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wobei r der Radius der Luftblase und g die Anziehung
der Erde 9,806 m/s2 bedeutet. In Wirklichkeit bat nun
aber die Luftblase nicht eine genau kugelige Form,
sondern sie ist in vertikaler Richtung etwas zusammengedrückt
und gleicht eher einem Rotationsellipsoid, dessen kleine
Halbaxe b senkrecht steht. Diese von Exner beobachtete
Form stimmt auch mit meinen Beobachtungen Oberein. Für
eine so geformte Luftblase erhalt dann Exner zur
rechnung der Aufstieggeschwindigkeit die Beziehung:

c*

wobei : e» '=--$'

Ueber die Bewegung von Luftblasen in ruhendem und fliessendem Wasser.
Von Dipl. Masch.-Ingenieur R. DUBS, Professor an der E. T. H. Zürich.

Es ist bekannt, dass alle Flüssigkeiten bei einem
bestimm ten Druck einegewisse Menge von Gasen zu absorbieren,
d. h. mechanisch zu binden vermögen. Dieses Absorptionsvermögen

ist nach dem Gesetz von Henry direkt proportional
dem Druck, unter dem die Flüssigkeit steht. Wird der
Druck erhöht, so werden mehr Gase gebunden, und wird
er erniedrigt, so wird ein entsprechender Teil des mechanisch

gebundenen Gases frei. Im folgenden soll nun
insbesondere das Verhalten der Luft gegenüber dem Wasser
untersucht und die Bewegung von Luftblasen. im Wasser
theoretisch und experimentell verfolgt werden. Die
Abklärung dieses Vorganges hat hauptsächlich für jene
technisch-praktischen Fälle eine besondere Bedeutung, wo
Wasser während des Fliessens von einem Orte höheren
Druckes (Atmosphärendruck) zu einem Orte niedereren
Druckes (Unterdruck) gelangt. Dies ist z. B. der Fall bei
Wasserturbinen, wo beim Austritt des Wassers aus dem
Laufrad einer Reaktionsturbine immer ein ziemlich starker
Unterdruck herrschen wird ; auch bei Heberleitungen treten
solche Unterdrücke auf, die, wie oben erwähnt, ein
Ausscheiden von Luft aus dem Wasser zur Folge haben. Der
Vollständigkeit halber muss hier noch bemerkt werden,
dass auch sehr oft Luft bei sich heftig bewegendem Wasser
mitgerissen wird, sie dann aber an den Stellen, wo das
Wasser ruhiger fliesst, aus ihm wieder austritt, ohne dass
eine Druckänderung stattfindet.

Da infolge von Luftansammlungen oft Störungen hn
Betrieb von hydraulischen Einrichtungen und Maschinen
auftreten, ist es nicht nur von wissenschaftlichem, sondern
auch von technisch-praktischem Interesse, die Bewegung
von Luftblasen im Wasser bei verschiedenen
Wassergeschwindigkeiten nicht nur theoretisch, sondern auch
experimentell zu untersuchen. Es können dann die
Bedingungen festgestellt werden, die zu erfüllen sind, um
die sich im Wasser entwickelnden Luftblasen zu entfernen.

Eine experimentelle Untersuchung über die Bewegung
von Luftblasen in ruhendem Wasser findet sich in der
„Physikalischen Zeitschrift" Nr. 23 vom 1. Dezember 1927,
wo Felix M. Exner unter dem Titel „Ueber die
Aufstieggeschwindigkeiten von Luftblasen im Wasser" über seine
Beobachtungen mit Luftblasen im Lunzer See berichtet. Als
wesentlichstes Ergebnis hat er festgestellt, 1. dass die
Steiggeschwindigkeit der Luftblase von der Tiefenlage kaum
abhängt, sondern bei bestimmter Blasengrösse ziemlich
konstant ist, und 2. dass sie mit der Blasengrösse zunimmt.

