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Bestimmung der Eigenfrequenz von Dreh-
schwingungen.
Von HANS LIEBERHERR, Dipl. Ing., Winterthur.

Im allgemeinen geht man zur Ermittlung der
Eigenfrequenz der Drehschwingung einer mit Trägheitsmomenten
besetzten Welle so vor, dass man für jede einzelne Masse

die Bewegungsgleichung der Drehung unter dem Einfluss
der an ihr angreifenden Momente aufstellt. Durch
Einführung eines Cosinus-Ansatzes mit der noch unbestimmten
Frequenz X und der Amplitude A, die für jede Masse
verschieden ist, geht dieses System von Differentialgleichungen
über in ein System linearer homogener Gleichungen für
die Amplituden A. Diese können von Null verschiedene
Werte nur dann besitzen, wenn die Determinante ihrer
Koeffizienten verschwindet. Aus dieser Bedingung ermittelt
man durch Probieren und Interpolation diejenigen Werte
von X, die die Determinante zu Null machen, die sog.
Eigenfrequenzen des Problems. Für ein System von n
schwingenden Massen erhält man auf diese Art (n— i)
Werte für die Eigenfrequenzen. Für die technische
Anwendung kommt jedoch fast ausschliesslich nur die unterste
in Betracht. Hier gelangt man viel rascher zum Ziel durch
die nachstehende Methode. Wie sich zeigen wird, stellt
sie das genaue Analogon dar zum bekannten Verfahren
der Bestimmung der Eigenfrequenz der Biegungschwingung
einer mit Massen besetzten Welle (Stodola, Dampf- und
Gasturbinen, 5. Auflage, Seite 381).

Als Ausgangspunkt der Untersuchung dient die
Schwingungsgleichung einer Welle von konstantem
Trägheitsmoment, die stetig mit Massenträgheitsmomenten belegt
ist. Als solche fallen in Betracht die Eigenmasse der Welle,
aber auch aufgesetzte Massen, wie Schwungrad, Generator,
Schiffschrauben, Kupplungen und die reduzierten Massen
des Kurbeltriebes. Da in den praktischen Anwendungen
gewöhnlich das Trägheitsmoment längs der Welle
veränderlich ist, unter welche Abweichungen auch in den
Wellenstrang eingeschaltete elastischeKupplungen zu rechnen
sind, so hat man die Welle vorerst zu „reduzieren". Dies
bedeutet, dass man die einzelnen Elemente der Welle, die
abweichendes Trägheitsmoment haben, ersetzt durch Wellenstücke

des gegebenen Durchmessers und von solcher Länge,
dass bei gleichem Drehmoment die Verdrehung entsprechender

Querschnitte gegeneinander gleich wird wie bei
der ursprünglichen Welle. Das Massenträgheitsmoment über
einem bestimmten Wellenstück wird man über die
entsprechende reduzierte Länge bei unverändertem Gesamtbetrag

sinngemäss verteilen.

Bezeichnet man das polare Trägheitsmoment der
reduzierten Welle mit Jp, das Massenträgheitsmoment pro
Längeneinheit, das eine Funktion des Abstandes x vom
Wellenende sein soll, mit (9U das verdrehende Moment im
Querschnitt x mit M, so lautet die Bewegungsgleichung
der Drehung für das Element der Welle zwischen x und

x -\- dx, wenn <p der Verdrehungswinkel,

<01dx)-w -^dx
M lässt sich ausdrücken durch die Verdrehung gemäss

(1)

dtp
dx

M
~gJI

Damit folgt die Schwingungsgleichung

„ d*<p r T d*<p

'¦'r-5*0i -W G jp

(a)

(3)

Führt man hierin den Normalschwingungsansatz ein, <p

A cos (Xt), worin A unabhängig von der Zeit sein soll,
SO folgt ^ •_ A y d2 A

oder

— @! A* A
Ô*A

GJP dx

0,Ei_ A
GJp * (4)

Die Lösung dieser Differentialgleichung hat die Bedingungen
zu erfüllen, dass das übertragene Moment an beiden Enden
der Welle verschwindet, was nach (2) durch die Bedingung

Clip
in x o, /

(5)

oder gleichbedeutend
ÔA

-5— 0 in x o, /
dargestellt wird.

ÔA
-=— ergibt sich durch einmalige Integration aus (4) als

dA_

ôx

JQidx A

QJp
(6)

sodass, da die erste Bedingung des Verschwindens der
Neigung der Tangente der elastischen Linie im Anfangspunkt

ohne weiteres erfüllbar ist, die Bedingung verbleibt

J ©j A dx o (7)

Bedenkt man, dass @j dx A X2 das an jedem Massenelement
angreifende Moment der Trägheitskräfte darstellt, so hat
diese Gleichung die einfache Bedeutung, dass das
resultierende Moment der Trägheitskräfte über die ganze Welle
verschwindet. Da keine äussern Kräfte auf die Welle
einwirken, ist dies eine Selbstverständlichkeit.

