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Nr. 1

Wirme- und Schwindspannungen in
eingespannten Gewodlben.
Von Prof. Dr. M. RITTER, Ziirich.

Die ubliche Berechnungsweise der Wirme- und
Schwindspannungen in gelenklosen Gewolben bedarf heute
der Revision. Neue statische Erwiagungen, aber auch neue
Messungen der Materialkonstanten und der Warmeschwan-
kungen liegen vor; ausserdem sind von verschiedenen
Seiten konstruktive Massnahmen bekannt gegeben worden,
um den ungiinstigen Einfluss des Schwindens bei Beton-
Gewolben herabzusetzen. Diesen Fortschritten entsprechend
wird nachstehend versucht, die Theorie in erweiterter Fas-
sung darzulegen und ihre Grundlagen erneut zu priifen.

{. ALLGEMEINE THEORIE.

Wir behandeln zunichst den Fall der vollstandigen
Einspannung beider Kampfer ausgehend von den bekannten
Voraussetzungen, die in der Baustatik fiir schwach ge-
kriimmte, ebene, schlanke Stabe iiblich sind. Durch eine
Warmeanderung oder den Einfluss des Schwindens bei
Beton entstehen die Auflagerreaktionen R, und R, die
einander das Gleichgewicht halten. Als statisch bestimmtes
Grundsystem sei der einfache Balken gemiss Abb. 1 ge-
wahlt; alsdann lassen sich R; und R, zerlegen in X,, X3, 4,
sowie .\, Xz, B, wobei 4 und B die Auflagerdricke am
einfachen Balken sind, wenn X;, X;, X; daran als &ussere
Krafte angreifen. .X, und X, sind Momente, X; zwei ent-
gegengesetzt gleiche Krifte (Bogenkriite), d1e unter den
Hebelarmen ¢, und #, an den Kampfern wirken bezw. mit
diesen durch starre Scheiben verbunden zu denken sind.

Die Grossen X;, X3 und X; ergeben sich aus den Elasti-
zitidtsbedingungen, die besagen, dass bei der Forménderung
die Drehung o des linken Kampfers und die Drehung f
des rechten Kampfers Null sind und sich auch die Spann-
weite nicht andert. An Stelle der letzten Bedingung wird
zweckmissig die Aenderung o der Distanz O, O; der End-
punkte der starren Scheiben eingefiihrt. Aus den Elastizitéts-
bedingungen folgen die Elastizititsgleichungen, am iiber-
sichtlichsten nach dem Gesetz der Superposition, in der Form
a=o~+ X, 0, + X, ag+ Xy a3 =0
B =1t X, b+ X, f + Xy = o
0=06+ X0+ X, 0, +X; 0, =0
Die angewandte Bezelchnung erhellt ohne weiteres aus den
Gleichungen; es bedeuten
a; und ff; die Drehungen der Kimpfer infolge der
Wirmeianderung oder dem Schwinden des Beton
im Grundsystem (. = o),
d; die Aenderung der Distanz O, O, im Grundsystem
(X = o),
@y, ¢y, 0y die Drehung des linken Kampfers infolge
X; = 1, bezw, X, = 1, Xy=1, usw.

Wie man leicht einsieht, ist §; mit den Drehwinkeln ¢; und
f¢ durch die Beziehung

(St’zatl‘l—f—*/ftfg—'—kjlt
verkniipft, wobei 4 /; die Aenderung der Spannweite / im
Grundsystem, in Richtung der Angriffslinie von .\, ge-
messen, darstellt. Nach dem Satze von Maxwell ist «, = 3,
ag = 0; und B, = Js.

In bekannter Weise vereinfachen wir die Elastizitits-
gleichungen, indem wir iber die Hebelarme # und 4 so
verfiigen, dass «g und S gleich Null sind. Die Gleichungen
lauten dann einfacher

ar+ X, a; + X, a
e+ X, py + X, iy =

0t + X5 0g

|
O o O

Die Auflosung ergibt
Beog — ot By

‘YI oy By — By oy X a B —Brow’ IY) - ﬁx ([)

Zur Ermittlung der Werte ay pr und o; muss die
Forménderung aller Trigerelemente im Grundsystem infolge
der Wirmeanderung oder dem Schwinden des Betons
bekannt sein. In allgemeiner Form wird diese Form-
inderung fir ein Bogenelement der Linge ds definiert
durch den Forminderungswinkel dg, (positiv, wenn die
obere Kante gegeniiber der untern verkiirzt wird) und
die spezifische Lingeninderung ¢ der Bogenaxe (positiv
als Verlingerung). Alsdann erhilt man mit den Bezeichnungen
der Abb. 1 nach bekannten Methoden, z. B. mit Hilfe der
Arbeitsgleichung, die Ausdriicke

a,:/ d(/t—}f—/”:mqu

Pt = [*dfli == /ﬁ"mq’ ds

0t = [ ydo; + [ecosyds

worin die Integrale auf den ganzen Bogen auszudehnen sind.

Wir beschrinken uns in der Folge auf den sym-
metrischen Bogen mit wagrechter Kdmpferverbindungslinie
und nehmen ferner an, dass in symmetrischen Punkten
auch die Forminderungen dg; und ¢ gleich seien. Dann
verschwindet in den Formeln fir o; und f; der zweite
Summand, da jedem Wert ¢ sing ein symmetrischer — ¢ sing
entspricht und wir erhalten

o / }i doy :%/n’(pt
Betrachtet man die Formidnderungswinkel dg; als Gewichte,
an der Bogenaxe angreifend, und bestimmt man den Ab-
stand v ihres Schwerpunktes von der Angriffslinie von
X,, so folgt weiter
0= f dor + f & cosY ds
Der Symmetrie wegen wird jetzt X, = X;, kinftig mit J/
bezeichnet; X, liegt wagrecht und sei daher gleich 7/ ge-
setzt (Horizontalschub). Die Ausdriicke (1) gehen mit
o= 4, a; = B, und cosy ds == dx iber in
[do. v [dge + [e dx
M= rarw Heras
Die Nennerwerte lassen sich nach bekannten Methoden,
z. B. mit Hilfe der Arbeitsgleichung darstellen. Wir be-
gniigen uns damit, die Resultate zu vermerken. Bezeichnet
E ‘den Elastizititsmodul und G den Schubmodul des Bau-
stoffes, 7~ den Querschnitt, / das massgebende Trigheits-
moment an der Stelle v, v, F’ die reduzierte Querschnitts-
flache, so wird fiir den symmetrischen Bogen

