Zeitschrift: Schweizerische Bauzeitung

Herausgeber: Verlags-AG der akademischen technischen Vereine

Band: 91/92 (1928)

Heft: 18

Artikel: Die praktische Berechnung auf Winddruck der durch mehrere

Querriegel versteiften Brücken-Zwillingsgewölbe

Autor: Pasternak, Peter

DOI: https://doi.org/10.5169/seals-42598

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 01.10.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

INHALT: Die praktische Berechnung auf Winddruck der durch mehrere Querriegel versteiften Brücken-Zwillingsgewölbe. — Wettbewerb für ein Altersasyl der Stadt Luzern. — Zum Bau-Einsturz an der Poriestrasse in Prag. — Mitteilungen: Eisenbahn und Automobil. Der Bergsturz am Motto d'Arbino bei Bellinzona. Das neue Kantonschulgebäude in Winterthur. Kompressorloser Dieselmotor

von 11000 PSe. Bezirkschulgebäude Lenzburg. Vom Ritomwerk. Die Automobilstrasse Bonn-Köln-Düsse'dorf. — Nekrologie: Camille Martin. — Korrespondenz. — Wettbewerbe: Kleinere Trinkbrunnen für Zürich. — Literatur. — Schweizer. Verband für die Materialprüfungen der Technik. — Mitteilungen der Vereine: Technischer Verein Winterthur. Zürcher Ingenieur- und Architekten-Verein. S. T. S

Band 92. Nachdruck von Text oder Abbildungen ist nur mit Zustimmung der Redaktion und nur mit genauer Quellenangabe gestattet.

Nr. 18

Die praktische Berechnung auf Winddruck

der durch mehrere Querriegel versteiften Brücken-Zwillingsgewölbe.

Von Dr. Ing. PETER PASTERNAK, Privatdozent für Eisenbetonbau und technische Statik an der E. T. H., Zürich.

Die allgemeinen Ansätze der energetischen Statik gestatten im Prinzip die Berechnung jedes noch so hochgradig statisch unbestimmten ebenen oder räumlichen Stabtragwerkes durch allgemeine Elastizitätsgleichungen. In der zahlenmässigen Durchführung des allgemeinen Verfahrens stösst man aber auf Schwierigkeiten, die mit dem Anwachsen der Zahl der Ueberzähligen die Rechnung praktisch fast verunmöglichen. Versagt also die allgemeine Methode? — Dies muss entschieden verneint werden, obwohl einige neuere Veröffentlichungen diesen Eindruck erwecken und die allgemeine Methode durch weniger geeignete Sonderverfahren ersetzen wollen.

Der Misserfolg in solchen Fällen liegt einfach an der ungeeignet getroffenen Wahl der Ueberzähligen, die eben zu unübersichtlichen Elastizitätsgleichungen mit einer grossen Zahl voneinander verschiedenen Matrixvorzahlen führt, denen man allfällige Fehler nur schwer anmerken kann. Man wird deswegen auf diese Fehler, die trotz aller Systematik selbst noch nach jahrelanger Uebung unvermeidlich sind, erst am Schlusse der Berechnung durch hervortretende Unstimmigkeiten in den Ergebnissen aufmerksam gemacht und muss die gesamte, oft tagelang dauernde Berechnung nochmals durchgehen oder gar vollständig wiederholen.

Für die Praxis ist es deswegen von grösster Bedeutung, dass für die wichtigsten statisch unbestimmten Tragwerke und ihre wichtigsten Belastungsfälle die geeignetste Wahl der Ueberzähligen ein für allemal erforscht wird, in dem Sinne, dass die Rechnung durch möglichst einfache und übersichtliche Elastizitätsgleichungen in festliegender, integrierter Form genau oder mit für praktische Zwecke genügender Genauigkeit ermöglicht wird.

Dieses praktische Ziel ist für die ebenen Tragwerke, wie sie besonders der Eisenbetonbau geschaffen hat, heute fast vollständig erreicht. Auf dem Gebiete der räumlichen Tragwerke stecken wir aber leider in dieser Hinsicht noch ganz in den Anfängen. Dies liegt wohl daran, dass die praktischen Statiker, denen man die Fortschritte in unsern Berechnungsmethoden zum grössten Teil zu verdanken hat, vor der unheimlich anwachsenden Anzahl der Ueberzähligen beim Uebergang zu den Raumtragwerken zurückschrecken und deswegen den naheliegenden Versuch der Uebertragung bewährter ebener Verfahren auf den Raum unterlassen.

