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Wärme- und Schwindspannungen in
eingespannten Gewölben.
Von Prof. Dr. M. RITTER, Zürioh.

Die übliche Berechnungsweise der Wärme- und
Schwindspannungen in gelenklosen Gewölben bedarf heute
der Revision. Neue statische Erwägungen, aber auch neue
Messungen der Materialkonstanten und der Wärmeschwankungen

liegen vor; ausserdem sind von verschiedenen
Seiten konstruktive Massnahmen bekannt gegeben worden,
um den ungünstigen Einfluss des Schwindens bei Beton-
Gewölben herabzusetzen. Diesen Fortschritten entsprechend
wird nachstehend versucht, die Theorie in erweiterter
Fassung darzulegen und ihre Grundlagen erneut zu prüfen.
1. ALLGEMEINE THEORIE.

Wir behandeln zunächst den Fall der vollständigen
Einspannung beider Kämpfer, ausgehend von den bekannten
Voraussetzungen, die in der Baustatik für schwach
gekrümmte, ebene, schlanke Stäbe üblich sind. Durch eine
Wärmeänderung oder den Einfluss des Schwindens bei
Beton entstehen die Auflagerreaktionen Ri und Rit die
einander das Gleichgewicht halten. Als statisch bestimmtes
Grundsystem sei der einfache Balken gemäss Abb. i
gewählt; alsdann lassen sich Rx und i?2 zerlegen in X,, X3, A,
sowie X3,Xs,B, wobei A und B die Auflagerdrücke am
einfachen Balken sind, wenn X1,X2,X3 daran als. äussere
Kräfte angreifen. Xt und X2 sind Momente, Xa zwei
entgegengesetzt gleiche Kräfte (Bogenkräfte), die unter den
Hebelarmen /, und t2 an den Kämpfern wirken bezw. mit
diesen durch starre Scheiben verbunden zu denken sind.

:r

Xi

W-m

pi .~

nbb.l

Die Grössen Xx, X3 und X$ ergeben sich aus den
Elastizitätsbedingungen, die besagen, dass bei der Formänderung
die Drehung a des linken Kämpfers und die Drehung ß
des rechten Kämpfers Null sind und sich auch die Spannweite

nicht ändert. An Stelle der letzten Bedingung wird
zweckmässig die Aenderung <5 der Distanz Ox 02 der
Endpunkte der starren Scheiben eingeführt. Aus den
Elastizitätsbedingungen folgen die Elastizitätsgleichungen, am
übersichtlichsten nach dem Gesetz der Superposition, in der Form

a — at -\- Xx ax -j~ X2ai-\- X3 cc3 o
ß ßt+Xlß1+X2ß2-\-X8ßs o
d dt + Xld1E-Xzö!i-EX3ds o

Die angewandte Bezeichnung erhellt ohne weiteres aus den
Gleichungen; es bedeuten

at und ßt die Drehungen der Kämpfer infolge der
Wärmeänderung oder dem Schwinden des Beton
im Grundsystem (X o),

dt die Aenderung der Distanz Oj Oa im Grundsystem
(X=o),

a1, a2, as die Drehung des linken Kämpfers infolge
Xx i, bezw. Xr, i, Xs= i, usw.

Wie man leicht einsieht, ist dt mit den Drehwinkeln ac und
ßt durch die Beziehung

; dt=att1+ßtt%-\-A k
verknüpft, wobei A lt die Aenderung der Spannweite / im
Grundsystem, in Richtung der Angriffslinie von Xs
gemessen, darstellt. Nach dem Satze von Maxwell ist er, =/?lf
a3 d1 und ß3 d2-

In bekannter Weise vereinfachen wir die
Elastizitätsgleichungen, indem wir über die Hebelarme tx und /2 so
verfügen, dass a3 und ßa gleich Null sind. Die Gleichungen
lauten dann einfacher

ßt +
Die Auflösung ergibt

ßf a2 — a< ß2

X, X2 a2

¦X1ßl+Xißi o

dt+X<tda o

x,= X0 X, — 1
die

[et siny
.1 m ds

ds

xi Pa — Pl a2 «1 t>2 — Pl «2 ' "s
Zur Ermittlung der Werte at, ßt und dt muss

Formänderung aller Trägerelemente im Grundsystem infolge
der Wärmeänderung oder dem Schwinden des Betons
bekannt sein. In allgemeiner Form wird diese
Formänderung für ein Bogenelement der Länge ds definiert
durch den Formänderungswinkel dcpt (positiv, wenn die
obere Kante gegenüber der untern verkürzt wird) und
die spezifische Längenänderung et der Bogenaxe (positiv
alsVerlängerung). Alsdann erhält man mit den Bezeichnungen
der Abb. 1 nach bekannten Methoden, z. B. mit Hilfe der
Arbeitsgleichung, die Ausdrücke

at— Jy dcpt

ßt JTd<pi~J—j—
&t — f y d<Pt + / stcos V ds

worin die Integrale auf den ganzen Bogen auszudehnen sind.
Wir beschränken uns in der Folge auf den

symmetrischen Bogen mit wagrechter Kämpferverbindungslinie
und nehmen ferner an, dass in symmetrischen Punkten
auch die Formänderungen dcpt und et gleich seien. Dann
verschwindet in den Formeln für at und ßt der zweite
Summand, da jedem Wert et sin cp ein symmetrischer — et sin99
entspricht und wir erhalten

at ßt J -j dcpt — I dcpt

Betrachtet man die Form anderungswinkel dcpt als Gewichte,
an der Bogenaxe angreifend, und bestimmt man den
Abstand v ihres Schwerpunktes von der Angriffslinie von
Xa, so folgt weiter