“x!? ds s I ds
oy =0y *‘./T-/;y e F iy [ - (38)

By =By
g =l

und

2 ds ds o 9 ds
— 0y / i e == /COS PErt / sin® g -~
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In dem Ausdruck fiir 6, ist das Minuszeichen beigefigt,
weil H = 1 eine Verkirzung der Entfernung O, O, zur
Folge hat. Da der Einfluss der Biegungsmomente, also der
erste Summand bei der Berechnung von 0, stets {iberwiegt,
kann mit gentgender Anniherung auch

5 ds " ds
== 0y =,[”‘27+fﬁ R
geschrieben werden. Damit lauten die Gleichungen (2)
’ de, H— vfn'(p, -+ fs, dx

M === 3 = g 7 de . . . (5)
ds o ds ds
EJ _/J' EJ +_[FF
Die Lage von A folgt aus der Bedingung
_ [xyds
%= )7 &1 T %

d. h. A geht durch den Schwerpunkt der an der Bogenaxe
angreifend gedachten ,elastischen Gewichte® g—; Daher

berechnet sich der Abstand 7 des Horizontalschubes von
der Kampferwagrechten aus
2
t:-/.g ... (6
JET
Die vorstehenden Ableitungen sollen jetzt auf den
allgemeinern Fall einer elastischen Einspannung der Kampfer
erweitert werden, die dadurch definiert ist, dass die Dreh-
winkel der Kampfer nicht verschwinden, sondern pro-
portional den betreffenden Kampfermomenten //; sind. An
Stelle der Elastizitatsbedingungen a = = o des vollstindig
ecingespannten Bogens tritt jetzt im Fall der Symmetrie
Cl:/‘l):—(l/(Mk:—a/,»(M—*—Hf), . . (7)
wo a; die Drehung der Kiampfer infolge M, = — 1 be-
zeichnet. Wird diese Beziehung in die Elastizitatsgleichungen
eingefihrt, so gelangt man fiir die Grossen M und H zu
erweiterten Ausdriicken. Indessen gestattet eine einfache
Ueberlegung, die Formeln fir den elastisch eingespannten
Bogen mit Hilfe der Ausdriicke (5) direkt hinzuschreiben. Wie
man leicht erkennt, ist namlich die elastische Einspannung
identisch mit einer vollstindigen Einspannung, bei der die
Biegungsteifigkeit £/ der an die Kampfer angrenzenden
Tragerelemente durch den Wert ds/a, ersetzt ist; die Form-
anderungswinkel dieser Trigerelemente betragen dann

M. ds
statt dp = 7
M; d:
d=¢—2 —ay My, . . . . (8)

ds

g
d. h. die den Kampfern unendlich benachbarten Schnitte
drehen sich analog GI. (7). Man braucht daher zu den

. 7 d. . -
elastischen Gewichten E—i/ nur an beiden Kampfern noch

die Gewichte «; beizufiigen, um den Fall der elastischen
Einspannung zu erhalten.

Abb. 2

Bei den Briickengewdlben rithrt die elastische Ein-
spannung meist weniger von der Elastizitit der Wider-
lager, als von der Nachgiebigkeit des Baugrundes her.
Deshalb legen wir der Rechnung nachstehend Abb. 2 zu
Grunde, indem wir uns an die Gewolbekampfer 4 und B
starre Scheiben (Widerlager) 4 4' und B B' angeschlossen
denken, deren Endquerschnitte /4 und B’ elastische Ver-
drehungen erleiden. Wir betrachten das Gewdlbe mit Ein-
schluss der Widerlager als Bogen von der Spannweite

!'=17-2b und der Pfeilhdhe f-+ @ und fiigen an den
Kampfern A und B’ die elastischen Gewichte a, hinzu.
Fir das Moment M erhalten wir darnach aus Gl. (5):

_ f”"Pl
M= — /‘ET G s . D (9)
JET 3
Dfar Abstand ¢ folgt aus Gl. (6), indem wir noch die ela-
stischen Gewichte mit den Hebelarmen y' = — g beifiigen zu
fy’gj—zao./,- I gij~2aa,_.
b= ds | ar [ ds (IO)
EF 2%k -ﬁ—i—Zu/‘.

worin /, den Abstand bei vollstindiger Einspannung be-
zeichnet. Vom Scheitel aus gemessen ergibt sich

w [57 +2U/+a

fv=f— = - :
; g—j + 2 ax
Die Angriffslinie des Horizontalschubes verschiebt sich um
m=ty —t = 2.::([°+a) = 2“"'(1‘(:_“) s L(E)
JEr +2a JEs

An Stelle von Gl. (4) tritt daher
[(1 - m)? 1% 42 a (t + a)? +/ EL:F’
oder nach Einsetzung des Ausdruckes far m
® o s " ds
]yz Sea(ty, Fa)(t+a)+ /ﬁ
Damit lautet der Ausdruck fiir den Horizontalschub an
Stelle von GI. (5)
v m) | do, + | & dx
H:"-’q ,-15( +;J e+ . (12)
[y 55+ [srtrattaite
Die Angriffslinie riickt gem#ss Gl (11) um so tiefer, je
grosser a4, d.h. je geringer der Einspannungsgrad ist;
fir o — oo wird = —a, M=o, und H geht in den
bekannten Ausdruck fiir den Zweigelenkbogen iber.

