigenschwingungszahl
n des zusammengesetzten Systems bei den oben

gemachten Annahmen nur wenig von den Eigenschwingungszahlen

»1 «2 der Einzelsysteme verschieden ist. Die
Eigenschwingungszahl 1. Ordnung des zusammengesetzten
Systems ist ein wenig niedriger und die a. Ordnung ein
wenig höher als n\. Für beide Schwingungszahlen gelten
ähnliche Ueberlegungen, sodass wir die nachfolgende
Betrachtung auf die Schwingungszahl der 1. Ordnung
beschränken können.

Wenn keine Reibung oder Baustoffdämpfung
vorhanden ist, dann ist der Grösstausschlag f20 der Masse w2
mindestens jo oder ao mal so gross wie der Grösstausschlag

fio der Masse my. Beide Massen schwingen stets

l) Siehe auch O. Föppl; „Schwingungsdämpfer für Kurbelwellen",
Forschung auf dem Gebiete des Ingenieurwesens, April 1931.

*) O. Föppl: Grundzüge der technischen Schwingungslehre, 2. Auflage

1931. § 47 und 50.

nach der gleichen Richtung und kehren im gleichen Augenblick

ihre Bewegung um. Wir nennen s — ~- das Auf-
S10

pendelungsverhältnis der ungedämpften Schwingung. Zu
einem bestimmten Grösstausschlag f10 gehört also bei
Resonanz und ungedämpfter Schwingung ein Ausschlag
f20 s • fio der Masse m2. Die Bewegung der Masse tnz
relativ zur Masse tny ist nicht mit Reibung, infolgedessen
auch nicht mit Energieumsetzung verbunden. Der Dämpfer
wirkt nicht bei Fehlen der Reibung.

Der Dämpfer wirkt ebenfalls nicht, wenn die
Reibung R zwischen der Masse m^ und dem Führungsstück
entsprechend gross ist: In diesem Falle wird m% von der
Masse my mitgenommen. Der Weg, den die Reibungskraft R
relativ zur Masse m2 zurückgelegt, ist Null.

Wir wollen berechnen, wie gross der
Reibungskoeffizient k im günstigsten Fall sein muss, damit zu einem
bestimmten Grösstausschlag fi0 eine möglichst grosse
Energievernichtung im Dämpfer c2 m3 zugehört. Bei
Reibung findet eine Phasenverschiebung a zwischen den
Bewegungen der Massen w, und m2 statt. Wenn wir
fa fao cos co t setzen, können wir die Bewegung
ft f10 cos (co /-+- a) in zwei Glieder ftl und fi3 zerlegen:

fu=f10 cosa coscot und fia=fio sin a sincot (19)
Das erste Glied ändert sich gleichphasig mit fa, während
das zweite um 900 dagegen versetzt auftritt.

$„ since

tot 1

ÙJCcos

at
vas

«H cosa coso)

utsin

Abb. 3

In Abb. 3 ist ein mit der Umlaufgeschwindigkeit co

sich drehender Vektor fa0 dargestellt, dessen horizontale
Projektion fao cos co t die augenblickliche Grösse f2 angibt.
Der daneben gezeichnete Vektor f10 läuft mit der gleichen
Winkelgeschwindigkeit co um. Er eilt dem Vektor fso um
den Betrag a voraus. Wir haben die Projektion ft des
Vektors fi0 in die zwei Komponenten fn und fu aufgeteilt.

Der augenblickliche Ausschlag fj kann entweder als
horizontale Projektion des Vektors ft0 oder als Summe
der horizontalen Projektionen fu und fI8 dargestellt werden.
Wir setzen voraus, dass die Formänderungen der Feder c2

dem Hooke'schen Gesetz gehorchen. Wir können dann
die Gesamtformänderung fi jederzeit vollwertig durch die
Summe der beiden Komponenten nach (Gl. 19) ersetzen.