öt=vj dcpt + Jet cosip ds
Der Symmetrie wegen wird jetzt Xx Xz, künftig mit M
bezeichnet; Xs liegt wagrecht und sei daher gleich H
gesetzt (Horizontalschub). Die Ausdrücke (1) gehen mit
at ßt, a-, — /?2 und cos ip ds dx über in

\d<ft jj •» JXv + fei dx_ sM-- H= —
2 (a, + at) ' SL

Die Nennerwerte lassen sich nach bekannten Methoden,
z. B. mit Hilfe der Arbeitsgleichung darstellen. Wir
begnügen uns damit, die Resultate zu vermerken. Bezeichnet
E den Elastizitätsmodul und G den Schubmodul des
Baustoffes, F den Querschnitt, J das massgebende Trägheitsmoment

an der Stelle x, y, F' die reduzierte Querschnittsfläche,

so wird für den symmetrischen Bogen
fx" ds fxx' ds 1 r ds

«1 + «2 ¦¦=J -p-£j + J Ti- jj t /;EJ (3)

und

do -¦=!** ik+jc0*i,pjfr-hj
ds

GF>
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In dem Ausdruck für ds ist das Minuszeichen beigefügt,
weil H i eine Verkürzung der Entfernung Ox 02 zur
Folge hat. Da der Einfluss der Biegungsmomente, also der
erste Summand bei der Berechnung von <53 stets überwiegt,
kann mit genügender Annäherung auch

% -w^+Zä ¦ ¦ ' ' (4)

geschrieben werden. Damit lauten die Gleichungen (2)

dtp, tt v Jdcft + /£, dx
M —

Jej F EJ T J EF
(5)

Die Lage von H folgt aus der Bedingung
fx' y ds

~EJ o;
d. h. H geht durch den Schwerpunkt der an der Bogenaxe

ds
Daherangreifend gedachten „elastischen Gewichte"

berechnet sich der Abstand t des Horizontalschubes von
der Kämpferwagrechten aus

J> EJ

I ds
WJ

(6)

Die vorstehenden Ableitungen sollen jetzt auf den
allgemeinern Fall einer elastischen Einspannung der Kämpfer
erweitert werden, die dadurch definiert ist, dass die
Drehwinkel der Kämpfer nicht verschwinden, sondern
proportional den betreffenden Kämpfermomenten Mk sind. An
Stelle der Elastizitätsbedingungen a ß o des vollständig
eingespannten Bogens tritt jetzt im Fall der Symmetrie

0 18 — akMk -ak(M-\-Ht), (7)

wo ak die Drehung der Kämpfer infolge Mj, — 1

bezeichnet. Wird diese Beziehung in die Elastizitätsgleichungen
eingeführt, so gelangt man für die Grössen M und H zu
erweiterten Ausdrücken. Indessen gestattet eine einfache

Ueberlegung, die Formeln für den elastisch eingespannten
Bogen mit Hilfe der Ausdrücke (5) direkt hinzuschreiben. Wie
man leicht erkennt, ist nämlich die elastische Einspannung
identisch mit einer vollständigen Einspannung, bei der die
Biegungsteifigkeit EJ der an die Kämpfer angrenzenden
Trägerelemente durch den Wert ds/ak ersetzt ist; die
Formänderungswinkel dieser Trägerelemente betragen dann

Mk ds
statt «95 j

Mkdsd cp akMh, (8)

d. h. die den Kämpfern unendlich benachbarten Schnitte
drehen sich analog Gl. (7). Man braucht daher zu den

ds
elastischen Gewichten -=rj nur an beiden Kämpfern noch

die Gewichte ak beizufügen, um den Fall der elastischen

Einspannung zu erhalten.

i !/'> X

L.....W

^
rlbb.2

Bei den Brückengewölben rührt die elastische

Einspannung meist weniger von der Elastizität der Widerlager,

als von der Nachgiebigkeit des Baugrundes her.
Deshalb legen wir der Rechnung nachstehend Abb. 2 zu

Grunde, indem wir uns an die Gewölbekämpfer A und B
starre Scheiben (Widerlager) A A und B B' angeschlossen
denken, deren Endquerschnitte A' und B' elastische
Verdrehungen erleiden. Wir betrachten das Gewölbe mit Ein-
schluss der Widerlager als Bogen von der Spannweite

/'=/-f-2Ö und der Pfeilhöhe /+ a und fügen an den
Kämpfern Ä und B' die elastischen Gewichte ak hinzu.
Für das Moment M erhalten wir darnach aus Gl. (5):

M-- f d<p,

r ds
J17+20*

(9)

Der Abstand t folgt aus Gl. (6), indem wir noch die
elastischen Gewichte mit den Hebelarmen y — a beifügen zu

r ds
]yEE "Jej — 2 a OS/,-

Cds Cds 23H' " * '
jEJ + 2a« Je7 + 2^

worin t0 den Abstand bei vollständiger Einspannung
bezeichnet. Vom Scheitel aus gemessen ergibt sich

fdsV/lTT+*(/+«) <X*

:/— tt
f. -1-2«*

Die Angriffslinie des Horizontalschubes verschiebt sich um
2a.k(f0+a) 2 ak {( + d)

m t0 — t fdsJej + 2 «;

An Stelle von Gl. (4) tritt daher
ds

1ds
EJ

(")

/<= + »)» ^j+aa* (/+«)» + /
ds

~£~F'

oder nach Einsetzung des Ausdruckes für m

J> ~E-^ak (t0 | a) (/+ a) + HB
Damit lautet der Ausdruck für den Horizontalschub an
Stelle von Gl. (5)

(v + m) J dcft + J e, dx
Ts#==xx

Ji' S7 + J WF +2 a*W> + aM' + «)
(12)

Die Angriffslinie rückt gemäss Gl. (n) um so tiefer, je
grösser ak, d. h. je geringer der Emspannungsgrad ist;
für ak 00 wird t — a, M o, und H geht in den
bekannten Ausdruck für den Zweigelenkbogen über.