Zur Klarstellung der Einflisse der verschiedenen
Grossen auf die Beanspruchungen berechnen wir nach-
stehend noch die Biegungsmomente im Scheitel (#/) und
in den Kampfern (), und vergleichen sie mit den Werten
(M, My,), die sich bei vollstindiger Einspannung und
unter Ausschaltung der Forminderungen dg; ergeben.
Streng genommen waren fir diese Untersuchungen die
Kernpunktsmomente massgebend; da jedoch die Span-
nungen aus den Normalkraften zuriicktreten, erscheint es
zulassig, die Momente auf die Schwerpunkte zu beziehen.
Die Ausdriicke (9) und (r2) lauten far ax = o, [dpr=o0
und v [dp; = o

'-e, dx
M = o, Hy = ’y—dﬁé
JET TJEF
und liefern die Scheitel- und Kampfermomente
Myy=— Hyty', M= Hyt,.
Durch die elastische Einspannung und den Einfluss der
Forménderungen dp; werden diese Momente beim sym-
metrischen Bogen geindert in
My=M—H{! =—usHyty,
Mk:M+Ht= 1“/"H0/01
wo us und u,; Reduktionsfaktoren (positive echte Briiche)
darstellen. Daraus berechnen sich 4/ und H zu
s ty' t —ur ity
M= "2 ~ ko H,
H— Ush' +rlo g
s 3
Damit us und gy gleichzeitig moglichst klein werden, muss
H entsprechend niedrig ausfallen. Man erkennt aus Gl. (12),
dass sowohl «; wie auch namentlich ¢ die Rechnung giin-
stig beeinflussen, wahrend die Form#nderung [dp; ver-
schieden wirkt je nach dem Vorzeichen von v und .
Eine gleichmissige Reduktion der Scheitel- und

(13)

(14)

Kampfermomente ist definiert durch us = ux = . Hierfar
lauten die Gl. (14)
Zo't — ity U
M= —u — H +umHy, (15)
H= uH, l
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2. ANWENDUNG AUF BRUCKENGEWOLBE.

In Anlehnung an frihere Arbeiten') setzen wir vor-
aus, dass sich das Tragheitsmoment / lings der Gewolbe-
axe nach dem Gesetz

< ) o5, M=, (16)
./coscp_l—(r—71 ! " Jicosqp !

indert, unter /; und /. die Trigheitsmomente im Scheitel
und Kampfer verstanden (vergl. Abb. 3). Als Gewdlbeaxe

wihlen wir zur Vereinfachung der Berechnung eine Parabel
vierter Ordnung, deren Gleichung, bezogen auf die Kampfer-
wagrechte,

" 22 24
y:f{x—(xﬂ@,—,—cﬁ] (17)
lautet. Wenn, wie tblich, die Gewodlbeaxe nicht als Parabel,
sondern als Stutzhme fur Eigengewicht vorgesehen ist, so
kann GI. (17) als Anniherung dienen, indem die Konstante e
so eingesetzt wird, dass sich Stiitzlinie und Parabel im

Gewdlbeviertel schnelden Aus der dortigen, gemeinsamen
Ordinate
, 42 h*
v =fl1—(—a-tr —e ]
berechnet sich die Konstante ¢ der Ersatzkurve (17) zu

16 3,/ (I 8)

c=—="—4.
Auf Grund der Gesetze (16) und (17) finden wir

3/
ds I n+2 ]
Ej—ﬁf[‘—(‘—"’ ]" s
sowie

Jri7=2 /[

—(I—C)%—Cﬁ] [1——-(1—11) —Id.,
v

= 315 £ [7(n42) (c+5)+2(1—n) (7 —¢)]

Darnach ergibt sich der Abstand des Schwerpunktes der
elastischen Gewichte von der Kampferwagrechten zu

2 (¢4 x) t—n) (71—
i":[ (515 +4(105 (f)z+72)£]f: “f (x9)
Der Koeffizient ¢, betrigt fir » =1 und ¢ = o (Parabel-

24

bogen mit konstantem Jcosg) ¢, = %; in praktischen

Fallen ist jedoch meist # < 1 und ¢ > 1, weshalb ¢, we-
sentlich hoher liegt, vergl. nachstehende Tabelle.

Tabelle der Werte ¢, in Gl. (19).

|

7= I 0,50 0,25 0,10 o
f==10 0,6667 0,7200 0,7556 0,7810 0,8000

0,1 0,6800 0,7326 0,7676 0,7927 0,8114

0,2 0,6933 0,7451 0,7797 0,8044 | 0,8229

0,3 | 0,7067 0,7577 0,7917 0,8161 0,8343

0,4 : 0,7200 0,7703 0,8038 0,8278 0,8457

0,5 0,7333 ‘ 0,7829 0,8159 0,8395 | 08571

Es gelingt leicht, auch den Ausdruck /yzl% im Nenner

der Gl. (12) und (r3) in eine geschlosséne Form zu ent-
wickeln. Die Gleichung der Bogenaxe, bezogen auf die
Wagrechte durch den Schwerpunkt der elastischen Ge-
wichte lautet . l

— 9% CF}

y=y —h=fl1—c— (1
1) ,Vereinfachung der Berechnung gelenkloser Briickengewdlbe"
Schweizer. Bauzeitung 1908, Bd. 51.

damit folgt

2(/:
.[y EJ
20T 23 24 T2 Fiie
:L:_f;./II—('O—(I—C) X —571;] [r—(1~n)11—,sz
/
mEg s e 4o Lol bl s (20)
worin

b {
re(ie :1>—2<1~q,) (o —52)
I I—2
—25((—00)(? )+2c I—c)(————g )
wichst mit steigendem ¢ und abnehmendem #, wie aus
folgender Tabelle hervorgeht.