Für die durch mehrere Querriegel versteiften, durch Windkräfte beanspruchten Brücken-Zwillingsgewölbe ist das vorgezeichnete Ziel leicht zu erreichen. Besteht doch schon rein äusserlich eine grosse Aehnlichkeit zwischen diesen räumlichen Stabkonstruktionen und den symmetrischen ebenen Rahmenträgern wie Stockwerkrahmen und Vierendeelträgern, deren einfachste Berechnung vermittelst dreigliedriger Elastizitätsgleichungen der Praxis wohl bekannt ist.²) In der Tat lässt sich auch eine innere, d. h. statische Verwandtschaft der symmetrischen gekrümmten oder räumlichen Rahmenträgern mit den entsprechenden ebenen Trägern aufdecken, die zu einer überaus einfachen Berechnung der Windbeanspruchung querversteifter Zwillingsbogen führt.

Wir behandeln zwei im Brückenbau besonders häufig vorkommende Fälle:

A. Die Axen der gleich ausgebildeten Bogen liegen in parallelen Vertikalebenen. Dies ist die gewöhnliche Anordnung bei angehängter Fahrbahn (vergl. Abb. 1 auf Tafel I, Seite 224).

B. Die vertikalen Ebenen der gleichseitig liegenden Bogenaxenhälften sind gegeneinander geneigt (Abb. 4 auf Tafel II, Seite 225). — Eine solche Gewölbespreizung wird bei oben liegender Fahrbahn und grösseren Spannweiten aus wirtschaftlichen, Stabilitäts- und auch ästhetischen Gründen zur Anwendung gelangen. Freilich verursacht die Bogenspreizung auch Zusatzspannungen in den Gewölbeebenen infolge der Vertikalbelastungen. Doch fallen diese Nebenspannungen aus dem Rahmen unseres heutigen Thema und wir werden uns an anderer Stelle darüber äussern.

In beiden genannten Fällen sind ausserdem zwei gebräuchliche Querriegel-Anordnungen — die vertikale (in den Abb. 1 und 4 links) und jene senkrecht zur Bogenaxe (in den Abb. 1 und 4 rechts) — zu berücksichtigen.

Die Berechnung auf Winddruck beider Zwillingsbogentypen stützen wir auf folgende grundlegende Annahmen:

1. Den auf die Gewölbeansichtsflächen stetig verteilt wirkenden Winddruck ersetzen wir durch horizontale, längs der Riegelaxen in den Knotenpunkten angreifende Einzelkräfte. Ebenso sollen an den gleichen Stellen auch die auf den Ueberbau wirkenden Windkräfte auf das Gewölbe übertragen werden, falls die Fahrbahn nicht selbst als Windträger ausgebildet wird.

Bei der vorausgesetzten Spiegel-Symmetrie der Gesamtkonstruktion in Bezug auf ihre vertikale Mittel-Längsschnittebene (deshalb die Bezeichnung "Zwillingsbögen") hat diese Annahme zur Folge, dass beide Bogen genau gleich, bezw. antisymmetrisch beansprucht werden und dass die Mitten der Querriegel nur eine horizontale, sonst aber keine elastische Verschiebung erleiden. Die Querriegelmitten sind also Momenten-Nullstellen, selbst bei Berücksichtigung der gegensätzlich gleichen vertikalen Durchbiegungen der Bogen.

Der Ersatz der verteilten Windbelastung durch konzentrierte Knotenlasten hat bei den kleinen spezifischen Werten der Windkräfte (100 bis 250 kg/m²) nur einen verschwindend kleinen Einfluss auf die zu errechnende Windbeanspruchung der Bogenkonstruktion. Eine genaue Berücksichtigung kann übrigens nach der folgenden Methode leicht erfolgen, doch lohnt sie sich nicht. Es genügt die Korrektur vermittelst der Einspannmomente der Bogenstäbe bei Annahme starrer Einspannung.²)

2. Die Vertikalverschiebungen der Knotenpunkte werden vernachlässigt und nur eine Horizontalverschiebung längs der Riegelaxen angenommen. Diese zweite, wichtigere Annahme findet ihre Begründung in der Kleinheit der aus den Windkräften sich ergebenden Zusatzbelastungen in den Bogenebenen und in der gewöhnlich viel grösseren Biegungssteifigkeit der Bogen in ihren Ebenen gegenüber jener in der Querrichtung.

¹⁾ Vergl. z. B. des Verfassers "Berechnung vielfach statisch unbestimmter biegefester Stabtragwerke", Seite 222 und folg., Verlag A.-G. Gebr. Leemann & Co., Zürich 1927.