Zur Klarstellung der Einflüsse der verschiedenen
Grössen auf die Beanspruchungen berechnen wir
nachstehend noch die Biegungsmomente im Scheitel (Ms) und
in den Kämpfern (Mk), und vergleichen sie mit den Werten
(MSo, Mk^), die sich bei vollständiger Einspannung und

unter Ausschaltung der Formänderungen dcpt ergeben.
Streng genommen wären für diese Untersuchungen die

Kernpunktsmomente massgebend; da jedoch die
Spannungen aus den Normalkräften zurücktreten, erscheint es

zulässig, die Momente auf die Schwerpunkte zu beziehen.

Die Ausdrücke (9) und (12) lauten für ak o, fd<pt=o
und v § dcpt o

tt 1*1 dx
M o, H0 (13)rrds rds^

J EJ [p JEF
und liefern die Scheitel- und Kämpfermomente

Mso —HQ /„', Mk0 H0 V
Durch die elastische Einspannung und den Einfluss der
Formänderungen dcpt werden diese Momente beim
symmetrischen Bogen geändert in

Ms M—H? —jusH0 /</,

Mk M-\-Ht /ikH0t0.
wo /lis und /uk Reduktionsfaktoren (positive echte Brüche)
darstellen. Daraus berechnen sich M und H zu

Ps to' e —f-k h t'
M

H
f

lh V + Pk '0

f
H0

Hn
(14)

Damit fis und ptk gleichzeitig möglichst klein werden||muss
H entsprechend niedrig ausfallen. Man erkennt aus Gl. (12),
dass sowohl ak wie auch namentlich a die Rechnung günstig

beeinflussen, während die Formänderung fdcpt
verschieden wirkt je nach dem Vorzeichen von v und m.

Eine gleichmässige Reduktion der Scheitel- und

Kämpfermomente ist definiert durch fis juk /*. ffierfür
lauten die Gl. (14)

H

/„' t — t„f #0 um #o.\
Hn

HS



15- März 1930 SCHWEIZERISCHE BAUZEITUNG 141

2. ANWENDUNG AUF BRÜCKENGEWÖLBE.

In Anlehnung an frühere Arbeiten1) setzen wir voraus,

dass sich das Trägheitsmoment / längs der Gewölbe-
axe nach dem Gesetz

-A- i—(* — »)-£, »~,
Js

(16)J cos 90
v

'1 •/* cos <tk

ändert, unter Js und J^ die Trägheitsmomente im Scheitel
und Kämpfer verstanden (vergl. Abb. 3). Als Gewölbeaxe

\H

Fe V

ftbb. 3

wählen wir zur Vereinfachung der Berechnung eine Parabel
vierter Ordnung, deren Gleichung, bezogen auf die
Kämpferwagrechte,

/ X (17)

lautet. Wenn, wie üblich, die Gewölbeaxe nicht als Parabel,
sondern als Stützlinie für Eigengewicht vorgesehen ist, so
kann Gl. (17) als Annäherung dienen, indem die Konstante c
so eingesetzt wird, dass sich Stützlinie und Parabel im
Gewölbeviertel schneiden. Aus der dortigen, gemeinsamen
Ordinate

A8 • /.«
Vv =/Tl —(I —

4 V 16/,*
berechnet sich die Konstante c der Ersatzkurve (17) zu

16 yJ
c — -^ 4.

3 / *
Auf Grund der Gesetze (16) und (17) finden wir

+ 2 /

(18)

('J EJ EJS J
sowie

>x=x/x<-<x
/,"

dg
EJ,

U ¦ (i-i /,2

2/1
¦ [7 (n -f 2) (c 4- 5) -f- 2 (1 — «) (7 — c)]

315 EJ
Darnach ergibt sich der Abstand des Schwerpunktes der
elastischen Gewichte von der Kämpferwagrechten zu

+ 5)
1 4(t — ") (7 — c)'

5 "^ 105 (»

j beträgt für «

bogen mit konstantem J cos cp) c0

Der Koeffizient c.

V cj ¦ (i9)
o (Parabelin

praktischen
Fällen ist jedoch meist n <^ 1 und c^> 1, weshalb c0
wesentlich höher liegt, vergl. nachstehende Tabelle.

2)

i und c
2

Tabelle der Werte c0 in Gl. (19).

» 1 0,50 0,25 0,10 0

c= 0 0,6667 0,7200 0,7556 0,7810 0,8000

0,1 o,68oo 0,7326 0,7676 0,7927 0,8114

0,2 o,6933 0,7451 o,7797 0,8044 0,8229

o>3 0,7067 o,7577 0,7917 0,8161 0,8343

o,4 0,7200 0,7703 0,8038 0,8278 0,8457

o,5 o,7333 0,7829 0,8159 0,8395 0,8571

Es gelingt leicht, auch den Ausdruck /j/2-^ im Nenner

der Gl. (12) und (13) in eine geschlossene Form zu
entwickeln. Die Gleichung der Bogenaxe, bezogen auf die
Wagrechte durch den Schwerpunkt der elastischen
Gewichte lautet

1» «4

y y J 1 — <o— (* — c)ys -1
') Vereinfachung der Berechnung gelenkloaer Brückengewölbe"

Schweizer. Bauzeitung 1908, Bd. 51.

damit folgt

/'/
XEJS

worin
i
l

,-{t — c)
/,2

2< 12 r 2*
dz

(20)

(1 - c0f I ]

+ <X
— ac(i — c0)(-t

Für c o

I ¦— n

II

I — n
3

'

2

I —

(l-<02(-

(I — fo) (l — C)

und « 1
E

wird
2C(l
45/4-

X
5

I — n

K 45/4. Der Koeffizient l
wächst mit steigendem c und abnehmendem n, wie aus
folgender Tabelle hervorgeht.