Wir wollen die Bewegungsgleichung für die
Anordnung c2 m3 aufstellen. Wir haben eine Masse »»21 auf
die eine Federkraft wirkt. Die Grösse der Federkraft hängt
von der augenblicklichen Länge der Feder ab. Die
Längenänderungen, die durch die Bewegungen fia des linken
Endpunktes der Feder (Abb. a) hervorgerufen werden,
wollen wir von der Bewegung fn trennen. Wir nehmen
also an, der linke Endpunkt führe nur Bewegungen fu
fio cosa cos cot aus und ersetzen die Bewegungen flS
durch eine äussere Kraft cfio sin a sin cot, die dem
Ausschlag fao cos co t der Masse m% um 900 vorauseilt. Durch
diesen Ersatz wird der Bewegungsvorgang der Masse m2
nicht geändert. Die Bewegungsgleichung für die
Ersatzanordnung lautet

»»2 -^f- — c (f8-fn) - k -mt-M
dt -f-(cfio sina) sin cot (20)

c ist die Konstante der Feder 2, die mit der
Längenänderung multipliziert die Federkraft liefert. In dieser

Gleichung ist m% dt*
die Beschleunigungskraft und c

(£2 — fu) die Federkraft, die bei der dämpfungsfreien
Anordnung und bei gleichem Ausschlag f2 — fn auftreten
würden. Die Federkraft ist dem Unterschied in den Be-
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wegungen der beiden Endpunkte verhältnisgleich. Bei der
Schwingung zweiter Ordnung liegt der Schwingungsknoten
auf der Feder: statt der Differenz muss dann die Summe
der beiden Ausschläge eingesetzt werden. Das Reibungsglied

k hängt ebenfalls von der Geschwindigkeitsdifferenz

der Bewegungen der beiden Federenden ab.
Nicht berücksichtigt ist in Gleichung 20 das Reibungsglied

k —— k co f,0 sin a cos co t. das von der Be-
üt

wegung f 1 a — f10 sin a sin co t herrührt und dieser
Bewegung um 90° vorauseilt. Dies Glied ist also gleichphasig
mit fia. Es entspricht einer Kraft, die im gleichen Sinne
wie die Federkraft wirkt und infolgedessen das Aufpen-
delungsverhältnis s beeinflusst. Wir nehmen an, dieses
Reibungsglied sei vernachlässigbar klein gegenüber der
Federkraft.

Das letzte Glied in der Gleichung (20) gibt die Kraft
an, die mit 900 Phasenverschiebung gegen f2 auf die
Masse m2 einwirkt und die im Beharrungszustand die
Energie nachliefert, die durch Reibung in Wärme
umgesetzt wird. Die Winkelgeschwindigkeit co in diesem Glied
ist gleich der Winkelgeschwindigkeit der ungedämpften
Schwingung.

fa : fu oder f20 : (fu) max wäre das Aufpendelungs-
verhältnis s der Schwingung, wenn keine Reibung
vorhanden wäre. Wir müssen deshalb fu in ein Glied
zerlegen, das durch die Federkraft, und eines, das durch
die Reibung mit f!0 in Beziehung steht. Nur der erste
Anteil «fn, wobei n kleiner ist als 1, kommt für das
Aufpendelungsverhältnis in Frage. Es ist also f2:«fu=s
oder fn — fa. Wir können s für einen bestimmten Fall

n3

berechnen, wenn die Grössen der Massen und
Federkonstanten gegeben sind.

*»2
d*et — I di-fa-*? r

(c fio sin a) sin

di

l) (21)

Für co haben wir die Wurzel aus der reduzierten
Federkonstante — geteilt durch die Masse m* eingesetzt,

da die Schwingungsdauer bei Resonanz die gleiche ist
wie die der ungedämpften Schwingung (ohne die beiden
letzten Glieder in Gleichung (21)). Da in Gleichung (21)
die erregende Kraft um 900 dem Ausschlag voraus eilt,
können wir nach bekannten Gesetzen1) schreiben:

f-20
'/• £,„ »in a

(ns — [ I c
cm2\ns — \)

ns y
I ns \s/> .-ia mux 1/- x

Die pro Schwingung umgesetzte Arbeit A ist bei 900
Phasenverschiebung gleich H mal Grösstkraft malGrösstweg:

A n c f10 sin a f20 n c n s f10 fuma« sin a
ens r«A • / »

-sin 2 a (23)n c n s f,o8 sin a cos a '¦

2

fio haben wir durch nsgnmax und fumax durch f,0 cosa
ersetzt.

Den grössten Wert für die Formänderungsarbeit
erhalten wir nach Gleichung (23), wenn a gleich 450 und

fuma» nach Gleichung (19) gleich ^=fio wird. Es ist
r*

A„
s >

— -77= e fio cao
Va

(24)

Dieser Wert wird nach Gleichung (22) erreicht für eine
Dämpfungszahl k0 :

I (sXSF^LfM 3§ffoStÉ V^

') i. U. O. Föppl, Grundzüge der technischen Schwingurjgalehre,
2. Auflage, Seite 131.