1 —72n I—2z
p=a—ar (1= =g (-1
11 5
Firc=o0 und n=1 w1rd i = 45/4. Der Koeffizient 1
Tabelle der Werte L in Gl. (20).

|
n= I ' 0,50 0,25 0,10 o
= |
=0 11,25 15,81 20,82 26,43 32,81
0,1 11,62 16,42 21,81 27,96 35,09
0,2 11,89 17,03 22,84 29,58 37,57
0,3 12,20 | 17,65 23,90 31,30 40,25
0,4 12,51 | 18,27 25,00 33,11 43,16
0,5 12,81 18,90 26,12 35,01 46,29

Fur die Lage des Horizontalschubes ‘ergibt sich aus GI. (10)

Z ”+2;—2aa/ (71+2)r—6a/,-’c,,
f=e3 Eh i 0 /(21
3‘ ﬁ+2a,l. . 7+ 246
worin zur Abkiirzung ¢, = 7‘2 und af = -Bdg gesetzt ist.
Daraus folgt
_ (n+2) (6 + )
I8 = ey
Fir das Moment / erhalten wir aus Gl. (9)
_ 3EJ,  [dg
M= ! nz24 6a (22)

Bei der Berechnung des Horizontalschubes A ist zu be-
achten, dass der zweite Summand im Nenner von Gl. (12),
der den Einfluss der Normalkréafte und Schubkrifte dar-
stellt, stark zuriicktritt und daher n#herungsweise durch

Lk
bezeichnet. Setzt man noch 7+ a = (¢, -+ ¢,) f, so geht
Gl. (12) tber in

ALEJ;
LH

ersetzt werden kann, wo /s den Scheitelquerschnitt

(v + m) /a’<p, f & dx
Ade 2(n4-2)2 (ot ca)® o’
'*EwE T T atarbar
Durch die reine Zahl
ai’ tritt die Nachgiebig-
keit des Baugrundes in
--—4=---— Beziehung zur Elastizi-
g tat des Gewdlbes selbst.
Bei plastischem Bau-
grund lasst sich «; und
damit auch @, in ein-
facher Weise darstellen,
indem man (nach Wink-
ler) die sogen. Bettungs-
ziffer C des Baugrundes
einfihrt, vergl. Abb. 4. Darnach ist die Bodenpressung ¢
proportional der Einsenkung y, also ¢ = Cy. Setzt man
den Fundamentkoérper als starr voraus, so betrigt bei
symmetrischer Fundamentsohle deren Drehung

H= (23)

O}-@L/E Cy Jm 4

Abb. 4

S S B Sl
O=" = Ca
Nach der Formel von Navier wird
N M N M
—d g = ————d,
%1 = F S Ty f1p 8= — dy,
11/ z M >
daher 0 — 0y = —— d und damit a = ¢y Wobei
P
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Jr das Triagheitsmoment der Fundamentsohle bezeichnet.
Fir M = 1 folgt daraus
I . a: L Js £
ax = ﬁ und ay — 4[’ = ’[C‘/I (24)

Bei weitgespannten Briickengewdlben ergibt sich o,
meist als kleine Zahl, da das Verhaltnis J;//F in der Regel
klein ist; z.B. erhilt man mit /;//r=o0,01, £= 400000 kg/cm?
(Beton), ¢ = 20 kg/cm® (Kiesboden) und /= 40 m den
Wert a5 = o0,05. In dieser Hohe erweist sich jedoch der
Einfluss der Nachgiebigkeit des Baugrundes bereits als
betrichtlich, namentlich wenn ¢, gross ist. Das letzte Glied
im Nenner von Gl. (23) erreicht z. B. mit #=1 und ¢=o0
(Parabelbogen mit konstantem J cos¢), ¢, = %/5, ¢ = 1/,
a; = 0,05, den Wert

2 (2 + 2) A (c) + ¢a)? o’ _2-3-11,25-1:005 o
7260 - 360,05 =
wodurch der Horizontalschub bereits auf die Halfte herab-
gesetzt wiirde. Diese Rechnung ist allerdings insofern an-
fechtbar, als nach neuern Versuchen die Bettungsziffer
keineswegs als Konstante betrachtet werden darf; indessen
erscheint es nicht wahrscheinlich, dass eine exaktere Be-
handlung des Problems wesentlich ungiinstigere Zahlen
liefert. Bei Grindung auf Fels fallt der Einspannungsgrad
bedeutend grosser aus; leider fehlen zur Zeit die Unter-
lagen, um hier «; zuverlissig zu berechnen.

Fiir den vollstindig eingespannten Bogen folgt aus (23)

mit a; = o und m = o der obere Grenzwert von H zu

LEJ, v [dp + [edx

f2/ 2 Js
I+ =R

mit a4 = co und m = #; -+ a ergibt sich der untere Grenz-
wert

Ho - (25)

o rEs ethta [dpe + [edx
1= r2/ 2 Js n+2
14 — -+ A
J2Fs 3
Dazwischen liegen alle moglichen Fille der teilweisen Ein-
spannung. Sieht man vom Einfluss der Form#nderungen
dp; ab und vernachlissigt das zweite Glied des Nenners,
das stets klein ist, so betrédgt die grosstmogliche Reduktion
T 1
H = 11, - 1_}_1(”;3")([0 + [a)2

(0t ca)?

1, wird ;1 =0,028,
1/,, wird 4 =o0.031.

e _ B
Fir n—=1x, ¢=o0, ¢;="%

fir

Gy =
# =0,1, ¢ = 0,4, ¢, =0,828, ¢, =

Wenn auch in praktischen Fallen diese Grenzwerte nicht
erreicht werden, so hat die elastische Einspannung doch
meist eine wesentliche Abminderung der Wiarme- und
Schwindspannungen zur Folge, fir die nicht nur «;, sondern
namentlich auch der Wert ¢, wesentlich ist. Bei gewdlbten
Durchlassen z. B. wird durch den hohen Betrag von ¢, der
Horizontalschub selbst bei kleinem «; sehr stark reduziert.