Tabelle der Werte X in Gl (20).

n 1 0,50 0,25 0,10 0

c= 0 JMS 15,81 20,82 26,43 32,81
0,1 11,62 16,42 21,81 27,96 35,o9
0,2 11,89 17,03 22,84 29,58 37,57
0,3 12,20 17,65 23.90 31,30 40,25
0,4 12,51 18,27 25,00 33,n 43,i6
0,5 i2,8r 18,90 26,12 35,°! 46,29

Für die Lage des Horizontalschubes 'ergibt sich aus Gl. (10)
tt, —— -=-. 2 a ak [n -f- 2) c0 — 6 a.k' ca

t
i l
EJs

2 «/.

worin zur Abkürzung ca

Daraus folgt

t-+a

— und ak

(« + 2) (*„ + Ca)

n + 2 + 6 ak'

akEJs
l

f («)

gesetzt ist.

J

(22)

n + 2 -\- 6 ak'
Für das Moment M erhalten wir aus Gl. (9)

M_ 3£Js Ja9t
l n -f- 2 -4- 6 cc^'

Bei der Berechnung des Horizontalschubes H ist zu
beachten, dass der zweite Summand im Nenner von Gl. (12),
der den Einfluss der Normalkräfte und Schubkräfte
darstellt, stark zurücktritt und daher näherungsweise durch

ersetzt werden kann, wo Fs den Scheitelquerschnitt
bezeichnet. Setzt man noch tQ-{-a (r0-\-ca) f, so geht
Gl. (12) über in

// lEJs
PI

(v 4- m) jdqjt-\- j e, dx

1 + + 2(n+2)l{c0-\-cafi (23)

M

~_-J=*

n + 2 + 6 Oi'

Durch die reine Zahl
oa' tritt die Nachgiebigkeit

des Baugrundes in
Beziehung zur Elastizi-'
tat des Gewölbes selbst.
Bei plastischem
Baugrund lässt sich ak und
damit auch a*' in
einfacher Weise darstel||gS
indem man (nach Winkler)

die sogen. Bettungsziffer
C des Baugrundes

einführt, vergl. Abb. 4. Darnach ist die Bodenpressung a
proportional der Einsenkung y, also a=>Cy. Setzt man
den Fundamentkörper als starr voraus, so beträgt bei
symmetrischer Fundamentsohle deren Drehung

y\—y. °i — "a

6, -dyt cy>5-= Cu

Kbb

N 4
daher

d Cd
t N avier wirc [

M
"77-d{. °2

N
~T7~

M
~17 rf«,

M
17 d und damit a

M
clh wobei
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Jf das Trägheitsmoment der Fundamentsohle bezeichnet.
Für M= r folgt daraus

1 1 / a.kEJs EJS
a* T77 und a" ~T- "Tc77 ¦ ¦ (24)

Bei weitgespannten Brückengewölben ergibt sich ak
meist als kleine Zahl, da das Verhältnis JS/JF in der Regel
klein ist; z.B. erhält man mit JS/JF 0,01, E—400000kg/cm2
(Beton), c 20 kg/cms (Kiesboden) und / 40 m den
Wert ak 0,05. In dieser Höhe erweist sich jedoch der
Einfluss der Nachgiebigkeit des Baugrundes bereits als
beträchtlich, namentlich wenn ca gross ist. Das letzte Glied
im Nenner von Gl. (23) erreicht z. B. mit n i und e o
(Parabelbogen mit konstantem J cos <p), c0 2/8, ca — V31

0,05, den Wert
2 (» + 2) l (c0 + ca)* ak' 3 • 11,25 • r • 0,05

1,0
« + 2 + 6oj' 3 + 6- 0,05

wodurch der Horizontalschub bereits auf die Hälfte
herabgesetzt würde. Diese Rechnung ist allerdings insofern
anfechtbar, als nach neuern Versuchen die Bettungsziffer
keineswegs als Konstante betrachtet werden darf; indessen
erscheint es nicht wahrscheinlich, dass eine exaktere
Behandlung des Problems wesentlich ungünstigere Zahlen
liefert. Bei Gründung auf Fels fällt der Einspannungsgrad
bedeutend grösser aus; leider fehlen zur Zeit die Unterlagen,

um hier ak zuverlässig zu berechnen.
Für den vollständig eingespannten Bogen folgt aus (23)

mit ak o und m o der obere Grenzwert von H zu

Hn
X EJS v J dtp, -|- J £t dx

PI 1 + ~P~Fs

(25)

mit ak — co und m /„ -4- a ergibt sich der untere Grenzwert

(v + f0 + d) J dcpt. + }*/ dx
H,= r\EJs

f2l '+££-4* ^('.4'.)«
Dazwischen liegen alle möglichen Fälle der teilweisen
Einspannung. Sieht man vom Einfluss der Formänderungen
dcpt ab und vernachlässigt das zweite Glied des Nenners,
das stets klein ist, so beträgt die grösstmögliche Reduktion

^ ir-
Für n
für

I-f r\

_ 2

(n + 2)
(«b + <*r

n 0,1,

wird :0.028,1, c — o, r0 — /a, va

c 0,4, c0 0,828, ca l's< wird // =0.031.
Wenn auch in praktischen Fällen diese Grenzwerte nicht
erreicht werden, so hat die elastische Einspannung doch
meist eine wesentliche Abminderung der Wärme- und
Schwindspannungen zur Folge, für die nicht nur ak, sondern
namentlich auch der Wert ca wesentlich ist. Bei gewölbten
Durchlässen z. B. wird durch den hohen Betrag von ca der
Horizontalschub selbst bei kleinem ak sehr stark reduziert.