Es wurden im See Beobachtungen mit Aufstieghöhen

von 5 bis 30 m (unter dem Wasserspiegel)
durchgeführt und Luftblasen von etwa 20 mm und etwa 200 mm
Durchmesser erzeugt Für die kleinen Blasen ergab sich
eine mittlere Aufstieggeschwindigkeit von 0,26 bis 0,27 m/s,
für die grossen Blasen von 0,65 bis 0,70 m/s. Unter der
Voraussetzung, die Luftblase hätte eine kugelige Form,
leitet dann Exner auf Grund des Energieprinzipes (die
Summe aus potentieller und kinetischer Energie ist
konstant) eine einfache Beziehung zur Berechnung der
Aufstieggeschwindigkeit Ce der Luftblase ab. Er findet:

Be-

c-ïh('-l)
und wenn man das spezfischen Gewicht der Luft gegenüber
jenem des Wassers vernachlässigt:

C,= r S

die numerische Exzentrizität bedeutet. Vernachlässigt man
auch hier wieder ye gegenüber yWt so folgt

r —±LJUj_
Wenn man nun diese Formel zur Berechnung der
Steiggeschwindigkeit der Luftblasen in ruhendem und
unbegrenztem Wasser verwendet, so ergibt sich qualitativ und
auch quantitativ eine ganz hübsche Uebereinstimmung mit
den Versuchsergebnissen von Exner. Dass die Uebereinstimmung

nicht eine vollständige sein kann, ist wohl einerseits

dadurch begründet, dass in seinen Beziehungen die
Veränderlichkeit des Volumens der Luftblase während des
Aufstieges nicht zum Ausdruck gelangt und die Reibung
vernachlässigt wurde; anderseits bestehen auch gewisse
Unterschiede in den Beobachtungswerten.

Da die Versuche ausserdem in unbegrenztem und
ruhendem Wasser (einem See) durchgeführt wurden, bieten
sie für die Technik nicht das gleiche Interesse wie solche
in begrenztem Wasser (Gefässe, Röhren). Im folgenden
soll deshalb, anschliessend an eine kurze theoretische
Betrachtung des Bewegungsvorganges, überVersuchsergebnisse
berichtet werden, die in der hydraulischen Abteilung der
Eidgen. Techn. Hochschule gefunden worden sind.

Der Einfachheit halber soll vorerst angenommen
werden, die Luftblase habe eine kugelige Form, und es
soll ihre Bewegung in ruhigem Wasser verfolgt werden.

Wir denken uns z. B. die Blase in ein gefülltes
Rohr unten eingeführt ; sie steht dabei unter
dem absoluten Druck pa + y h, wo pa den
Atmosphärendruck bedeutet und h die Tiefe
unter dem Wasserspiegel an der Stelle, wo
die Blase eingeführt wird (Abb. 1). Die Blase
wird dann im Rohre aufwärts steigen, und da
sie hierbei unter kleinern Druck kommt, wird
sie sich ausdehnen. Da die spez. Wärme des
Wassers bedeutend grösser ist als jene der
Luft und ebenso die Masse des Wassers ganz
bedeutend grösser als jene der Luftblase, wird
die Expansion der Blase isotherm, d. h. mit

der Wassertemperatur erfolgen, und es lässt sich dann leicht
die Expansionsarbeit und die der Luftblase vom Wasser
zuzuführende Wärmemenge berechnen. Die Expansionsarbeit

der Blase setzt sich in Hebearbeit des Wasserspiegels
im Rohre um, indem dieser Wasserspiegel entsprechend der
Ausdehnung der Blase gehoben wird.

Ist v das spez. Volumen ilye m3/kg, G das Gewicht in
kg, p der Druck (abs.) in der Luftblase in kg/m1, so gilt:

pi)s=plvl =/?7"= konstant,
wo R die Gaskonstante und T die- absolute Temperatur.

,P°

T
b

¦

Abb. 1.
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Bezeichnet man mit Index 1 den Anfangs- und mit
Index 2 den Endzustand der Luftblase, so erhält man für
die Expansionsarbeit A den Ausdruck:

If I ^=A^lg(t) ^lg(^)f ¦oder auch : A R T, lg (-J-) R T, lg (£)
Es ist dies die Arbeit für 1 kg Luft. Um die Expansionsarbeit

der Luftblase zu berechnen, ist dann das Gewicht G
der Blase einzusetzen.