Durch die Formanderungen d¢, werden die Wiarme-
und Schwindspannungen ebenfalls stark beeinflusst. Bei
positivem Werte der Strecke v ergibt sich dieser Einfluss
um so grosser, je geringer der Einspannungsgrad ist.

3. BIEGUNGSTEIFIGKEIT UND ELASTIZITATSMODUL.

Die grundlegenden Voraussetzungen der technischen
Biegungslehre (Hooke'sches Gesetz und Annahmen von
Navier) kommen in der Gewodlbetheorie durch den be-
kannten Ausdruck fiir den Formanderungswinkel

i — M ds
zur Geltung, wobei £ J als Biegungsteifigkeit bezeichnet
wird. Die Verwertung des Ausdruckes (26) zur Berechnung
der Formianderungen im Grundsystem, insbesondere die
Ableitung der Elastizitatsgleichungen aus den Elastizitits-
bedingungen ist dagegen eine Aufgabe rein geometrischer
Natur, die lediglich noch von der stets berechtigten An-
nahme Gebrauch macht, dass die Forminderungen im
Vergleich zu den Abmessungen des Gewolbes sehr kleine
Grossen sind. Es gelingt leicht, den Giiltigkeitsbereich der
Gewbdlbetheorie auf den Fall eines unhomogenen Baustoffes

(26)

zu erweitern, indem die Beziehung (26) allgemeiner gefasst
wird. Da diese Erweiterung wertvollen Aufschluss gewé#hrt
iber den Einfluss einer Rissebildung, sei sie nachstehend
eingehender behandelt.

o
T £- Fome—— b ————— =
l\ 1 T :
| i | o £ | . :
e 1 N
oy 4l Lt S ___
A O % (1 ! )i
| I l
LA | )
ki
Abb, 5. Abb. 6.

Wir betrachten einen symmetrischen Querschnitt, auf
den die Normalkraft N; im Schwerpunkte S, sowie das
Moment M, in der Symmetrieaxe angreifen. Bei beliebigem
Forminderungsgesetz des Materials ist die Spannungsver-
teilung nicht linear. Mit den Bezeichnungen der Abb. 5
lasst sich die Spannung o einer Faser mit dem Elastizitits-
modul £ ausdriicken durch die Spannung 6, am obern
Rande mit dem Elastizititsmodul £,, indem man die Be-
dingung fiir das Ebenbleiben der Querschnitte anschreibt:

¢ . o,
=i =YX
E. K, y
woraus . £
o= —
’ x E, Y

Die Momentengleichung fiir die Schweraxe S liefert
- ff B
Mszfoyde: /‘E—ij'sdl"

worin die Integration den ganzen Querschnitt umfasst,
Fir den Form#nderungswinkel ergibt sich damit
6, ds _ Mds
E.x  [EyysdF
An Stelle von £ J tritt also bei verinderlichem Elastizitits-
modul fiir die Biegungsteifigkeit der allgemeinere Ausdruck
JEyysdF = [ Ey dF + x; [ Ey, dF (27)
der eine Funktion des Momentes und der Normalkraft
darstellt, weshalb das Gesetz der Superposition seine Gultig-
keit verliert, Der Einfluss einer Rissebildung wird erhalten,
indem fiir die Fasern der Risszone £=o0 gesetzt wird.
Wir berechnen nachstehend die Biegungsteifigkeit
fir einen rechteckigen Eisenbetonquerschnitt mit einfacher
Armierung, im Stadium der Rissebildung (vergl. Abb. 6).
Der Elastizititsmodul sei fir den Beton auf Druck kon-
stant £y, auf Zug £, = o, fur das Eisen £, = n E,. Nach
Gl. (27) erhalten wir
[Eyy, dF:Eb[”*"erx("“*)gju(x_i)b.«-”,_"']

12 2 2 ) 2
h

+E8Fg(h—x~—a)<7—a

013 x\2 x\3 & a a
=kEy- [3 <7) -2 (7) +6npu, (1—7 B '/T) (172 7)} (28)
. N
worin g = - Der
Klammerausdruck bringt den Einfluss der Armierung und
der Zugzone bei fehlender Zugfestigkeit des Beton im
Vergleich zum homogenen Querschnitt /= 6/*/12 zum Aus-

den Armierungsgehalt bezeichnet.

druck, vergl. folgende Tabelle (u = 1o, 7(: = 0,05) :

Tabelle des Klammerausdruckes in GI. (28).

e/, o ’ 0,2 0,4 0,6 0,8 I I

: = 1,00 1,00 0,99 0,98 0,98 ‘} 0,97
0,9 0,97 0,08 0,98 0,99 0,99 | 1,00
0,8 0,90 0,92 0,93 0,95 0,96 ‘ 0,08
0,7 0,78 0,81 0,83 0,86 0,89 | 0,92
0,6 0,65 0,69 0,73 0,76 0,80 ‘ 0,84
0,5 0,50 0,55 0,60 0,65 :‘ 0,69 l 0,74
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Man erkennt, wie mit zunehmender Exzentrizitat i e . s sl
die Biegungsteifigkeit abnimmt, besonders bei geringer ’ g E !
Armierung; jedoch ist diese Abnahme innerhalb der Falle Woraus
der Praxis nicht betrichtlich und entspricht keineswegs e E<€0 __;’—’L")
der Reduktion des Tragheitmomentes durch die Rissebildung. . as
Beispielsweise sinkt bei unarmiertem Querschnitt die Bie- oder mit Beniitzung von Gl. (29)
= : . , doe
gungsteifigkeit  bei Ausschluss der Zugfestigkeit fdr — E(so — ety df) (30)

x/h — 0,8 gemidss der Tabelle nur um ein Zehntel, wih-
rend das Tragheitsmoment des unter Spannung stehenden
Querschnirtsteiles die Halfte des Wertes fiir den vollen
Querschnitt betréagt.