Durch die Formänderungen dcpt werden die Wärme-
und Schwindspannungen ebenfalls stark beeinflusst. Bei
positivem Werte der Strecke v ergibt sich dieser Einfluss
um so grösser, je geringer der Einspannungsgrad ist.

3. BIEGUNGSTEIFIGKEIT UND ELASTIZITÄTSMODUL.

Die grundlegenden Voraussetzungen der technischen
Biegungslehre (Hooke'sches Gesetz und Annahmen von
Navier) kommen in der Gewölbetheorie durch den
bekannten Ausdruck für den Formänderungswinkel

M. ds s\dcp -^j- (26)

zur Geltung, wobei EJ als Biegungsteifigkeit bezeichnet
wird. Die Verwertung des Ausdruckes (26) zur Berechnung
der Formänderungen im Grundsystem, insbesondere die
Ableitung der Elastizitätsgleichungen aus den
Elastizitätsbedingungen ist dagegen eine Aufgabe rein geometrischer
Natur, die lediglich noch von der stets berechtigten
Annahme Gebrauch macht, dass die Formänderungen im
Vergleich zu den Abmessungen des Gewölbes sehr kleine
Grössen sind. Es gelingt leicht, den Gültigkeitsbereich der
Gewölbetheorie auf den Fall eines unhomogenen Baustoffes

zu erweitern, indem die Beziehung (26) allgemeiner gefasst
wird. Da diese Erweiterung wertvollen Aufschluss gewährt
über den Einfluss einer Rissebildung, sei sie nachstehend
eingehender behandelt.

*

<M

nL__I__J_
x&

I \h
<2PC

l—1-_

k

E
fibb. 5. ßbb.6.

Wir betrachten einen symmetrischen Querschnitt, auf
den die Normalkraft Ns im Schwerpunkte S, sowie das
Moment Ms in der Symmetrieaxe angreifen. Bei beliebigem
Formänderungsgesetz des Materials ist die Spannungsverteilung

nicht linear. Mit den Bezeichnungen der Abb. 5
lässt sich die Spannung a einer Faser mit dem Elastizitätsmodul

E ausdrücken durch die Spannung ar am obern
Rande mit dem Elastizitätsmodul Er, indem man die
Bedingung für das Ebenbleiben der Querschnitte anschreibt:

Er

woraus

y : x
Ear

~x Er y
Die Momentengleichung für die Schweraxe S liefert

Ms =fo ys dF -Jj± y ys dF
worin die Integration den ganzen Querschnitt umfasst.
Für den Formänderungswinkel ergibt sich damit

o> ds Ms ds
dcp

ET x J Eyy„ dF
An Stelle von EJ tritt also bei veränderlichem Elastizitätsmodul

für die Biegungsteifigkeit der allgemeinere Ausdruck

/ EyysdF= J Eys2 dF-\-xs j EysdF (27)
der eine Funktion des Momentes und der Normalkraft
darstellt, weshalb das Gesetz der Superposition seine Gültigkeit

verliert. Der Einfluss einer Rissebildung wird erhalten,
indem für die Fasern der Risszone E o gesetzt wird.

Wir berechnen nachstehend die Biegungsteifigkeit
für einen rechteckigen Eisenbetonquerschnitt mit einfacher
Armierung, im Stadium der Rissebildung (vergl. Abb. 6).
Der Elastizitätsmodul sei für den Beton auf Druck
konstant Eb, auf Zug Ez o, für das Eisen Ee n Et,. Nach
Gl. (27) erhalten wir

JEyy,äF=Et\^+ o,(^)E{*-±)°*'E

worin ju.e

EeFe{h — x — a) (— — a\

•2@V«,(4-i)Ht)] (»8)

den Armierungsgehalt bezeichnet. Der
Klammerausdruck bringt den Einfluss der Armierung und
der Zugzone bei fehlender Zugfestigkeit des Beton im
Vergleich zum homogenen Querschnitt_/=M8/i2 zum
Ausdruck, vergl. folgende Tabelle In

x\%
T\

Fe

bh

IO, -r °.°5

Tabelle des Klammerausdruckes in Gl. (28).

,"Xo 0 0,2 0,4 °,6 o,8 1

X
7T=I 1,00 1,00 o,99 0,98 0,98 o,97

0,9 o,97 0,98 0,98 o,99 o,99 1,00

0,8 0,90 0,92 o,93 o,95 0,96 0,98

0,7 0,78 0,81 0,83 0,86 0,89 0,92

0,6 0,65 0,69 o,73 0,76 0,80 0,84

o,5 0,50 o,55 0,60 0,65 0,69 o,74
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Man erkennt, wie mit zunehmender Exzentrizität

die Biegungsteifigkeit abnimmt, besonders bei geringer

Armierung; jedoch ist diese Abnahme innerhalb der Fälle

der Praxis nicht beträchtlich und entspricht keineswegs

der Reduktion des Trägheitmomentes durch die Rissebildung.