Zur Lösung der Differentialgleichung wird jetzt so

vorgegangen, dass man zuerst eine willkürliche Annahme
über den Verlauf der elastischen Linie macht, die aber
die Randbedingungen erfüllen muss. Während die erste
sofort berücksichtigt ist, verlangt die zweite das Bestehen

1

der Gleichung I &i A dx o, die jetzt in etwas verän-
0

derter Form wiederholt sei
1 1 1

ÇeiAdx=^Ç@1{A-\-a)dx—a f @x dx (7a)

A stellt die Amplitude der Schwingung, also die maximale
Auslenkung gegenüber der Axenrichtung dar. Sie ist
vorläufig noch unbekannt. Dagegen gibt die Annahme die
Abstände A -f- a von einer beliebigen Axe, die parallel
zur Schwingungsaxe im Abstand a verläuft, sodass sich a
aus den gegebenen Werten von (A (- a) und @j ergibt.

Gemäss Gleichung (6) ist der Neigungswinkel der
elastischen Linie gegenüber der Axe im Punkte x

__d
dx

f A&idx
0

QJp
_.«

sodass man ihn graphisch dadurch erhält, dass man auf
einer Horizontalen GJp/Xo* aufträgt,. Xq vorläufig geschätzt

2

und von deren Ende aus abwärts die Teilintegrale iA ©i dxt

wenn man sich die Welle in einzelne Teilstücke zerlegt
denkt, aneinanderreiht. Damit kann man die Lösung der
Differentialgleichung für den angenommenen Verlauf von A
aufzeichnen und hat auch hier wieder zuerst die Lage der
Schwingungsaxe zu bestimmen. Wären angenommene
elastische Linie und X richtig gewesen, so hätte das Resultat
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wieder die Annahme ergeben. Bei nur unrichtigem Xq

könnte man die erhaltene Kurve durch einfache affine
Verzerrung in die ursprüngliche überführen, wobei sich
das neue Xit das bei der gleichen Annahme von A die
richtige Kurve ergeben hätte, als

*_T*1/| (8)

darstellt. Weichen Annahme und Ergebnis wesentlich
voneinander ab, so wird man den Mittelwert des Verhältnisses

entsprechender
Amplituden längs der
Welle bestimmen
und diesem entsprechend

das Xq gemäss

obiger Gleichung berichtigen. Mit dieser ersten Näherung
als neuer Annahme und dem berichtigten X wird dann die
Konstruktion wiederholt, bis die gewünschte Genauigkeit
erreicht wird, was, wie die praktische Verwendung des
Verfahrens zeigt, schon sehr rasch der Fall ist.

Zwei einfache Beispiele sollen die Anwendung der
Methode dartun. Als erstes sei das einfachste
Schwingungsystem mit zwei einzelnen Massen gewählt (Abb. i).
Hier kann über die Wahl der elastischen Linie kein Zweifel
vorliegen. Es ist die Gerade, und die Lage der
Schwingungsaxe bestimmt sich, wenn die Hilfsaxe durch die
Extremlage der zweiten Masse gelegt wird, zu

(Al—At)Ql
6>i Ax-^BtAi o

Nach den Kiesbatik-Aufnahmen d.schweiz.Rheinbauleitunq Rorschach

vom Winter I9I0/II.
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Abb.1

^
SM M.

X ist nun richtig gewählt,
wenn die Neigung der
wirklichen elastischen Linie
übereinstimmt mit der Richtung
der Hypothenuse des Dreiecks

der ©j Ax und GJP/X.

Somit A, — A% A 0i
GJp

Setzt man den Wert von _42 aus (9) ein, so folgt
©_

A, + At A 0i
QJp

woraus die bekannte Formel für die Eigenfrequenz eines
Zweimassensystems folgt

gjv 0,4-0,A*

Das zweite Beispiel soll die Bestimmung der
Eigenfrequenz eines einfachen Viermassensystems zeigen (Abb. 2).
Der Wellendurchmesser sei 25 cm und G 830 000 kg/cm2,
sodass G^p 324 io8 kgcm2. Als erste, absichtlich sehr
grobe Annahme über den Verlauf der elastischen Linie
wurde die gerade Verbindungslinie zwischen den Amplituden

von erster und letzter Masse angenommen. Es ist
/ 4

/<9, dx (A + a) 2 ®i (Ai + «)
t=t

und jeidx j?oi
sodass sich a damit bestimmen lässt. Die Amplituden A
wurden aus A -f- a durch rechnerische Subtraktion von a
ermittelt. Xo wurde auf 150 sec geschätzt und G JP\X%
horizontal aufgetragen. Daran schliessen sich vertikal aneinander