Da s in der Praxis gegen 1 gross ist (auf alle Fälle sJ>io)
haben wir angenähert s—1 gleich s gesetzt. In diesem
Falle ist auch n nur wenig kleiner als 1, sodass n s
gleich s gesetzt werden konnte. Bei der Schwingung zweiter
Ordnung wird (ns — 1) in Gl. (25) durch (ns -\- 1) ersetzt.
Der günstigste Wert für k0, der beiden Schwingungsordnungen

gerecht wird, liegt also nahe dem Annäherungswert.
Aus Gleichung (24) ersehen wir, dass die günstigste

Dämpfung pro Schwingung vom Produkt fio f2o abhängt.
Wir vergleichen das Ergebnis für den Schwingungsdämpfer
mit Resonanz, Gleichung (24), mit der Gleichung (13), die
für einen Dämpfer ohne Resonanz erhalten wurde, und
finden, dass im ersten Falle ein s-fach so grosser Wert
erhalten wird. Wenn also z. B. im praktischen Falle eine
Aufpendelung s 20 ohne Reibung auftiitt, dann können
wir durch Anwendung der Resonanz die Wirkung auf das
20-fache gegenüber dem nicht bei Resonanz betriebenen
Schwingungsdämpfer von gleicher Schwungmasse steigern.

Schlussbetrachtung.
Die vorausgehende Betrachtung zeigt, dass

Schwingungsdämpfer, die nach dem Resonanzprinzip arbeiten, '

denen ohne Resonanz um ein Vielfaches überlegen sind.
Man kann die Resonanzschwingungsdämpfer natürlich nur
dann anwenden, wenn ganz bestimmte Eigenschwingungszahlen

des zu dämpfenden Bauteils vorhanden sind. Das
trifft aber z. B. stets bei Kurbelwellen zu.

Wir haben in der vorausgehenden Betrachtung
angenommen, der Grösstausschlag des schwingenden und zu
dämpfenden Bauteiles sei konstant, und wir haben die
Frage behandelt, in welcher Weise man bei gegebener
Dämpfermasse in diesem Falle die grösste Dämpferwirkung
erzielt. In der Praxis liegt der Fall natürlich so, dass der
Schwingungsausschlag des schwingenden Bauteils um so
kleiner ist, je stärker der Dämpfer wirkt. Je geringer der
Schwingungsausschlag wird, desto geringer wird auch die
Arbeit, die von den erregenden Kräften zur Anfachung
der Schwingung abgegeben wird. Es ist deshalb recht
umständlich, für eine bestimmte Anordnung anzugeben,
um wieviel der Schwingungsausschlag durch das Aufzetzen
eines bestimmten Dämpfers erniedrigt wird. Die im
vorausgehenden gewählte Betrachtungsweise bezieht sich also nur
auf den Fall, dass verschiedenartige Dämpfer von gleicher
Wirkung auf die Welle gesetzt werden. Man kommt zum
Ergebnis, dass man bei Anwendung des Resonanzprinzips
nur etwa »/io bis x/2o der Masse nötig hat, die ohne
Anwendung des Resonanzprinzips aufgesetzt werden muss.
Wenn man den Fall in dieser Weise betrachtet, dann
sind die vorliegenden Ausführungen streng gültig. -

Bisher sind die Schwingungsdämpfer für Autokurbelwellen

usw. nicht nach Resonanzprinzip gebaut worden,
da man den grossen Nutzen nicht erkannt bat, den man
in diesem Falle durch die Anwendung der Resonanz
erzielen kann. Der Bau von Schwingungsdämpfern für
Verbrennungskraftmaschinen wird deshalb in den nächsten
Jahren eine wesentliche Umgestaltung im Sinne der
vorausgehenden Ausführungen erfahren müssen.

Reiseeindrücke aus den Vereinigten Staaten
von Nord-Amerika.
Von Dipl. iDg. A. J. BÜHLER, Sekt.-Chef für Brückenbau der S. B. B., Bern

(Fortsetzung von Seite 255.)

Zu den Signalen übergehend, ist hervorzuheben, dass
die amerikanischen Bahnen auch im Signalwesen eine
überragende Stellung einnehmen. Zunächst ist darauf
hinzuweisen, dass die automatische Blocksicherung sich immer
mehr verbreitet und dass anstatt der eigentlich sehr
primitiven Semaphore, an die des Nachtbetriebes wegen
Lichtsignale angefügt werden mussten, reine Lichtsignalsysteme,

die als sehr sicher und wirtschaftlich angesehen
werden, mehr und mehr Eingang finden (zur Zeit auf etwa
ai 000 km Strecken). Die Signale sind meistens so einge-
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