Beispielsweise sinkt bei unarmiertem Querschnitt die

Biegungsteifigkeit bei Ausschluss der Zugfestigkeit für

x/h 0,8 gemäss der Tabelle nur um ein Zehntel,
während das Trägheitsmoment des unter Spannung stehenden

Querschnhtsteiles die Hälfte des Wertes für den vollen

Querschnitt beträgt.
Mit Bezug auf die Wärme- und Schwindspannungen

in eingespannten Gewölben lässt sich aus obigen

Rechnungen schliessen, dass eine wesentliche Entlastung durch

die Rissebildung nicht zu erwarten ist. Die oft gehörte

Vermutung, dass durch die Rissebildung in den gefährdeten

Querschnitten eine Art Gelenkstellen geschaffen würden,

die dem eingespannten Bogen schliesslich eine spannungslose

Deformation ermöglichen, trifft nicht zu, selbst dann

nicht, wenn in den Eiseneinlagen die Streckgrenze
überschritten wird. Die in der eidgenössischen Verordnung
betr. Eisenbetonbauten vom a6. November 1915 enthaltene

Rechenvorschrift, wonach bei der Berechnung statisch

unbestimmter Grössen der volle Betonquerschnitt mit
einheitlichem Elastizitätsmodul einzuführen ist, erscheint
hiernach durchaus begründet.

Nach den allgemeinen Gl. (9) und (ia) in Verbindung
mit den Erörterungen über die Biegungsteifigkeit ergeben

sich die äussern Kräfte für die Wärmeänderung und das

Schwinden des Beton nahezu proportional den
Trägheitsmomenten der Gewölbequerschnitte und dem Elastizitätsmodul

der auf Druck beanspruchten Randfasern. Hierbei

handelt es sich um den Elastizitätsmodul der gesamten,
bleibenden und elastischen Formänderungen, der wesentlich

kleiner ist, als der Betrag infolge der elastischen

Formänderungen allein. Die bisherigen Dehnungsmessungen
in den Laboratorien und an fertigen Bauwerken können

jedoch keine Auskunft über die Höhe dieses Elastizitätsmoduls

geben, da bis heute nur kurzfristige Messungen

vorliegen, während sich die Formänderungen bei den
Gewölben in der Hauptsache langsam auswirken. Zahlreiche

Beobachtungen der letzten Jahre lassen vermuten, dass

durch den Einfluss der Zeit die bleibenden Formänderungen
bei Mauerwerk und Beton stark zunehmen, eine Erscheinung,

die den massiven Bauwerken hinsichtlich der Wärme- und

Schwindspannungen zu gute kommt, unter Umständen aber

auch als Quelle einer Gefahr auftritt. Die eidgenössische

Verordnung vom 26. November 1915 berücksichtigt diesen

Einfluss der Zeit, indem sie zur Berechnung der Zusatzkräfte

aus Temperaturänderungen und dem Schwinden von
Beton E 200 t/cm2 vorschreibt, also nur etwa die Hälfte
des Elastizitätsmoduls der rein elastischen Deformation

von hochwertigem Beton. Eine Abklärung dieser Frage,

gestützt auf langfristige Messungen und die Auswertung
vorhandener Beobachtungen, wäre sehr zu begrüssen.

4. FORMÄNDERUNG DER BOGENELEMENTE IM GRUNDSYSTEM.

Die Anwendung der Gleichungen (9) und (12), bezw.

(22) und (23) erfordert vor allem die Kenntnis der
Formänderung der Gewölbeelemente im Grundsystem, definiert
durch den Formänderungswinkel dcpt und die spezifische

Längenänderung et der Bogenaxe. Aus Abb. 7 ergibt sich

zunächst die Verlängerung einer Faserschicht im Abstände

y von der Axe zu
A ds et ds — y dcpt (29)

Die Dehnung, die diese Faserschicht in spannungslosem

Zustand infolge einer Wärmeänderung oder Schwindwirkung

erleiden würde, sei mit e« bezeichnet. Die wirkliche

Dehnung ist davon verschieden, indem durch die

Bedingung, dass die Querschnitte bei der Deformation

eben bleiben, noch innere Spannungen 0 (positiv als

Druckspannungen) hinzutreten. Die genannte Faserschicht

verlängert sich darnach um:

A ds £0 ds =¦ ds
E

woraus

oder mit Benützung von Gl. (39)

a £ («0 — Bt y
dtp, (30)

folgt. Da im Grundsystem keine äussern Kräfte wirken, so

bilden die Spannungen ff in jedem Querschnitt ein
Gleichgewichtsystem ; es gelten die Gleichgewichtsbedingungen

JadF =fE(eo — etE

JoydF l E (e0 — et + y

dcpt

as

dtp,

dF =0
y dF o

(3i)

aus denen sich die Formänderungen et und dcpt berechnen

lassen. Zur Vereinfachung definieren wir als Bogenaxe
den Ort der Schwerpunkte der ideellen Flächen JE dF;
dann wird JEy dF= o und wir erhalten aus (31)

J £„ E dF dcpt

ds
et-

(32)
j EdF ds J Ey* dF

Der Elastizitätsmodul E kann in diesen allgemeinen
Ausdrücken von Faser zu Faser verschieden sein. Bei der

Anwendung auf Eisenbetonquerschnitte setzt man Et,

konstant für die Druckzone des Betons, Ee für das Eisen und

eventuell Ez o für die Zugzone des Beton im Stadi|ls|
der Rissebildung. Mit der üblichen Abkürzung n= Ee: Et,

schreiben sich jetzt die Ausdrücke (32) zu

/ *0 dFt + n f eo dFe

F (33)
dtp, J $0ydFb + nj e0y dFe

ds J '

worin F Ft>-\-n Fe die Fläche und J — JbE- HJe das

Trägheitsmoment des sogen, ideellen Querschnittes
bezeichnen. Wir vermerken nachstehend eine Reihe praktisch

wichtiger Sonderfälle.

