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Ueber die Eigenfrequenzen elastischer Korper.
Von Ingenieur F. KITO, Nagoya (Japan).

In Heft 1 von Band 87 der S.B.Z. (2. Januar 1926)
hat Herr Prof. Dr. E. Hahn unter dem Titel , Détermination
des fréq iences critiques d'une piéce élastique* eine Methode
zur Bestimmung der kritischen Eigenschwingungen ela-
stischer Kérper bekannt gegeben. Der vorliegende Artikel
soll die Niitzlichkeit dieser Methode in ihrer Anwendung
auf die Bestimmung der Eigenschwingungen von Rahmen-
werken zeigen.

Obgleich die Abhandlung von Prof. Hahn an sich
ein Ganzes ist, miissen wir doch die dort entwickelten
Resultate fiir unsern bestimmten Zweck etwas umformen.

Betrachten wir einen elastischen Korper, der aus
gebogenen oder geraden Stiben besteht. Von einem pas-
send gewihlten Ausgangspunkt kénnen wir die Lage eines
jeglichen Massenelementes durch eine einzige verander-
liche s bezeichnen. Nehmen wir an, jeder Massenpunkt s
sei durch die beiden den Koordinatenaxen parallelen
Krifte X und Y beansprucht (Abbildung 1); diese Krifte
verursachen in jedem Punkt 7 die Ablenkungen

Or=ou X+ Y . . . . . (1)
O =y X—+d:Y . . . . . (2)

Daher werden unter dem Einfluss von verteilten
Kriaften 4X; und dY, Deformationen entstehen, die im
Punkte ¢, nach den Richtungen x und y, folgende Werte
annehmen werden:

l
Xy = [a:t d /\,s + ﬁst d ys . . . . (3)

A
.)’z:’j%ths*f-é:tdY; v oW o s (4)

Nehmen wir an, das System fiihre Schwingungen
aus, nach dem Gesetze
yy=2=X, cosdT. . . . . . . (5
go= ¥oeos AT . . . . : . « (6
Dieser Schwingung entspre-
chen Beschleunigungen im Be-
trage von:

% = -— X2 cosA T

= =A% . . . {(7)
ys = — Y.Atcos AT

= —22y, . . . (8)

Ist die betrachtete Schwingung eine natirliche, so
reduzieren sich 4X; und dY; auf die Triagheitskraft:
dAX;=—mMi2xds . . . . . (9
dY,=—mity,ds . (10)
Durch Einsetzung dieser Werte in (3) und (4) ergibt sich:
‘

X = — _/‘/12 m [as x5 —+ B ys] ds (1)

/
Y= — ‘/}ﬂ m [y ¥ = 0 ys] ds (12)
Das sind simultane lineare Integral-Gleichungen.
Somit haben wir, wie in Prof. Hahn's Aufsatz, fiir die
Eigenschwingungen erster Ordnung die Gleichung

Afi— -

g = . (13)
I [etss + Oss] 2 ds

Die Bedeutung der Grossen «,, und J, ist offen-
sichtlich; somit kénnen wir durch eine einfache Quadratur
die Eigenschwingungen erster Ordnung berechnen. Die
folgenden Abbildungen beziehen sich auf vier Beispiele,
die die Anwendung der Formeln auf praktische Fille
erldutern sollen. Im Falle der Abb. 2 sind 4, und a* ver-
haltnis missig klein, sodass der entsprechende Wert von 1
verhiltnismissig gross sein wirde. Im Falle der Abb. 3
sind o, und O gross wie fir Abb. 2. Im dritten Beispiel
(Abb. 4) ergibt der Stab D einen ziemlich grossen Betrag
zum Integral in Gl. (13). Somit wird der Wert von 1 kleiner
werden. Im Falle der Abb. 5 wiirde der von L herriihrende
Anteil viel grosser sein als die der iibrigen Stibe, sodass
die Schwingungsfrequenz nur wenig von der eines Krag-
trigers der Linge L verschieden wire.

Im folgenden soll die obige Methode auf ein belie-
biges statisch unbestimmtes System angewendet werden,
wobei wir die von W. Kaufmann gewihlten Bezeichnungen
benitzen!). Das Biegungsmoment in irgend einem Punkt
lasst sich in der Form bringen:

ﬁ{: MO _'_ Ml Xa_**M[lX[f{_" LR + Mz Xﬂ .
worin X, X, ... X, statisch unbestimmte Grossen sind.

M, bedeutet das von den #ussern Kriften herriihrende
Biegungsmoment, }, das Biegungsmoment fiir .X, = 1, usw.

(14)

!y W. Kaufmann, , Statik".
Julius Springer. S 198.
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Abb. 5.
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Setzen wir

(5,,,,=fM“2 s
Bos = f L

wobei d.., zum Beispiel, die Verschiebung des Punktes a
unter der alleinigen Einwirkung der Kraft X, = 1 darstellt,
und setzen wir ferner

K= — M/]a

W_%_/Mmd

usw.