²) Bei grösserem Abstand der Bogenrippen ist es besonders im Fall A ratsam, mit dem vollen Winddruck auf beide Rippen zu rechnen. Die genau gleiche Beanspruchung der Zwillingsbogen trifft dann in aller Schärfe zu, ohne dass hierfür der Ersatz der verteilten Windbelastung durch Knoten-Einzellasten nötig wird.

Bei grössern Spannweiten übertragen zwar die den Kämpfern benachbarten Querriegel beträchtliche Windauflagekräfte auf die Gewölbe, doch wirken diese Kräfte nahezu in den Gewölbeaxen — besonders bei zu diesen senkrechten Riegeln — sodass nur sehr geringe Biegemomente, also auch gegenüber elastischen Querverschiebungen vernachlässigbare Deformationen in den Bogenebenen entstehen. Bei horizontalen Windbelastungen dürfen wir deswegen die Bogen in ihren Ebenen, mit verschwindend kleinem Fehler, als starr auffassen.

Die Annahmen unter 1. und 2., deren Berechtigung durch genau, mit allgemeinen Elastizitätsgleichungen durchgeführte Berechnungen ihre volle Bestätigung gefunden hat ich erinnere an die Arbeiten von Dr. Ing. Walter Nakonz über die Berechnung des obern Rahmenwindverbandes bei einer Eisenbetonbrücke mit angehängter Fahrbahn 3) und von Prof. A. Hawranek über die allgemeine Theorie der Wirkung von Querriegeln bei zweirippigen Bogenbrücken 4) und die auch ohne weiteres aus blosser Anschauung einleuchten, ferner und vor allem die vorhandene Verwandtschaft der quer versteiften Zwillingsbogen mit den ebenen Rahmenträgern führen auf folgende Berechnungsverfahren für die beiden unter A und B ausein-

Fall A (Tafel I). Man wählt hier als Ueberzählige am einfachsten die auf einer Seite der Riegel in den Knotenpunkten und in den Bogen angreifenden Biegemomente X und die Torsionsmomente Y. Die Gewölbewirkung in den Bogenebenen bleibt also unter Ausschaltung der Torsions-Steifigkeit vollkommen erhalten. Es ist nützlich, sich das gewählte statisch unbestimmte Hauptsystem durch die Abbildung 3 (auf Tafel I) zu veranschaulichen. Zur Aufstellung der Elastizitätsgleichungen ist dies nicht absolut nötig. Bei verwickelten Hauptsystemen kann sich die Veranschaulichung schwierig gestalten oder auch ganz versagen.

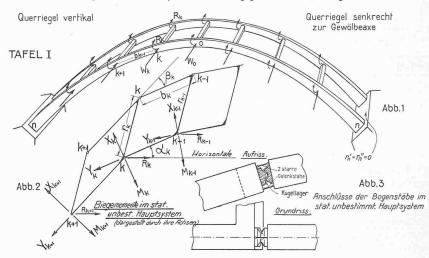
andergehaltenen Fälle.

An Hand der Abb. 2, die die wirkenden Kräfte im Hauptsystem darstellt, und mit Hülfe der Mohr'schen Arbeitsgleichung, deren eminent praktische Bedeutung sich ganz besonders bei den

Raumtragwerken zeigt, kann man das System der Elastizitätsgleichungen für die X und Y unmittelbar anschreiben. (Zur Entlastung der Abb. 2 haben wir nur die auf eine

3) "Die Bautechnik", 1923, Seite 488.

Berechnung auf Winddruck paralleler Zwillingsgewölbe mit Querriegeln.



- 1. <u>Grundlegende Annahme</u>: Knotenpunkte verschiebensich nur horizontal längs der Riegelachsen.
- Wahl der Ueberzähligen: Bei paralleler Lage der Zwillingsgewölbe wählt man am einfachsten die in den Knotenpunkten auf einer Seite der Riegel in den Gewölben wirkenden Quer-Biegemomente(X) s, die Torsionsmomente(Y). In den Gewölbeebenen bleibt also unter Ausschaltung der Torsionssteifigkeit, die volle Gewölbewirkung bestehen Isiehe Rie. 3)