Die der Luftblase zuzuführende Wärmemerjge Q ist
zu berechnen aus:

Q=GART1lg(^) GART1lg(^)
wobei A 1/427 das mech. Wärmeäquivalent und 7\ die
absolute Temperatur der Luftblase am Anfang bedeutet.

Da das Gewicht der Luftblase sehr klein ist, so ist
auch ihre Expansionsarbeit klein und damit auch die
Wärmemenge, die vom Wasser ihr zugeführt werden muss,
um ihre Temperatur konstant zu halten.

Bezeichnet man den Durchmesser des Rohres, in
dem die Luftblase aufsteigt, mit D, so ergibt sich für die
Niveauerhöhung h im Rohre infolge der Expansion der
Luftblase die Beziehung:

-D*Ah — yw AG
Setzt man oben diesen Wert ein, so erhält man :

Ah2 D2

Ah

8HT1 Oc
8 RT. *fc)D \ n yw

Nimmt man z. B., wie dies bei den Versuchen im
Maschinenlaboratorium zutraf, den Durchmesser der Luftblase
zu 4 mm, die Temperatur 120 Celsius, den Druck p±
1,2365 kg/ma und pi 1,000 kg/m2, den Durchmesser des
Rohres D 27 mm, so folgt :

Ah 29,26 x 285 x 2,303 X 0,09220X 14,0 mm.
0,027 V n ' 1000 x 25,4 X 1000

Da bei den Versuchen im Laboratorium die Luftblase
in einer Tiefe von 2365 mm unter dem Wasserspiegel in
das Rohr eingeführt wurde und infolge der Expansion der
Blase der Wasserspiegel im Rohr bis zum Austreten der
Blase aus dem Wasser um 14,0 mm gehoben worden
wäre, wenn das Rohr oben unmittelbar in die Atmosphäre
gemündet hätte, wäre während der Bewegung der
Luftblase eine Druckänderung in jeder Niveauhöhe des Rohres
erfolgt. Diese Druckänderung hätte z. B. an der Einführungstelle

14,0 mm Wassersäule betragen, d. h. der Druck
wäre von 1,2365 kg/cm* auf 1,2379 kg/cm2 gestiegen,
also um etwa 0,15 °/0. Obwohl nun diese kleine
Druckänderung praktisch bedeutungslos gewesen wäre, wurde
doch, um womöglich alle Fehlerquellen auszuschalten, das
Rohr oben an einen Behälter von grösserem
Horizontalquerschnitt angeschlossen, sodass die Luftblase erst durch
den Behälter steigen musste, bevor sie ins Freie treten
konnte. In diesem Bebälter konnte nun während des
Emporsteigens der Luftblase keine sichtbare Niveauerhöhung
festgestellt werden.

Für die Expansionsarbeit der Blase von 4 mm
Durchmesser erhält man dann unter Zugrundelegung der
vorstehenden Daten:

AG «9,36 X 285 x 2,303 X 0,09220 —rmkgio6 °29,9 X looo2

und die vom Wasser der Luftblase zuzuführende Wärmemenge

beträgt:

Ö — - \—, kcalr 427 7Ï13XI05
Wie man aus diesen Rechnungen ersieht, handelt es sich
bei der Expansion solcher Luftblasen um sehr kleine
Wärmemengen und dementsprechend auch um kleine
Expansionsarbeiten. Da sich in unserm Falle z. B. das Volumen

der Luftblase während des Aufstieges um maximal
24 % vergrössert, würde sich bei Kugelform der Blase
der Radius um maximal 7,5 % vergrössern, und nach den