die Teilintegrale Ai ©1, sodass sich die Neigungswinkel

der elastischen Linie ergeben und die elastische
Linie sich in erster Annäherung aufzeichnen lässt. Auch
hier ist wieder die Axe zu bestimmen, sodass die neuen
Amplituden jetzt auch bekannt sind. Das mittlere Verhältnis
der Amplituden zwischen Annahme und Ergebnis ist 1,192,
die mittlere Abweichung davon 7,5%, die maximale 12,9 °/0,
was angesichts der rohen Annahme weiter auch nicht
verwundert. Für die zweite Näherung wurde die Frequenz
korrigiert entsprechend Ax _0]/i, 192 162,5 un(i die
gewonnene erste Annäherung als neue Annahme gewählt.
Damit ergab sich ein mittleres Verhältnis zwischen Annahme
und Resultat von 1,026, bei einer mittlem Abweichung
von i,7 °/o und einer maximalen von 3,16 °/o an der ersten

Abb. 1 (links) und Abb. 2.

Längenprofile des Rheins
von Rcichenau bis
zum Bodensee.
Längen 1 :2 500 000.
Höhen 1: 5000.
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Masse, wo auch bei der ersten Näherung die grösste
Abweichung auftrat. Die Winkelgeschwindigkeit ist also nur
noch um j/1,026 — 1 1,3 % zu korrigieren, sodass die
gewonnene Annäherung technischen Ansprüchen bereits vollauf

genügt.
Das Verfahren ergibt aber nicht nur die Schwingungsfrequenz,

sondern auch gleichzeitig die Schwingungsform.
Dadurch ist man in den Stand gesetzt, bei bekannten
Dämpfungsgrössen auch die Amplituden bei Resonanz zu
bestimmen (Eichelberg in Festschrift Prof. Stodola). Zugleich
hat es den Vorteil, dass es die Berücksichtigung der nicht
auf einen Punkt der Welle konzentrierten Massen, wie
auch den Einfluss der Eigenmasse der Welle, auf dem
gleichen sehr einfachen Wege gestattet, während die
analytische Behandlung hier auf so grosse Rechenarbeit
stösst, dass die gewonnenen Resultate in keinem Masse
diesem Aufwand entsprechen.

Obere Strecke Diepoldsauer- |Ztvischen_tiM__j Fussadier-

Duirhsttch Durchstich

Die Hebungen und Senkungen der Rheinsohle
in der Strecke Landquartmündung-Bodensee.
Vom EIDGEN. OBERBAUINSPEKTORAT, Bern.

Der Rhein ist in der Strecke zwischen der
Einmündung der Landquart und dem Bodensee den verschiedenartigen

Einflüssen unterworfen, die das Geschiebe einerseits

und die Räumungskraft des Flusses anderseits mit-
sichbringen. Die Menge der jährlich in den See geförderten
festen Bestandteile wird zu durchschnittlich 2,8 Millionen m3
berechnet. Wenn diese Geschiebemassen jeweilen im Flussbett

selber zur Ablagerung gelangen würden, so genügten
10 bis 20 Jahre, um das ganze Durchflussprofil auszufüllen.
Zum Glück wirkt die Schleppkraft des Gewässers in
entgegengesetztem Sinne, und einzig der Unterschied der im
Spiele stehenden Naturkräfte kann sich als Sohlenauftrag
bezw. Abtrag bemerkbar machen.

In Abb. 1 und 2 ist das Längenprofil des Rheines
mit den Veränderungen im Zeitraum von 1910 bis 1928,
bezw. 1929, dargestellt; Abb. 3 (Seite 65) zeigt für die an
den Rheinstationen mit ganzen Nummern erhobenen
Querprofile, wie sich die mittlere Sohle von 1848 bis 1928
bezw. 1929 gehoben oder gesenkt hat. Diese Darstellungen
geben ein Bild von den Vorgängen in der Vergangenheit,
sie lassen auch einige Schlüsse ziehen für die Zukunft.

Im gegenwärtigen Zeitpunkt lässt sich die Tendenz
der Veränderungen der mittlem Sohle des Flussbettes
ungefähr folgendermassen charakterisieren. Es besteht von :

Landquart bis Rh. St. 14a (Grenze) Vertiefung.
Rh. St. 14a bis Rh. St. 29 (unterhalb Weite) Beharrung.
Rh. St. 29 bis Illmündung Erhöhung.
Illmündung bis Diepoldsauer Durchstich Vertiefung.
Diepoldsauer Durchstich bis Bodensee Beharrung.
Die Aufnahmen vom Winter 1928/29 zeigen, dass

nun in der Erhöhungstrecke von Buchs auch Abtragung
einsetzen kann, indem das ganze vom Hochwasser 1927
daselbst aufgelandete Material restlos, ebenso der Auftrag
der Periode 1921/27 abgespült worden ist. Dieser Abtrag
ist grösser als die damals nur am rechten Ufer ausgeführte
Materialentnahme. Die bedeutenden Kiesentnahmen, die seit
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