5. Bezeichnungen:
$$\Gamma' = \frac{J_c}{J_1} \Gamma$$
 horizontale evertikale lever tingenhale anomale $\Gamma' = \frac{J_c}{J_c} \Gamma$ horizontale evertikale lever tingenhale anomale $\Gamma' = \frac{J_c}{J_c} \Gamma$ horizontale evertikale $\Gamma' = \frac{J_c}{J_c} \Gamma$ horizontale evertikale $\Gamma' = \frac{J_c}{J_c} \Gamma$ b Biegungslänge inder Querrichtung der Bagenstäbe $\Gamma' = \frac{J_c}{J_c} \Gamma$ b Biegungslänge inder Querrichtung $\Gamma' = \frac{J_c}{J_c} \Gamma$ b Biegungslänge inder Querrichtung $\Gamma' = \frac{J_c}{J_c} \Gamma$ b Diegungslänge inder Querrichtung $\Gamma' = \frac{J_c}{J_c} \Gamma$ b Biegungslänge inder Querr

4. <u>Elastizitätsgleichungen</u>: Sie können in der Form simultaner Biegungs - § Torsionsgleichungen als virtuelle Arbeiten infolge X_k = 1, § Y_k = 1 als Belastungszustände § dem Gesamt-Belastungszustand als Verschiebungszustand unmittelbarangeschrieben werden;

8. bei vertikalen Quer-fliegeln:

Kto Biegungsgleichung: $-(r'\cos a_{k+1}cosa$

 $\frac{K_{te} \ Torsionsgleichung}{f_{k}^{\mu} cos \alpha_{k} cos \alpha_{k+1} y_{k+1} + f_{k}^{\mu} cos \alpha_{k+1} cos \alpha_{k+1} cos \alpha_{k+1} + f_{k}^{\mu} cos \alpha_{k} + f_{k}^{\mu} cos \alpha_{k} + f_{k}^{\mu} cos \alpha_{k+1} f_{k}^{\mu} - f_{k}^{\mu} cos \alpha_{k} cos \alpha_{k+1} f_{k}^{\mu} - f_{k}^{\mu} cos \alpha_{k} cos \alpha_{k+1} f_{k}^{\mu} - f_{k}^{\mu} cos \alpha_{k} cos \alpha_{k+1} f_{k}^{\mu} - f_{k}^{\mu} - f_{k}^{\mu} cos \alpha_{k} cos \alpha_{k+1} f_{k}^{\mu} - f_{k}^{\mu} cos \alpha_{k} cos \alpha_{k+1} f_{k}^{\mu} - f_{k}^$

b. beinormal zur Bogenachse lieg. Riegeln: $mit \frac{\beta_{2}}{2} - \gamma$ Kte Biegungsgleichung: $(r'_{-}, cos'_{f_{k-1}} - r'_{k-1}, sin'_{f_{k-1}})X_{k+1} + [(r'_{k-}, cos'_{f_{k-1}} + r'_{k-1}, sin'_{f_{k-1}}) + 6b'_{k} + (r'_{k}cos'_{f_{k}} + r'_{k}'sin'_{f_{k-1}})]X_{k} - (r'_{k}cos'_{f_{k}} - r'_{k}'sin'_{f_{k}})X_{k+1} - [cos'_{f_{k-1}} - r'_{k-1}, sin'_{f_{k-1}})X_{k+1} - [cos'_{f_{k-1}} - r'_{k-1}, sin'_{f_{k-1}}]X_{k+1} - [cos'_{f_{k-1}} - r'_{k-1}, sin'_{f_{k-1}}]X_{k} - (r'_{k}cos'_{f_{k}} + r'_{k}'sin'_{f_{k}})X_{k+1} - [cos'_{f_{k-1}} - r'_{k-1}, sin'_{f_{k-1}}]X_{k} - (r'_{k}cos'_{f_{k}} + r'_{k}'sin'_{f_{k-1}})X_{k+1} - [cos'_{f_{k-1}} - r'_{k-1}, sin'_{f_{k-1}}]X_{k} - (r'_{k}cos'_{f_{k-1}} - r'_{k-1}, sin'_{f_{k-1}}]X_{k} - (r'_{k}cos'_{f_{k-1}} - r'_{k-1}, sin'_{f_{k-1}}]X_{k} - (r'_{k}cos'_{f_{k-1}} - r'_{k-1}, sin'_{f_{k-1}}]X_{k+1} - [r'_{k-1}cos'_{f_{k-1}} - r'_{k-1}cos'_{f_{k-1}}]X_{k+1} - [r'_{k-1}cos'_{f_{k-1}} - r'$

Die ersten & letzten Gleichungen in beiden Systemen ergebensich aus den Randbedingungen :

1.)
$$X_0 = X_1$$
, $Y_0 = Y_1$ and 2.) $\underline{\Gamma}_n^1 = \underline{\Gamma}_n^{"} = \underline{0}$