Mit Bezug auf die Warme- und Schwindspannungen
in eingespannten Gewolben lésst sich aus obigen Rech-
nungen schliessen, dass eine wesentliche Entlastung durch
die Rissebildung nicht zu erwarten ist. Die oft gehorte
Vermutung, dass durch die Rissebildung in den gefdhrdeten
Querschnitten eine Art Gelenkstellen geschaffen wirden,
die dem eingespannten Bogen schliesslich eine spannungs-
lose Deformation ermdglichen, trifft nicht zu, selbst dann
nicht, wenn in den Eiseneinlagen die Streckgrenze iber-
schritten wird. Die in der eidgendssischen Verordnung
betr. Eisenbetonbauten vom 26. November 1915 enthaltene
Rechenvorschrift, wonach bei der Berechnung statisch
unbestimmter Grossen der volle Betonquerschnitt mit ein-
heitlichem Elastizititsmodul einzufahren ist, erscheint hier-
nach durchaus begrindet.

Nach den allgemeinen Gl. (9) und (12) in Verbindung
mit den Erorterungen iiber die Biegungsteifigkeit ergeben
sich die sussern Krafte fir die Warmeanderung und das
Schwinden des Beton nahezu proportional den Tragheits-
momenten der Gewdlbequerschnitte und dem Elastizitats-
modul der auf Druck beanspruchten Randfasern. Hierbei
handelt es sich um den Elastizitdtsmodul der gesamten,
bleibenden und elastischen Formanderungen, der wesent-
lich kleiner ist, als der Betrag infolge der elastischen
Forminderungen allein. Die bisherigen Dehnungsmessungen
in den Laboratorien und an fertigen Bauwerken konnen
jedoch keine Auskunft tber die Hohe dieses Elastizitats-
moduls geben, da bis heute nur kurzfristige Messungen
vorliegen, wahrend sich die Formanderungen bei den Ge-
wolben in der Hauptsache langsam auswirken. Zahlreiche
Beobachtungen der letzten Jahre lassen vermuten, dass
durch den Einfluss der Zeit die bleibenden Forménderungen
bei Mauerwerk und Beton stark zunehmen, eine Erscheinung,
die den massiven Bauwerken hinsichtlich der Warme- und
Schwindspannungen zu gute kommt, unter Umstinden aber
auch als Quelle einer Gefahr auftritt. Die eidgendssische
Verordnung vom 26. November 1915 beriicksichtigt diesen
Einfluss der Zeit, indem sie zur Berechnung der Zusatz-
krafte aus Temperaturanderungen und dem Schwinden von
Beton £ = 200 t/cm? vorschreibt, also nur etwa die Halite
des Elastizitatsmoduls der rein elastischen Deformation
von hochwertigem Beton. Eine Abkldrung dieser Frage,
gestiitzt auf langfristige Messungen und die Auswertung
vorhandener Beobachtungen, wire sehr zu begriissen.

4. FORMANDERUNG DER BOGENELEMENTE IM GRUNDSYSTEM.

Die Anwendung der Gleichungen (9) und (12), bezw.
(22) und (23) erfordert vor allem die Kenntnis der Form-
inderung der Gewolbeelemente im Grundsystem, definiert
durch den Formanderungswinkel dg, und die spezifische
Langeninderung ¢ der Bogenaxe. Aus Abb. 7 ergibt sich
sunachst die Verlangerung einer Faserschicht im Abstande
y von der Axe zu
Ads = e ds —y doy (29)
Die Dehnung, die diese Faserschicht in spannungslosem
Zustand infolge einer Wirmeanderung oder Schwind-
wirkung erleiden wiirde, sei mit ¢ bezeichnet. Die wirk-
liche Dehnung ist davon verschieden, indem durch die
Bedingung, dass die Querschnitte bei der Deformation
eben bleiben, noch innere Spannungen ¢ (positiv als Druck-
spannungen) hinzutreten. Die genannte Faserschicht ver-
langert sich darnach um:

folgt. Da im Grundsystem keine dussern Krafte wirken, so
bilden die Spannungen ¢ in jedem Querschnitt ein Gleich-
gewichtsystem; es gelten die Gleichgewichtsbedingungen

[oar =/ E(eo-——rt+yd¢’)dF —o l

as

j.ade:j'E(f'o—z'z+)/d¢’)de———0 ]

ds

(31)

aus denen sich die Formanderungen ¢ und d ¢; berechnen
lassen. Zur Vereinfachung definieren wir als Bogenaxe
den Ort der Schwerpunkte der ideellen Flichen [E dar,
dann wird [EydF = o und wir erhalten aus (31)
= ’ qu“’F, Ay A _‘.‘SOE.‘Vd‘f o (32)
[ Ear ds [ £y2ar
Der Elastizititsmodul £ kann in diesen allgemeinen Aus-
driiccken von Faser zu Faser verschieden sein. Bei der
Anwendung auf Eisenbetonquerschnitte setzt man Ej kon-
stant far die Druckzone des Betons, E, fiir das Eisen und
eventuell £, = o fiir die Zugzone des Beton im Stadium
der Rissebildung. Mit der iblichen Abktrzung # = E;vEp
schreiben sich jetzt die Ausdriicke (32) zu
[ & dFy+ n [ & dF,
TF T

o _ _ Jordhdnloydhe

ds J 1
worin F = F, -+ n F, die Fliche und J=/,+ n Je das
Trigheitsmoment des sogen. ideellen Querschnittes be-
zeichnen. Wir vermerken nachstehend eine Reihe praktisch
wichtiger Sonderfalle.

&t

&t =

(32)

i

®
-
|
1
|

..5

IS
Lo
TS

0

Abb. 8.