Beziehungen von Exner hätte diese Vergrösserung nur
eine maximale Aenderung der AufStieggeschwindigkeit der
Luftblase von nicht ganz 4 °/0 zur Folge. Mit Rücksicht
auf diese verhältnismässig kleine Beeinflussung der
Bewegung der Luftblase durch die Expansion der Luft könnte
also die Expansion bei der theoretischen Betrachtung der
Bewegung vernachlässigt werden. Da es sich hier noch
weiter um ein Problem der Wärmeleitung handelt (Uebergang

der Wärme vom ruhenden und bewegten Wasser in
die Luftblase), und dies ein Gebiet ist, über das heute
noch keine vollständig übereinstimmenden Ansichten
bestehen, soll in den folgenden Ableitungen die Expansionsarbeit

der Blase und was damit zusammenhängt, d. h.
die Abkühlung des Wassers und die Niveauerhöhung des
freien Wasserspiegels nicht berücksichtigt werden.

I. BEWEGUNG DER LUFTBLASE IN RUHENDEM WASSER.

Wir schreiten nun zur Aufstellung der Bewegungsgleichung

der Luftblase und zwar vorerst unter der
Voraussetzung, dass das Wasser im Rohre ruhe.

Es bedeutet:
V Volumen der Luftblase in ms,
Ce— Geschwindigkeit der Luftblase in m/s,
d Durchmesser der Luftblase in m,
r rf/2 (ihr Radius),
ye — spezifisches Gewicht der Luft kg/m3,
k Koeffizient des Widerstandes, der eine

Funktion der Reynolds'schen Zahl,
Cc do Ce dR,= ist.

wobei q ywjg — spezifische Masse des Wassers,
r\ Zähigkeit des Wassers,
v rj/o kinematische Zähigkeit des Wassers,
m Masse der Luftblase.

Während der Bewegung der Luftblase ist ihre
Masse konstant. Es kann zwar vorkommen, dass die Blase
sich während der Bewegung in zwei Blasen auflöst, wobei
dann nach den Beobachtungen von Exner, in Ueberein-
stimmung mit seiner Theorie, die Aufstieggeschwindigkeit
der zwei kleinern Blasen kleiner ist als die
Aufstieggeschwindigkeit der grossen Blase. Es stimmt dies auch
mit meinen Beobachtungen überein. Im allgemeinen bleibt
aber die Blase intakt, und es soll deshalb in den folgenden

Ableitungen mit einer kompakten Blase gerechnet
werden. Nach Newton folgt dann :

dCe
dt V{y« 7e k — d% yw —L-

4 ' *g

ü* — ~ ~d^ Cy

Wenn nun die Luftblase eine reine Kugelform hätte und
um sie herum eine Potentialströmung herrschen würde,
so Würde der Widerstand, d. h. das zweite Glied der
Gleichung, verschwinden, wie dies aus der Kugelpotentialfunktion

von Dirichlet ohne weiteres hervorgeht.
Bezeichnet man nämlich mit Cx, Cy und Cz die

Geschwindigkeitskomponenten in den Richtungen der drei
Koordinatenaxen eines rechtwinkligen Koordinatensystems,
und liegt eine Potentialströmung um die Kugel vor, so
besteht eine Geschwindigkeitspotentialfunktion <p, die so
beschaffen ist, dass:

4» Cz — %ß- wird.

Erfolgt nun die Bewegung in Richtung der a-Axe, die in
unserm Falle mit der Rohraxe zusammenfällt, so wird
Ce CZ) und nach Dirichlet ist:

<P —Cez(i-+-g)
wo R der Kugelradius und r V#a-f-_y3-f-a2 bedeutet.
Berechnet man nun vermittelst der Potentialfunktion cp die
Geschwindigkeitskomponenten Cx, Cy und Cz und hieraus
die totale Geschwindigkeit C yCxi-+- Cy2-J- C*2, so erhält
man nach dem Satze von Bernoulli die Druckverteilung
um die Kugel, wobei sich zeigt, dass die Drücke an
symmetrisch liegenden Stellen vor und hinter der Kugel gleich
sind, sodass der resultierende Druck auf die Kugel gleich
Null wird. Da nun aber in Wirklichkeit die kugelförmige



4- April 1931 SCHWEIZERISCHE BAUZEITUNG 171

Blase während ihres Aufstieges einen Widerstand erfährt,
kann um sie keine Potentialströmung herrschen, und man
hat den Widerstand auf Grund empirischer Beziehungen
in die Bewegungsgleichung einzusetzen. Für die Grösse
und die Art des Widerstandes ist die Reynolds'sche Zahl
massgebend, weshalb diese vorerst bestimmt werden soll.