'AdS

y&n
dsJ—J

£,«5

ßbb. 7. Abb 8.

a) Gleichmässige Wärmeänderung um 1°.

Sie bedingt die konstante Dehnung e0 co t°, wo co

den Wärmeausdehnungskoeffizienten bezeichnet, der für
Beton und Eisen nahezu gleich gross ist (co 0,000010
bis 0,000012). Die Gleichungen (3a) ergeben

et—e0 ojt°, dcpt o. (34)

Aus Gl. (30) folgt überall 0 0.

b) Ungleichmässige Wärmeänderung, verteilt nach dem

linearen Gesetze
,o _ V('.—>') + ^i'i+y)1 _ —_ -,

wo t,° und t%° die Temperaturänderungen der Randfasern

bezeichnen (vergl. Abb. 8). Es ist eQ co 1° und nach den

Gl. (32)
o> Je[4° ('*—y) + t2a(e. + y)] dF

hf EdFet

'i°'. + '2° '1
CO — ; 0> ttn • • • (35)

worin tm° die Temperaturänderung der Axe darstellt; ferner

JlL _ gjXjV; (cs—y) +tt*(el+yqVdF
ds

t,9
h j Eyl dF

(36)
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Aus Gleichung (30) folgt für die Spannung

o=E[coi0-coim° + co -J-ft0 —/i°)]=o.
Die Beziehungen (34) bis (36) finden sich, auf elementarem

Wege einfacher abgeleitet, in den Lehrbüchern
der Baustatik.

c) Ungleickmässige Wärmeänderung in einem
symmetrisch armierten Rechteckquerschnitt, verteilt
nach dem Parabelgesetze

t° — tt 6n 4(f» t°)EL

—:e

.1b@

s$-
—i

h-ix

ßbb. 10. ßbb. II.
Eine solche Verteilung (Abb. 9) kann näherungsweise /^ g
bei der sog. abklingenden Temperaturverteilung
vorausgesetzt werden, d. h. wenn durch einen plötzlichen Wir berechnen nachstehend die Formänderungen für
Temperatursturz der umgebenden Luft die Wärme dem den rechteckigen Querschnitt mit doppelter ArmierungGewölbe entweicht.

Der Symmetrie wegen wird c

et==o>fE[iA„o-4(tn<>-
pt — o und nach Gl. (32)

co [/„» -
ferner nach Gleichung (30)

J EdF

4 (fm° ~ fl°)
J

F h? (37)

£. n 4 Vm *i ip »»

VF

\(tn h°)
J

Fh"
jp tm° — t,0(J a^4Em—rt—\T-yy

Für den rechteckigen Querschnitt ohne Armierung wird
-=¦ —; damit folgtF 12' °

et ¦Cü(2t„ ¦*1°)

Die Spannung in der Axe ist

—Eco(t„ h°)
am Rande

tx°) =-25,

(38)

(39)

j verringert, doch
Man kann setzen

0-1 =— — Em(tm — .j
Durch eine Armierung werden et und
ist die Aenderung leider unbedeutend

J _ h" bF~ I2*>
wo k einen Koeffizienten darstellt, der mit dem Armierungsgebalt

variiert und leicht zu berechnen ist; in praktischen
Fällen wird k meist zwischen 1,0 und 1,2 liegen. Die
Ableitung führt dann zu den folgenden Beziehungen.

et =jco[tm0(3-k) + t1°k]

Om=jEco(tJ-t1'>)
ol=k^Em (/„» - t*) =*-=-! om

3 "
Die Spannung a, kann unter Umständen wesentliche Werte
annehmen; z. B. ergibt Gl. (39) für tm° — /j0 io° und
E — 200 000 kg/cm2 bereits etwa 13 kg/cm2 Zugspannung.

d) Schwinden des Beton im Eisenbetongewölbe.
Das spezifische Schwindmass des Beton sei mit ei,

bezeichnet. Dann ist in den Ausdrücken (33) für alle Betonfasern

1

Wir erhalten somit
— e& zu setzen, für das Eisen dagegen e0 o.

et

dcpt

ds eb

t'b F
Jy Jf„

eb
Fi,'

(40)

J "" J '

darin bezeichnet e den Abstand des Schwerpunktes der
Betonfläche Ft, vom Schwerpunkt der ideellen Fläche
FbE-nFe (in Abb. 10 als positiv eingetragen).

Es entstehen im Beton und im Eisen sogen.
Schwindspannungen, die sich aus Gl. (30) wie folgt anschreiben
lassen. Im Beton ist im Abstände yb

o„ EbebFb(^-yc-E'jL)
und im Eisen im Abstand ye (41)

oe — Ee eb Fb l— + -~ \

nach Abb. 10, wobei wir eine Rissebildung (E o) unterhalb

der Strecke x voraussetzen. Da die Schwindspannungen
in eingespannten Gewölben stets in Kombination

mit den Beanspruchungen vom Eigengewicht und allfällig
andern Einflüssen auftreten, so wäre es zwecklos, x durch
Auswertung der Gleichung (41) für 0^ 0 zu bestimmen;
wir wählen deshalb x willkürlich und vergleichen die
Resultate. Die Lage der Schweraxe der ideellen Fläche
folgt aus

bxe — nF [h

:Fe h — ~-

4 I FJ

— »' FJ —— a\

a -f- e\ o

b x 4- » Fe -\- n' Fe'

Die spezifische Längenänderung in der Axe beträgt

et

Setzen wir x f h, t

gehalte ein

eb

so folgt

Fr
bh

n « (:

b x -\- n Fe -\- n' Fe'

a — und führen die Armierungs-

F 1re

bh

I — a) — »' pt' (| -

und
¦ n' pt'

et' eb — eb,g 4~ n p ~\~n' p'
Für das Trägheitsmoment J ergibt sich

(42)

/= \- bxe2-\-nFe\h
bh3

bh*

— a — e

[f3+3Vf+3«/«(2-£-

-n'Fei^-—a-\-e\

k^+3n'//(^a+k1f]

Damit ergibt sich ein Formänderungswinkel

dcp,

ds

Fi, t
— sb —j— — eb

bx &,

b h» eb-
6£h

ebT (43)

Die Faktoren k und k' sind für verschiedene Armierungsgehalte

und Rissebildungen | in der folgenden Tabelle
zusammengestellt.