C. bei quadratischen Riegeln: mit r' = r" gehendie Gleichungen unter a s.b auf dasselbe noch viel einfachere

simultane System über: $\frac{K_{tx} \text{ Biegungsgleichung: } -r_{k'} \cdot \cos\beta_{k-1} X_{k'+1} + (r_{k'+1}' + 6b_k' + r_{k'}') X_k - r_k' \cdot \cos\beta_k X_{k+1} - \sin\beta_{k'-1} Y_{k+1} + \sin\beta_k r_k' Y_{k+1} - [(r_{k'+1}' + 3b_k' + r_{k'}') M_k - \cos\beta_k M_{k+1}] + [R_k \cdot r_k'' - R_{k'+1}' \cdot r_{k'-1}'] \cdot \sin\alpha_k = 0.$

[(r'_{k-1} + 3b_k + r'_k) M_k - coss M_{k+1} + [r'_{k-1} r_k - r'_{k-1} r'_{k-1}] \sum \alpha_k = \omega .

Inter Torsionsgleichung : -r'_{k-1} cos_k, Y_{k+1} + (r'_{k-1} + 6b_k + r'_k) Y_k - r'_k cos_k, Y_{k+1} + sin_{B_{k-1}} r'_{k-1} X_{k-1} - sin_{B_k} r'_k X_{k+1} + r'_k sin_{B_k} M_{k+1} + R_k r'_k r'_k) cos_k = 0

Die simult: X+y Gleichungen unter a, b, c, sind sowohl inden X als auch inden y dreigliedrig. Thre Auflösung erfolgtdeswegen durch Iteration sehr rasch.

d. Näherungslösung

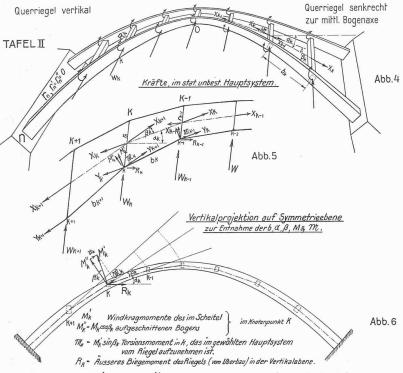
flus a, b ac erkennt man , dass für Bemessungszwecke die Y vernachlässigt a die Kaus den nun dreigliedrigen Biegungsgleichungen berechnet werden können .

Bogenrippe wirkenden X und Y durch ihre Axen angegeben. Natürlich wirken die Ueberzähligen im umgekehrten Sinn, auch auf die Riegel.)

Man ordnet die Gleichungen am besten in zwei simultane Gruppen an: 1. In die Biegungsgleichungen, die zu den X=1 als virtuelle Belastungszustände gehören und

⁴⁾ Verhandlungen des zweiten Internationalen Kongresses für technische Mechanik, 1926, Seite 284. Verlag Orell Füssli, Zürich.

Berechnung auf Winddruck gespreizter Zwillingsgewölbe mit Querriegeln.



1. Grundlegende Annahme: Knotenpunkte verschieben sich nur horizontal

2. Wahl der Ueberzähligen : Bei gespreizten Zwillingsbögen wählt man am einfachsten als Ueberzählige die an den Riegeln inder Symmetrieebene angreifenden <u>Feldschübe X</u> und die zur Symmetrieebene senkrechten <u>Drillmomente Y der Bogenstäbe. Die Gölbewirkung in den Bogenebenen bleibt also vollkommen erhalten.</u>
Die Zusatzspannungen infolge der Gewölbespreizung sind bei Vertikalbelastung gesondert zu bestimmen.

3. <u>Ergänzende Bezeichnungen</u>: $\Gamma' = \frac{J_c}{J_c}\Gamma$ norizontale a vertikale bew. tangentiale 1 norizontale a vertikale b' = $\frac{J_c}{J_c}$ b - Biegungslänge (M. Querrichtung) der Bagenbew. tangentiale 1 normale $\Gamma'' = \frac{J_c}{J_c}\Gamma$ Biegungslängen der Riegel $t = \frac{J_c}{J_c}$ b - Biegungslänge (M. Querrichtung) der Bagenstäbe.