CedgEs ist: R*=
Bei den Versuchen war im Maximum :

Ce= 0,240 m/s
d 0,004 m
Q y/g= 1000/9,81

und bei 120 Celsius: t] 0,000126 kg s/m8
0,240 x 0,004 x 102Somit: Re= 780

0,000126
Für diesen kleinen Wert der Reynolds'sehen Zahl wird die
Strömung um die Luftblase laminar verlaufen, d. h. wir
haben eine reine Reibungströmung um die Blase.

Nach einer Theorie von Newton1) wäre k 0,5 zu
setzen, während Borda k 0,56, Hutton k 0,594 und
Beaufoy k ¦= 0,383 fand. Du Buat kehrte zu dem £=0,50
Newtons zurück. Bei so kleinen Reynolds'schen Zahlen wie
oben ist der Widerstand nicht mehr proportional mit Ce*,
sondern nur proportional mit Ce. Nach G. G. Stokes ist
dann der Widerstand gleich 6 n rj — Ce, d h. man erhält
für den Widerstandskoeffizienten k den Wert:

k -

Nach C. W. Oseen gilt diese Beziehung jedoch nur in
erster Annäherung; mit grösserer Genauigkeit sei:

A—2±d 1
3 YedCe\*- ft. V t" 8 2Vg

Für eine seitliche Begrenzung des Wassers, d. h. also für
unsern Fall, hat H. Faxen die Theorie von Oseen noch
weiter ausgebildet, wobei sich zeigt, dass die Wandungen
die Bewegung der Kugel beeinflussen. Auf diese Erkenntnis

ist bei der Interpretation der Versuchsergebnisse Rücksicht

zu nehmen. Die Versuche von H. Liebster und L.
Schiller und insbesondere jene von H. S. Allen haben
dann gezeigt, dass die Wirklichkeit zwischen den Werten
von Oseen und Stokes liegen dürfte.

Setzt man :

k 0,5 -f- 24
He

d. h. ergänzt man die Beziehung von Stokes durch die
Konstante von Newton, so erhält man k-Werte, die zwischen
denen von Stokes und Oseen, aber durchwegs tiefer als
die von Allen gefundenen Werte liegen. Eine ziemlich gute
Uebereinstimmung mit den Versuchswerten von Allen
erhält man durch die Beziehung:

K 0,5 + 40
Ke

die für Reynolds'sche Zahlen von 1 bis 1000 verwendet
werden kann, also einen grossen Teil des laminaren
Gebietes bestreicht.

Setzt man diesen Wert von k in die Bewegungsgleichung

der Luftblase ein, so folgt:
md^z v(y™-Ye) — (°.5+^-)7^^-^

Nach den Beobachtungen führt die Luftblase nach dem
Einführen in das Wasser vorerst eine beschleunigte
Bewegung aus und kommt ziemlich rasch zur gleichförmigen
Bewegung mit konstanter Aufstieggeschwindigkeit. Bevor
die Bewegung während der Beschleunigungsperiode durch
Integration der Differentialgleichung dargestellt wird, soll
die konstante Aufstieggeschwindigkeit ermittelt.werden.
Es ist:

Somit : -rda(yw — y

und hieraus

C

0, -tt.) CJ
— d* 7w

2g

--B
V*gd

'i + ß

Wie man ohne weiteres erkennt, erscheint der Einfluss
des Blasendurchmessers d in dieser Relation in gleicher
Form wie in der eingangs erwähnten Beziehung von Exner.
Da sie jedoch die Reynolds'sche Zahl Re, die Geschwindigkeit

Ce und den Blasendurchmesser d enthält, dürfte es
zweckmässig sein, Ce noch unabhängig von Re darzustellen.
Für grosse Werte der Reynolds'schen Zahl (Re £> 500) und
bei Vernachlässigung von y,\yw gegenüber der Einheit kann
man setzen : -, rzz