Tabelle der Werte k und k' in Gl. (42) und (43),
berechnet mit n n — 10 und a 0,1.

[1
0,

k k<

o,
k

5%
k

2.<

k k'

oi 0,9
l 0,8

0,98 0,10 o,95 0,23 0,91 0.40 0,83 0,64
fl' 0,98 0,15 o,95 o,33 0,90 0,54 0,82 0,80

0,98 0,22 o,94 o,45 0,89 0,70 0,80 0,97

[
r o,97 0,05 o,93 0,11 0,87 0,17 o,77 0,24

fl' 71 °'9 o,97 0,09 0,92 0,18 0,86 0,28 o,75 0,36
lo,8 0,96 0,14 0,91 0,28 0,84 0,41 o.73 0,49
1 1 0,96 0,00 o,9I o,oo 0,83 0,00 o,7' 0,00

fl' i"| o,9
lo,8

0,96 0,03 0,90 0,06 0,82 0,08 0,69 0,10
o,95 0,07 0,89 0,14 0,80 0,19 0,67 0,12
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AUS DEM „BURGENBUCH VON GRAUBÜNDEN«, VON ERWIN POESCHEL.

£3£H
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Abb. 1. Fracstein, Burgpfaffenhaus (Seewis).

Man erkennt, wie die Formänderungen mit wachsendem
Armierungsgehalt zunehmen; der Formänderungswinkel ist
auch wesentlich abhängig von pt'/fi, sowie von der
Rissebildung. Der Vergleich der Gleichungen (43) und (43) mit
den Ausdrücken (35) und (36) lehrt, dass die
Formänderungen durch das Schwinden identisch sind mit den
Formänderungen aus ungleichmässiger, linear veränderlicher

Wärmeänderung, wenn
0 _ ¦k und h° -/2°=^' (44)

Betongewölbe ohne Ar-e) Ungleiches Schwinden
mierung.

Das Betongewölbe rechteckigen Querschnitts bestehe
aus einer Schicht von der Höhe x mit dem spezifischen
Schwindmass ex und einer zweiten Schicht von der Höhe
h — x mit einem andern Schwindmass e2 (vergl. Abb. n).
Die Formänderungen ergeben sich aus den Gleichungen
(32), wenn darin E konstant gesetzt wird, zu

«0 dF £, b x -\- £%b (h — x)
et

dcpt

~dT

dF bh

— [«lSt + e2(i — £)], wo t

,yäF bx ,t ('>-*)¦
>uF bh"

6s(> ¦ J)
— («! — £2)

Der Formänderungswinkel wird am grössten für £

hierfür wird

(45)

(46)

et
dcpt
ds

(*1 — %]
2 h

Der Fall verschiedener Schwindmasse kommt vor bei
Gewölben, die in Ringen oder Schichten erstellt werden.
Es entstenen unter Umständen dadurch wesentliche
Verformungen, bei denen bei geeigneter Bauweise zur Re-

Abb. 2. Rappenstein am Calanda (Untervaz).

duktion der Schwindkräfte H und M Gebrauch gemacht
werden kann, wie weiterhin noch gezeigt wird.

Die Formänderungen nach Gleichung (45) und (46)
sind nicht spannungsfrei; man findet vielmehr aus Gl. (30)

eb -y
<t<pt~]

di J

-eb Ee-,% +«2 (1 —• f) + (ex ¦

Die Randspannungen folgen daraus zu

£6 (fl - e.) (1 - f) (3 f-i)
e2)

6?(i-?) y

o2 Eb {et — £5) f (3

Für £ — wird

2) / (47)

ai -£* X 0o (Schluss folgt.)

Was soll uns ein „Burgenbuch"?
(Hierzu Tafeln 4 bis 7, nach dem „Bündner Burgenbuch").

In einem der Tagebücher, die im Nachlass Hugo von
Hofmannsthals gefunden wurden, steht der Satz: „Die
Verzweiflung einer Epoche würde sich darin aussprechen,
wenn es ihr nicht mehr der Mühe wert erschiene, sich mit
der Vergangenheit zu beschäftigen." Dies klingt anders,
als was wir zuweilen zu hören bekommen über die Liebe
zur Geschichte. Sie wird hier nicht in den Verdacht
gebracht, ein narkotisches Vergnügen zu sein, ein Hang, aus
den Forderungen der Gegenwart zu desertieren, um in
eine unverbindliche Traumwelt hinüberzuschlafen, sondern
es wird in ihr die Ermutigung gefunden, das Heute
überhaupt zu bestehen, in unserm Treiben mehr zu sehen als
nur eine am Rande eines sinnlos brodelnden Geschehens
aufsteigende Blase. Gerade wer stark in der Gegenwart
steht, braucht sich vor dem Blick in die Vergangenheit
nicht zu scheuen; er sieht sie nicht als ein verlorenes
Arkadien, sondern als einen Teil des gleichen Lebens, in
das wir verflochten sind, das, wie wir, für seine Ideen,
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