4. <u>Elastizitätsgleichungen</u>: Man erhält durch Anschreiben der zu X_K * 1 § Y_K * 1 §

a. bei vertikalen Querriegeln :

 $\frac{K_{lot} \ Biegungsg/eichung}{F_{loc}^{\prime} Cos^{2}a_{\kappa} - Cos^{2}a_{\kappa} - Cos^{2}a_{\kappa} - Cos^{2}a_{\kappa} - F_{\kappa}^{\prime\prime} Sina_{\kappa} / F_{\kappa}^{\prime\prime} / F_{\kappa}^{$

 $\frac{Ke_{\bullet} Torsionsgleichung}{(r_{\bullet}', sina_{\kappa}, sina_{\kappa}, + r_{\bullet}'', cosa_{\kappa}, cosa_{\kappa}, cosa_{\kappa})}{(r_{\bullet}', sina_{\kappa}, + r_{\bullet}'', cosa_{\kappa})} + 6t_{\bullet} + (r_{\bullet}', sina_{\kappa}, + r_{\bullet}'', cosa_{\kappa}, - r_{\bullet}'', - r_{\bullet}'', - r_{\bullet}'') r_{\bullet} + r_{\bullet}'' cosa_{\kappa}, r_{\bullet}'' r_{\bullet}'', r_{\bullet$

b. bei zur Bogenachse senkr Querriegeln: mit $f_{2}^{\mu} = f_{1}^{\mu}$ erhälbman:

Mtz Biegungsgleichung: $-(\cos f_{R-1}r_{1-1}^{\mu} - \sin f_{R-1}r_{1-1}^{\mu})f_{1}^{\mu} X_{R-1} + f[\cos f_{R-1}r_{1}^{\mu} + \sin f_{R-1}r_{1}^{\mu})f_{1}^{\mu} + f[\cos f_{R-1}r_{1}^{\mu} + \sin f_{R-1}r_{1}^{\mu}]f_{1}^{\mu} + f[\cos f_{R-1}r_{1}^{\mu} + \sin f_{R-1}r_{1}^{\mu}]f_{1}^{\mu} + f[\cos f_{R-1}r_{1}^{\mu} + \sin f_{R-1}r_{1}^{\mu}]f_{1}^{\mu} + f[\cos f_{R-1}r_{1}^{\mu}]f[\cos f_{R-1}r_{$

Erste und letzte Gleichung in a sp erhält man, indem man k-1, $X_0 = X_1$, $Y_0 = Y_1$ $x_1 = x_2^n = 0$ setzt. Die Auflösung dersimultanen Gleichungen erfolgt wieder am raschesten durch Steration, da sie sowohl in den X_1 als Y_1 dreigliedrig sind.

 $\frac{C. \ beigungsgleichung:}{Kla_Biegungsgleichung:} \ gehen die Gleichungen sowohl unter a., als auch b., in dasselbe einfachere Systemüber: \\ \frac{Kla_Biegungsgleichung:}{Kla_Biegungsgleichung:} \frac{-l'_{n'}, l'_{n'}, \operatorname{cop}_{n'}, \chi_{n-1} + \left[l'_{n'}, l'_{n'}, + \left[l'_{n'}, l'_{n'} \right] + l'_{n'} \right] + l'_{n'} l'_{n'}, \chi_{n-1} + l'_{n'} l'_{n'}, \chi$

 $\frac{N_{te} \ \text{Torsionsgleichung}: -r'_{k'}, \cos\beta_{k-1} Y_{k-1} + [r'_{k'}, +\delta t_k + r'_k] Y_k - r'_k \cos\beta_k Y_{k+r} - \frac{1}{2} l'_{k'}, r_{k-1} \sin\beta_{k'} X_{k+r} + \frac{1}{2} r'_k r_k \sin\beta_k X_{k'er} - - [M_{t} r'\cos\beta_k - M_{t-1}, r'_{k-1}] + \cos\chi_k \binom{r'_k}{r'_k} r_{k''_k} r_{k''_k} r_{k''_k} - - \frac{1}{2} r'_{k''_k} r_{k''_k} r_{k''_k} r_{k''_k} - - \frac{1}{2} r'_{k''_k} r_{k''_k} r$

<u>d. Näherungslösung</u>: Die Gleichungen unter a, b,c zeigen, dass die Feldschübe X sich genügend genau aus den dreigliedrigen Biegungsgleichungen, unter Vernachlässigung der Torsionsmomente Y, bestimmen lassen

2. In die Torsionsgleichungen, die die Bedeutung haben, dass die virtuellen Arbeiten der $Y=\mathbf{1}$ infolge des wirklichen Verschiebungszustandes verschwinden.