102 kg s2/m4 oder C. 4 (1)

d. h. die Aufstieggeschwindigkeit wird grösser als nach
den Beziehungen von Exner, der für eine kugelförmige
ßlaSe Ce=±VTr.
im unbegrenzten Medium gefunden hat. Wenn man die
Reynolds'sche Zahl aus • der Gleichung zur Bestimmung
von Ce eliminiert und dann nach Ce auflöst, erhält man :

C.= 4Q»?\a

dQ
gd
3

40 V

d o
(»)

Wendet man diese Beziehung auf unser Beispiel an, so

ergibt sich bei: »7 0,000126—^-, d=o,oo^m, g=i02——
eine maximale AufStieggeschwindigkeit der Luftblase von:

Ce — 0.311 m/s
während die direkte Beobachtung nur eine Geschwindigkeit
ergab von : Ce 0,240 m/s

Diese Differenz ist darauf zurückzuführen,
1. dass zur Berechnung des Widerstandes der

Koeffizient k nach den Versuchen von Allen eingesetzt wurde,
2. dass die Luftblase keine genaue Kugelform besitzt,

sondern ein Rotationsellipsoid mit vertikaler Drehaxe
darstellt, wodurch der Widerstand vergrössert wird,

3. kommt noch der Einfluss der Begrenzungswände
des Rohres hinzu.

Die Versuche mit verschiedenen Blasengrössen haben
nämlich gezeigt, dass die Aufstieggeschwindigkeit der Blase
mit ihrem Durchmesser nicht stets zunahm, wie dies nach
der Theorie und den Versuchen von Exner der Fall sein
sollte, sondern dass sie im Gegenteil von einer gewissen
Blasengrösse an wieder abnahm.

Es soll nun vorerst der Einfluss des endlichen
Rohrdurchmessers D auf die Aufstieggeschwindigkeit der
Luftblase in die Rechnung eingeführt und dann die Beeinflussung

durch die EUipsoidalform untersucht werden.
Infolge des endliehen Rohrdurchmessers D muss das

Wasser mit einer gewissen Geschwindigkeit Cw an der
Blase vorbei nach unten fliessen, womit ihm eine
kinetische Energie erteilt wird. Wenn in der Zeit A t das
ganze Volumen V der Luftblase durch deren Aufstieg
unten mit Wasser ausgefüllt werden muss, gilt:

— (£>3 — d*)Cu

Anderseits ist dann:
Ce A t d

Daraus folgt:

At V ^rd*
o

t
d

~ci

Lni —
d* r

Der dem Wasser erteilte Impuls ist dann:
Vr. Q,

und, da Q

P
6

V 7t Ce

17 Tda-d

r
rf«C

') Siehe Forchheimer: nHydraulik" 1930.

Infolge der Strömung des Wassers mit der
Geschwindigkeit Cw entstehen an den Wandungen
Reibungsverluste, die einen Druckunterschied zwischen oben
und unten zur Folge haben.
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wo :

Es ist allgemein :

K =f(RJ)
-*V«W : 1

/ c„2
v"2T
Ap ywhv

Wenn die Luftblase um ihren Durchmesser aufsteigt, legen
die Wasserteilchen den Weg d zurück. Man erhält dann :

BfrlMB i(^)4 [«-(^)T CS

und die wirkende Kraft Pv ist dann:

Pv= — D*Ap
4

Setzt man die betreffenden Werte ein, so ergibt sich:

Pv 1 JT~f(Rw') \ü) r, _ fd yy
Ce'

Ausser dem Kugelwiderstand müssen vom Auftrieb
der Luftblase auch noch die Kräfte Pw und Pv
überwunden werden.

Da wir uns, wie vorstehend gezeigt worden ist,
meistens im Gebiet der laminaren Strömung befinden, ist

f(R'w) 777 (wenn RJ <^ 2500) und man erhält :

Pv Ä2
9

LfL J2l (AY
AV g \d) '

Z>«
C a

UBI
Die allgemeine Bewegungsgleichung der Luftblase

geht dann über in:

m ¦
dC.