(15)

M, M,

ds, K;= — f ds

" (16)
K,nz_/'ﬂ[ M s

.y ey El

dann lauten die Gleichungen zur Bestimmung der Unbe-
kannten X,, X, ... X,

Xn 64(1 + X!; dén + e + IY,, 611:1 = Ka
Xa6a6+Xlz(sbb_'—~~'+Xrtérxb =K6 (17)
Xa 641,1.‘:*'. Xb 6én _'_ . + Xn (;ll"l .: Kn
woraus
P ALY ARTELE A +"7KI
o Aba Jbb s
1Y1,-— K -I— [(5—{— o s + A K,l (18)
e dus o A
Xu——‘ dKa+7[(ﬁ+ vee + JKH
oder anders geschrieben:
Xz = ﬂaa Ka + 'ﬁ‘ab K& ‘+‘ yes == 'ﬁan Kn
Xy = Vpa Ko+ s Ko+ . .. 4 040 K (10)

Xn = 79;14 I(a '+‘ 19';16 Kb e 19‘)11; Kn

Somit kdénnen wir mit Hilfe der Gleichung (14) fir
jeden beliebigen Punkt das Biegungsmoment berechnen,
das durch die Wirkung #usserer Krifte entsteht.

Nehmen wir nun an, das Moment A/ rithre von einer
einzigen im Punkte S, parallel zur X-Axe angreifenden
Einheitskraft her. Dann haben wir auf Grund des Prin-
zipes der virtuellen Verschiebungen?)

oan= [ (Mo + M Xot My Xt ...+ M, X,] ds

M2 o Mo My My,

= [Zrds +Xf 1+be 1 s
+ LG + Xu f‘ll AI"

f o [l]S—K X —KbXb _Kan

= g — Ky (V0 Ko+ 0as K+ . . .)
— K (00 Ko+ 94 K5+ . .
— Ry (Kot DKo+ ..
wobei wir gesetzt haben
My

.) (20)

Da die Gleichung (zo) nun keine Unbe-
kannten mehr enthilt, konnen wir den Wert
von ag fiir jeden Wert von s berechnen.

Zum Schluss mégen noch einige Bemer-
kungen am Platze sein betreffend die quadra-

tischen Formen in K, K, ..., K,, die in
Gl. (20) vorkommen. Es ist nimlich'
Kn A’R 4{‘ [(b IY/: ’|" _{“ l(n Ay

= Ky (Daa Ko+ Das K —4— o)
+ [(g (1?/,,, [(,, + 1955 Kz, + w ol 8 )

4 o o

-+ Kz (7()'1111 Ka + Do K/; =+ .. )
= Xu ((511(1 /\,ﬂ + (3,1& X{; + .o s )
+ X[, ((3[,,, 1Y,, —‘-‘ l)u, 1\’5 + SR )

= ,,;l_ Xu ((smz /\741 J‘_ (s!lﬁ A’/' 7[ RO ) . (2‘)

') Man beachte, dass hier dic Parameter .X,, .\, eben-
falls | pro Einheitskraft" aufgefasst werden miissen, damit
die Homogenitit der Gleichungen gewahrt bleibe (An-

merkung des Uebersetzers). Abb. 1,

9 S

Nun erkennt, man dass dieser letzte Ausdruck nichts
anderes bedeutet als die Deformationsarbeit, die dem Krifte-
system X,, X, ... X, entspricht. Somit muss die Summe
dieser quadratischen Form stets positiv sein.

Aus Gleichung (20) geht also deutlich der Unterschied
hervor, der zwischen statisch bestimmten und unbestimmten
Systemen besteht.

Wir konnen auf die gleiche Weise den Ausdruck
fir y, finden, und wir erhalten

ass —+ Vss :a—ﬂ+—)':— 2 Ka (79‘(14 K, +9u K, 4+ . )

—2Kb (‘19[‘,1 ]{a+1955K5+ .o )

— 2 Ku (.19;14 Ka + ﬁn& KZJ —f"‘ sy S ) (22)
oder, durch Einsetzung der Werte fir X,, X, ...
ass_*_;’ssza"}_yj_‘z)(a(aan Xa +dnb Xb+ .. )

— 2 Xy (00 Xo 000 Xo+ ...)

— 2 Xu (6rm Xa + (Sn& IYb '{— CRC ) (23)

Zum Schluss sei noch erwihnt, dass die Methode
Miller-Breslau die Berechnung wesentlich vereinfachen
wird, denn, wenn wir von dieser Methode ausgehen, so
erhalten wir

64(;: (Sar — me
und die quadratische Form in GI. (21) reduziert sich auf
19‘,,,; Kaz + 19‘(\5 K52 —I— oo + ‘19,,,, K,,2

= 0O:

oder
Oua X2+ 0ss Xp2+ ... 4+ 0, X,2
Durch diese Methode wird also die Aufgabe auf die
Berechnung einer orthogonalen quadratischen Form zurtick-
gefiihrt.

Die ,Musterhiuser®“ an der Wasserwerkstrasse,
Zirich, Ausstellung ,Das Neue Heim*, 1928.

(Hierzu Tafeln 1 bis 4.)

Die ,Musterhduser® an der Wasserwerkstrasse, die
acht Tage nach der Eroffnung des im Ziircher Kunstge-
werbemuseum untergebrachten ersten Teils der von Direktor
A. Altherr veranstalteten Ausstellung ,Das Neue Heim*
erdffnet werden konnten, verdienen besondere Beachtung
als erstes Symptom eines sich vorerst sehr zogernd regen-
den Interesses offentlicher Stellen fiir die Bestrebungen
der modernen Architektur. Nicht dass etwa ein Rappen
fir eigentliche Versuchszwecke bewilligt worden wire, fir
die das verarmte Deutschland, in richtiger Erkenntnis ihrer

= LIMMATKANAL 7 =

Lageplan der Musterhiiuser an der Wasserwerkstrasse in Ziirich. — 1 : 600.
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