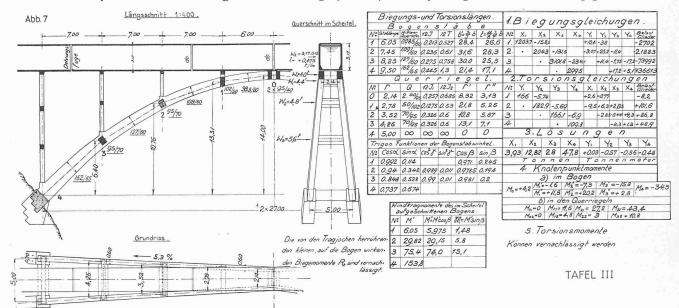
Dank der getroffenen Wahl für die Ueberzähligen sind beide simultanen Gleichungssysteme, die also im Grunde genommen ein einziges vollständiges System bilden, sowohl in den X als auch Y dreigliedrig, und zwar von dem häufigst auftretenden Typus mit negativen Matrixvorzahlen ausserhalb der Hauptdiagonale. Ihre Auflösung erfolgt deswegen am einfachsten durch Iteration, indem man vorerst im ersten Gleichungssystem die Y=0 setzt und durch die bekannte einfache Reduktion der verbleibenden nun dreigliedrigen X-Gleichungen die X ermittelt und aus dem zweiten jetzt ebenfalls dreigliedrigen Y-System auf gleiche Weise die Y findet.

Die Gleichungen lassen sich ebenso leicht für vertikale als auch senkrecht zur Bogenaxe liegende Querriegel aufstellen. Im zweiten Fall werden die Matrixvorzahlen und die Belastungsglieder etwas einfacher. Bemerkenswert ist die starke Vereinfachung und der Uebergang in das selbe Gleichungssystem beider Fälle bei Annahme quadratischer Riegel. Für diesen Sonderfall kommt besonders deutlich der Zusammenhang mit dem ebenen Rahmenträger zur Geltung. Die Vorzahlen der

X in den Biegungsgleichungen unterscheiden sich dann von den entsprechenden Gleichungen eines ebenen symmetrischen Stockwerkrahmens nur im Auftreten der cos-Faktoren in den Vorzahlen ausserhalb der Hauptdiagonale. Zur Vermeidung von Wiederholungen verzichten wir auf weitere Angaben für diesen Fall, da manches Gemeinsame unter Fall B noch gesagt werden kann.

Fall B (Tafel II). Man könnte auch hier mit dem gleichen statisch unbestimmten Hauptsystem auskommen. Nur lassen sich dann die X und Y-Gleichungen nicht mehr so unmittelbar wie unter A anschreiben. Dies gelingt aber wieder mühelos, wenn man hier am einfachsten die Feldschübe X, die in der Längssymmetrieebene und in den einzelnen Felderebenen in den Mitten der Riegelaxen angreifen, als Ueberzählige wählt. Als zweite Gruppe statisch unbestimmter Grössen führt man wieder die senkrecht zur Symmetrie-Ebene wirkenden Drillmomente Y der einzelnen Bogenstäbe ein. Die Mohr'sche Arbeitsgleichung, hier ganz besonders wirksam durch die bekannte Trapezformel unterstützt, liefert wieder zwei Gleichungsgruppen von dem selben wie unter A gefundenen, in den X und den Y dreigliedrigem Typus. Es sei betont, dass hier wie im Fall A die Dreigliedrigkeit der Gleichungen in den X und Y nur von der zweckmässigen Wahl der Ueberzähligen und nicht etwa von der Annahme gerader Bogenstäbe und konstanten Trägheitsmomentes

Zahlenbeispiel für die Berechnung auf Winddruck gespreizter, durch Querriegel versteifter Zwillingsgewölbe.



im Bereich der Einzelstäbe abhängig ist. Will man die zwischen zwei Knotenpunkten sehr geringe Krümmung der Bogenstäbe und die im gleichen Bereich in der Querrichtung ebenfalls sehr geringe Aenderung des Trägheitsmomentes (die Rippenstärke ist gewöhnlich konstant) berücksichtigen, so hat man die auf den Tafeln I und II angegebenen Vorzahlen mit leicht ermittelbaren Korrektur-Koeffizienten zu versehen.

Infolge der Symmetrie im Tragwerk und in den Belastungen hat man die Gleichungen nur für die auf einer Gewölbehälfte liegenden Knotenpunkte anzuschreiben. Die erste und letzte Gleichung beider simultanen Systeme, die jeweilen nur zwei X und zwei Y enthalten, erhält man aus den leicht ersichtlichen Randbedingungen

 $X_1 = X_0$, $Y_1 = Y_0$, $Y_n = Y_n'' = o$ wo r_n' und r_n'' die verschwindenden Biegungslängen (bei vollkommener Einspannung des Gewölbes) bedeuten. Die Belastungsglieder in den X und Y-Gleichungen sind aus den halben Windkragmomenten des im Scheitel aufgeschnittenen Gewölbes zu ermitteln, denn im gewählten Hauptsystem ist die Querbiegesteifigkeit der Bogen auf ihrem ganzen Bereich erhalten geblieben und nur die Torsionsmomente müssen auf die Querriegel übertragen werden

Zahlenbeispiel.