V(y« ¦&vä«föj*: Yw~
c* p p

dt \ M ' Ke J 4 ' ~ 2g

Nimmt man nun die Periode der gleichförmigen Bewegung,
so ist:

dCe

dt
O

und man erhält:

f d» (yw - ye) =(0,5 + -£) T rfi ?• 17 +
st y,

9

X»

und daraus:

C.

wobei

40 8 c2 256 c8

e — und o < e <^ 1

c *i-e

Setzt man nun in obiger Gleichung:

C* ]/2gd,
wobei Ce* eine theoretische Geschwindigkeit bedeutet, so
folgt:

C?=Kce o,5+^- + -

256

Re 91 — *" 9Rni (i —s2)8

Da das letzte Glied im Nenner unter der Quadratwurzel
gegenüber den andern Gliedern meistens sehr klein ist, kann
man es in erster Annäherung ohne wesentlichen Fehler
vernachlässigen ; der Einfachheit halber soll vorläufig auch

das Glied -=- nicht berücksichtigt werden, um den Ein-
Re

fluss von e in den Vordergrund treten zu lassen. Ebenso
soll yelfw mit Rücksicht auf die Einheit gestrichen werden.
Man erhält dann :

Kr. 0.75

0,563
^(e)

In Abb. 2 ist nun die Aenderung von Kq in Funktion

von £ eingetragen und man erkennt, dass für e o
der Wert von Kr ein Maximum erreicht.

Berechnet man weiter mit der vereinfachten Formel
für Kce die Geschwindigkeit Ce, wie folgt:

C 0.75

0,5634-
¦l/*gd

1,25

¦Urs:
\

/1
1

UEBER DIE BEWEGUNG

VON LUFTBLASEN IN

RUHENDEM UND

FLIESSENDEM WASSER.

rrr'sec

'Asymptote

f Kcc-w;

r^

Q2S 0,50

Abb. 2.

ofti 0.02 d 0.03m

Abb. 3.

und wenn man nach Definition: d=eD setzt, so ergibt
sich:

C
0.75

0.563 + — \*gD

Hält man nun D konstant und denkt sich nur d geändert,
so variiert e, und man kann den Punkt bestimmen, für
den Ce ein Maximum wird. Durch Differentiation und
Nullsetzen erhält man für Ce ein Maximum bei e 0,50.
Damit ergibt sich:

Cem3x=o,6475]/zgD
Bildet man nun :

I 1,79

0,563 + -
¦=*(*)

so lässt sich für jeden Wert von e das Verhältnis zwischen
der Steiggeschwindigkeit Ce und der maximalen Geschwindigkeit

Ce berechnen. Diesen Zusammenhang zeigt
Abb. 2. Es ist jedoch zu berücksichtigen, dass insbesondere
wegen der Vernachlässigung von Re die beiden Kurven
in Abb. 2 nur ein angenähertes Bild geben.

Wendet man weiter die allgemeine Gleichung zur
Berechnung von Ce auf einen unendlich grossen
Rohrdurchmesser {D —*¦ 00) an, so wird für endliche
Blasendurchmesser d der Wert e o, und man erhält :

C

und:

Kc*-e

C.d

3 0,50 +

3 0,50

¦V^Jrf"

wobei Re -~tt-. die Reynolds'sche Zahl der

Luftblasengeschwindigkeit bezeichnet.
Rechnet man mit Wasser von 200 Celsius, so ist

v 1 • io~6 m2/s und man erhält:

9X 10—" 3 x "o— 6

Kr 0,444 d]/7

In Abb. 3 ist nun dieser Verlauf von Kc in Funktion

des Blasendurchmessers dargestellt, sowie auch der
Verlauf der Aufstieggeschwindigkeit Ce. Man erkennt, dass
beim Aufstieg einer Luftblase im unbegrenzten Medium
der Wert Kc, sehr rasch einen konstanten Grenzwert
erreicht, sodass dann die Geschwindigkeit Ce nur noch
eine Funktion des Blasendurchmessers ist.