Abb. 7.

a) Gleichmassige Wirmednderung um 20,

Sie bedingt die konstante Dehnung & = @ 9, wo w
den Warmeausdehnungskoeffizienten bezeichnet, der far
Beton und Eisen nahezu gleich gross ist (w = 0,000010
bis o0,000012). Die Gleichungen (32) ergeben

dp; = o. (34)

=t = (i
Aus Gl. (30) folgt tiberall ¢ = o.

b) Ungleichmdssige Wirmednderung, verteilt nach dem

linearen Gesetze

o Wl—nN+all+))

h !

wo £ und 4, die Temperaturanderungen der Randfasern
bezeichnen (vergl. Abb. 8). Es ist ¢ = {* und nach den
Gl. (32)

0 [E[40 (e —) + 60 (e + D] dF

h[ EdF
AT
== T =iy, (35)
worin 7, die Temperaturianderung der Axe darstellt; ferner
dg, @ [E[4° (eo— ) + 6% (e + )] v dF
ds h [ EytdF
/I\) = ,20
= (36)

h



144 SCHWEIZERISCHE BAUZEITUNG

Aus Gleichung (30) folgt fiir die Spannung
o= F Lw 1" —wily + o }7 (#" — t2°)J= o.

Die Beziehungen (34) bis (36) finden sich, auf elemen-
tarem Wege einfacher abgeleitet, in den Lehrbiichern
der Baustatik. 4

c) Ungleichmissige Wdirmednderung in einem
symmetrisch armierten Rechteckquerschnitt, verteilt
nach dem Parabelgesetze

2
P = tmo — 4 (/mo - tlo) i;_ﬁ '

Eine solche Verteilung (Abb. 9) kann niherungsweise
bei der sog. abklingenden Temperaturverteilung vor-
ausgesetzt werden, d. h. wenn durch einen plétzlichen
Temperatursturz der umgebenden Luft die Wirme dem
Gewolbe entweicht.

Der Symmetrie wegen wird dg; = o und nach Gl. (32)
- (ufE [ — 4 (@0 —1%) L | aF
[Ear ‘
= [tmo — 4 (tn’ — 1,9 FJ,LgJ - (37)
ferner nach Gleichung. (30)
0= E oot — 4 (h® — 49 % — 10+ 4 (t® — 1,9 77|

_ Wl s
= 4Ewb—2(7—y )

Fir den rechteckigen Querschnitt ohne Armierung wird
J
a

h? .
=i damit folgt

g =—w@L 4 . . . . . . . (38
Die Spannung in der Axe ist
Om = ”’:’ Ew(ty’ — th)
9

am Rande (39)

gy == —%Ew(z‘m"— B = ——25,,,.’

Durch eine Armierung werden ¢ und o, verringert, doch

ist die Aenderung leider unbedeutend. Man kann setzen
J A?
F=mk
wo £ einen Koeffizienten darstellt, der mit dem Armierungs-
gehalt variiert und leicht zu berechnen ist; in praktischen
Fallen wird % meist zwischen 1,0 und 1,2 liegen. Die

Ableitung fithrt dann zu den folgenden Beziehungen.
& = % [t (3 — k&) +1,° k)

O = % Ew (s — 1%

gy — /’3 g Ew (fmu = /10) = }ijc’:g Om
Die Spannung o, kann unter Umstinden wesentliche Werte
annehmen; z. B. ergibt Gl. (39) fir #,° —#"= 10" und
E = 200000 kg/cm” bereits etwa 13 kg/cm® Zugspannung.

d) Schwinden des Belon im Eisenbetongewilbe.

Das spezifische Schwindmass des Beton sei mit &,
bezeichnet. Dann ist in den Ausdriicken (33) fiir alle Beton-
fasern ¢y = — ¢, zu setzen, fir das Eisen dagegen & =10,
Wir erhalten somit

YD) l
}.[ = == }.b > )
Vd
=0 ) .. . (49
dq, o ,l}"“‘b : e I
{A_’*—"/)""/ '—‘f'bJ )

darin bezeichnet ¢ den Abstand des Schwerpunktes der
Betonfliche 7}, vom Schwerpunkt der ideellen Fliche
Iy ~+nF, (in Abb. 10 als positiv eingetragen).

Es entstehen im Beton und im Eisen sogen. Schwind-
spannungen, die sich aus GIl. (30) wie folgt anschreiben
lassen. Im Beton ist im Abstande y,

Op = El) Ep Fb (/{ _— /I + L'J]’//)
und im Eisen im Abstand y, I .o (40)

= T ey,
Op = E:' b ”!(/v- 1 7 )

/16b. 9.

[——" -

| : f ]
)
—e=~ I el e - -o- I
I
i

A166. /0.

Abb. /1.

Wir berechnen nachstehend die Forminderungen fiir
den rechteckigen Querschnitt mit doppelter Armierung
nach Abb. 10, wobei wir eine Rissebildung (£ = o) unter-
halb der Strecke x voraussetzen. Da die Schwindspan-
nungen in eingespannten Gewdlben stets in Kombination
mit den Beanspruchungen vom Eigengewicht und allfallig
andern Einflissen auftreten, so wire es zwecklos, x durch
Auswertung der Gleichung (41) fir 6, = o zu bestimmen;
wir wahlen deshalb x willkiirlich und vergleichen die Re-
sultate. Die Lage der Schweraxe der ideellen Flache
folgt aus
bxe—unF (/z——%—a—e) +71'F£’(§—a+c)=o

nli.(/p r;—vﬁa)——n’l'}’ (;—a)
bx+nl,+n'F,
Die spezifische Langenanderung in der Axe betragt
bx
AT Yy ey
Setzen wir x = ¢k, a = « »;i, und fihren die Armierungs-

zZu e =

& =

gehalte ein

]:l' ’ F‘l'/
BTG T
so folgt
_nulz—§8—a)—n' uw(E—a) k 72 V2
- Stnutnw z 1z
und
= —p o = —pk. . . . (42
ét &b S+nu+tnu et (4 )

Fir das Trigheitsmoment .J ergibt sich

J = ?;—F-bx'eﬁ—%nFe(h—%va—e>——{—n'Fc (%—a—{—e)—
OR® 9 - rore
= S [f43k*43npulz—i—a—k)2 4300 (E—a+k)?

bk
=2y,

12
Damit ergibt sich ein Form#nderungswinkel

h

Fye Ox by 652 &

= Gy = Gy = Eh = Ep (43)
ds 3 b ne % h kg h

Die Faktoren # und %' sind fiir verschiedene Armierungs-
gehalte und Rissebildungen 3 in der folgenden Tabelle zu-
sammengestellt.