In Abb. 7 (obige Tafel III) sei durch einen schematischen Längs- und einen Querschnitt eine Kanalbrücke dargestellt, deren Tragkonstruktion als wichtigsten Bestandteil zwei gespreizte, durch sieben Querriegel versteifte, 54 m weit gespannte Zwillingsbogen enthält. Im rechteckigen Kanal sind fünf Dehnungsfugen angeordnet, um durch Ausschaltung der Schwindwirkungen und der Biegezugspannungen in der Längsrichtung infolge der Wirkung des Kanals als Wind- und Gewölbeversteifungsträger die Chancen einer absolut dichten Wasserführung nach Möglichkeit zu vergrössern.

Aus dem gleichen Grunde und zur Entlastung der Gewölberippen von schwer zu erfassenden Nebenspannungen ist im Scheitel und in den nächst benachbarten Auflagerpunkten die Kanalkonstruktion vom Gewölbe durch Anordnung eines Gleitbezw. festen Wälzlagers getrennt. Man erreicht dadurch eine reine Scheidung zwischen den Funktionen des Kanals und der eigentlichen Tragkonstruktion.

In gewollter Weise wird also der Winddruck auf die gesamte Brückenansichtfläche auf die gespreizten Zwillingsgewölbe übertragen. Die Berechnung der Zwillingsgewölbe als parallele Gewölbe nach den Gleichungen A würde hier zu erheblichen Fehlern führen, da trotz des verhältnismässig geringen Anzuges von etwa 5% die Breite des Gewölbes von etwa 2,14 m im Scheitel auf 5 m im Kämpfer anwächst. Wir haben deswegen die Berechnung nach den genauern Gleichungen B durchgeführt. Die Ergebnisse der Berechnung finden sich auf Tafel III. Es hat sich das überraschende und willkommene Ergebnis gezeigt, dass die Torsionbeanspruchung schon bei einer mässig grossen Anzahl von Querriegeln gegenüber der Biegungsbeanspruchung in der Querrichtung verschwindet und dass also die Biegebeanspruchung in der Querrichtung der Bogen und in den Riegeln sich aus einem einzigen dreigliedrigen Gleichungssystem, das sich aus den Biegungsgleichungen unter A und B durch Weglassen der Torsionsglieder ergibt, sehr rasch und praktisch genau erschliessen lässt.

Bei zur Bogenaxe senkrechten Riegeln unterscheiden sich die so gewonnenen Biegungsgleichungen praktisch nicht von den entsprechenden Gleichungen des ebenen symmetrischen Stockwerkrahmens mit vertikalen bezw. gespreizten Ständern.

Es ist also bemerkenswert, dass die wesentlichsten Konstruktionsteile — d. h. die Tragjoche und die querversteiften Zwillingsgewölbe — eines Traggerüstes von dem häufig zur Ausführung gelangenden Typus der Kanalbrücke auf Tafel III bei Windbeanspruchung im grossen und ganzen mit einem und demselben dreigliedrigen Gleichungsansatz vollständig genügend genau berechnet werden können und dass sich also in Zukunft mühselige und zeitraubende Berechnungen füz solche räumliche Tragkonstruktionen für die Praxis erübrigen. (Schluss folgt.)

Wettbewerb für ein Altersasyl der Stadt Luzern.

Zur Teilnahme an diesem Wettbewerb waren laut Programm berechtigt "alle in der Stadtgemeinde Luzern vor dem 1. Januar 1927 niedergelassenen, sowie die in der Schweiz wohnhaften und in der Stadt Luzern heimatberechtigten, selbständigen Architekten"; Mitarbeiter hatten den gleichen Bedingungen zu entsprechen. Ferner hiess es im Programm: "Jeder Bewerber darf nur ein Projekt einreichen; stellt sich heraus, dass einer mehrere eingereicht hat, so scheiden alle aus dem Wettbewerb aus. Varianten sind nicht zulässig." — Der Ausgang nun hat in Fachkreisen insofern überrascht, als die beiden Teilhaber der altbekannten Luzerner Architekten-Firma Möri & Krebs,