In unserm Falle war:
s -£ j—, Re 780 (angenähert), ye 1,200 kg/m»

37 D*75

yw 1000 kg/m8, d 0,004 mi Z? 0,027 ™i un{l man
erhält : Ce 0,303 m/s

während wir früher 0,311 m/s gefunden hatten. Der
Einfluss des endlichen Rohrdurchmessers war also bei den
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Versuchsverhältnissen noch ein sehr geringer, und die
Differenz zwischen dem Versuchsergebnis (Ce 0,24 m/s)
und der Rechnung kann nun nur noch entweder durch
den grössern Widerstandskoeffizienten k oder dann durch
die Ellipsoidalform der Luftblase erklärt werden. Nimmt
man nun die Luftblase als Rotationsellipsoid mit
senkrechter Drehaxe an, so ändern sich die Widerstandsziffern,
und bei gleichem Volumen wie die Kugel erhält man die
Beziehung : I

wobei b mit der Drehaxe zusammenfällt.
Setzt man nun z. B.

a 1,2 b

so wird:
b 0,885 r « 1 ,063 r

und damit folgt bei zr 0,004 m
b 0,00177 m a 0,002126 m

somit :

2a 0,004252 m

Die Widerstandsziffer wird dann o,6 anstatt 0,5 -(- —

und man erhält:
Ce 0,298 m/s.

Die Abplattung der Luftblase muss somit noch
wesentlich stärker gewesen sein, da die berechnete Geschwindigkeit

immer noch etwa 24 % grösser ist als die gemessene.

Nimmt man z.B. die Luftblase im Durchmesser so

^
r±ffr

s
Jgä—-

A a^
No. 26 """"- - Sggjg &£

gross an, wie der innere Durchmesser des Glasrohres,
so wird :

« 1,00
und aus unserer Gleichung für Ce folgt:

Ce — O

was mit den Beobachtungen auch gut übereinstimmt, da
eine so grosse Luftblase nur äusserst langsam aufstieg.

(Schluss folgt.)

Internationaler Wettbewerb für die Dreirosen-
Brücke über den Rhein in Basel.
(Fortsetzung statt Schluss von Seite 146.)

Projekt 26 (Kennzahl 152 277), eiserne Vollwand-Balkenbrücke
Die Gestaltung ist in ähnlicher Weise wie bei Nr. 18 erfolgt, aber

mit verstärktem Nachteil in der Erscheinung. Die Verbindung der
Brücke mit Rampe und Treppenanlage ist unbefriedigend. Ebenso

ist die Ausbildung der Sichtflächen der Hauptträger über den

Pfeilern unschön.
Eine Pfeilerstellung parallel zur Plussaxe wäre vorzuziehen.

Die für die Gründung der Widerlager vorgeschlagene Methode ist
nicht wirtschaftlich. Das übermässig tiefe Einrammen der eisernen

Spundwände, der Aushub und das Einbringen des Beton unter
Wasser können vermieden werden. Die pneumatische
Pfeilergründung ist zweckmässig. Das Montagegerüst mit Schiffahrts-
Oeffnungen von je 40 m links und rechts eines Mitteljoches ist
flusstechnisch zulässig.

Die Brückennivellette ist gut. Der Gerberträger würde zweck'
massiger durch einen kontinuierlichen Träger ersetzt. Die
Querschnittanordnung ist befriedigend. Die armierte Fahrbahnplatte
kann jedoch nicht als voller Ersatz ffir einen Windverband ange'
sehen werden. Die Hauptträgeraussteifungen über den Pfeilern'sind
verbesserungsbedürftig. Die Montage ist gut.

Das vorliegende Projekt stellt die billigste Lösung unter den
in engste Wahl gezogenen Entwürfen dar. (Uebemahms-Angebot
2154313 Fr.)

Projekt Nr. 3 (Kennzahl 818818), eiserne Vollwand-Balken'
brücke. Die vorgeschlagene eiserne Balkenkonstruktion erscheint
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