Tabelle der Weyte kb und k' in Gl. (42) wnd (43),

berechnet mit # = #" = 10 und a = o,r1.
w = ' 0,2 o/o 0,5 0/0 ! T,0 0/0 2,0 0/0
|k |k B K | k| # koA
o T = [ ] = e T
=] ‘ I
1 0,98 | o,10 | 0,95 | 0,23 ' 0,91 | 040 | 083 | 0,64

= ol 0,9 | 0,98 | o,15 | 0,95 | 0,33 | 0,90 | 0,54 ! 0,82 | 0,80
] 08| 0,98 | 0,22 | 0,94 | 0,45 | 0,89 0,70 | 0,80 0,97

T 0,97 | 0,05 | 0,93 | o,i1 | 0,87 | 0,17 | 0,77 | 0,24

'qi{ 0,9 097 | 0,09 | 092 | 0,18 | 0,86 028 | 0,75 | 0,36
lo8| 0,96 | 0,14 | 001 | 028 | 0,84 o041 | 073 | 049
l 0,96 | 0,00 | 0,91 0,00 | 0,71 | 0,00

' ‘”l 09| 0,96 | 0,03 | 0,90 | 0,06 ‘ 0,82 | 0,08 | 0,69 | o,10

1 0,00 | 0,83
08| 0,95 | 0,07 | 0,89 | o,14 0,80‘ 0,19 | 0,67 | o,12
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AUS DEM ,BURGENBUCH VON GRAUBUNDENY“, VON ERWIN POESCHEL.

Abb, 1.

Fracstein, Burgpfaffenhaus (Seewis).

Man erkennt, wie die Forminderungen mit wachsendem
Armierungsgehalt zunehmen; der Forminderungswinkel ist
auch wesentlich abhingig von u'/u, sowie von der Risse-
bildung. Der Vergleich der Gleichungen (42) und (43) mit
den Ausdricken (35) und (36) lehrt, dass die Form-
inderungen durch das Schwinden identisch sind mit den
Form#nderungen aus ungleichmissiger, linear verinder-
licher Warmeanderung, wenn

& b o
tn® = — 2k und £,° — £ = %/z (44)

e) Ungleiches Schwinden im Betongewilbe ohne Ar-
mierung.

Das Betongewdlbe rechteckigen Querschnitts bestehe
aus einer Schicht von der Hohe x mit dem spezifischen
Schwindmass ¢ und einer zweiten Schicht von der Hohe
h— x mit einem andern Schwindmass &, (vergl. Abb. 11).
Die Forminderungen ergeben sich aus den Gleichungen
(32), wenn darin £ konstant gesetzt wird, zu

p o Swdt _ abrtai—2
Jar Iy
=—[6&+eg(r—9§], wo E:i]: (45)
(l(P(__ j.éo‘yz/["_"lbﬁ"l:x—'52[’(/'”'1);:'
e o2 ur - o
= (& — &) 6‘#:’) s W om o ow o= (40)

Der Formanderungswinkel wird am grossten fir &= ;,
hierfiir wird

& + & d g .

*‘1247]; o {;J.'I:(‘”l—*"z)

Der Fall verschiedener Schwindmasse kommt vor bei

Gewdlben, die in Ringen oder Schichten erstellt werden.

Es entsteherr unter Umstinden dadurch wesentliche Ver-

formungen, bei denen bei geeigneter Bauweise zur Re-

24"

Abb. 2. Rappenstein am Calanda (Untervaz).

duktion der Schwindkrifte Z und M Gebrauch gemacht
werden kann, wie weiterhin noch gezeigt wird.

Die Forminderungen nach Gleichung (45) und (46)
sind nicht spannungsfrei; man findet vielmehr aus GI. (30)

d g
o = Ebl_ ey — & P’]

di

e 6:u—g)
—Ey| e 4a Eba (=8t — )0y |

Die Randspannungen folgen daraus zu
0 = Eb("'l —53)([ —s‘:)(SE—‘ l) ]

0y = FEp (¢, — &) §(3&— 2) (@7)
Fir & = - wird
o =Ep - 2= —o, (Schluss folgt.)

Woas soll uns ein ,,Burgenbuch?
(Hierzu Tafeln 4 bis 7, nach dem Biindner Burgenbuch®).

In einem der Tagebiicher, die im Nachlass Hugo von
Hofmannsthals gefunden wurden, steht der Satz: ,Die
Verzweiflung einer Epoche wiirde sich darin aussprechen,
wenn es ihr nicht mehr der Mithe wert erschiene, sich mit
der Vergangenheit zu beschiftigen.“ Dies klingt anders,
als was wir zuweilen zu horen bekommen iber die Liebe
zur Geschichte. Sie wird hier nicht in den Verdacht ge-
bracht, ein narkotisches Vergniigen zu sein, ein Hang, aus
den Forderungen der Gegenwart zu desertieren, um in
eine unverbindliche Traumwelt hintiberzuschlafen, sondern
es wird in ihr die Ermutigung gefunden, das Heute tiber-
haupt zu bestehen, in unserm Treiben mehr zu sehen als
nur eine am Rande eines sinnlos brodelnden Geschehens
aufsteigende Blase. Gerade wer stark in der Gegenwart
steht, braucht sich vor dem Blick in die Vergangenheit
nicht zu scheuen; er sieht sie nicht als ein verlorenes
Arkadien, sondern als einen Teil des gleichcn Lebens, in
das wir verflochten sind, das, wie wir, fir seine Ideen,
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