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Ueber die Eigenfrequenzen elastischer Körper.
Von Ingenieur F. K1TO, Nagoya (Japan).

In Heft 1 von Band 87 der S. B. Z. (2. Januar 1926)
hat Herr Prof. Dr. E. Hahn unter dem Titel „ Determination
des freqaences critiques d'une piece elastique" eine Methode
zur Bestimmung der kritischen Eigenschwingungen
elastischer Körper bekannt gegeben. Der vorliegende Artikel
soll die Nützlichkeit dieser Methode in ihrer Anwendung
auf die Bestimmung der Eigenschwingungen von Rahmenwerken

zeigen.
Obgleich die Abhandlung von Prof. Hahn an sich

ein Ganzes ist, müssen wir doch die dort entwickelten
Resultate für unsern bestimmten Zweck etwas umformen.

Betrachten wir einen elastischen Körper, der aus
gebogenen oder geraden Stäben besteht. Von einem
passend gewählten Ausgangspunkt können wir die Lage eines
jeglichen Massenelementes durch eine einzige veränderliche

s bezeichnen. Nehmen wir an, jeder Massenpunkt s
sei durch die beiden den KoordinateDaxen parallelen
Kräfte X und Y beansprucht (Abbildung 1); diese Kräfte
verursachen in jedem Punkt / die Ablenkungen

dx astX-\-ßstY (1)
d, yaX+d«Y (2)

Daher werden unter dem Einfluss von verteilten
Kräften dXs und dYs Deformationen entstehen, die im
Punkte /, nach den Richtungen x und y, folgende Werte
annehmen werden:

xt fasidX+ßstäYs (3)
o

l
yt \Yst dXs + dstdYs (4)

(5)
(6)

Nehmen wir an, das System führe Schwingungen
aus, nach dem Gesetze

xs Xs cos X T
ys Ys cos X T

Dieser Schwingung entspre- „,chen Beschleunigungen im
Betrage von:

x" — — XsX* cosX T

jpg! • - (7)
y" — Y, Xi cos X T

-X*ys (8)

—>/f
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Ist die betrachtete Schwingung eine natürliche, so
reduzieren sich dXs und dYs auf die Trägheitskraft:

d Xs — m X2 xsds (9)
d Ys — m X*ysds (10)

Durch Einsetzung dieser Werte in (3) und (4) ergif||sich:

— / X2 m [ast x, + ßstys]xt — ds (")

yt X*m [yst xs + dtty,] ds (12)

Das sind simultane lineare Integral-Gleichungen.
Somit haben wir, wie in Prof. Hahn's Aufsatz, für die
Eigenschwingungen erster Ordnung die Gleichung

X*

/.[% + Sss]m äs
¦ (13)

Die Bedeutung der Grössen ass und dss ist
offensichtlich; somit können wir durch eine einfache Quadratur
die Eigenschwingungen erster Ordnung berechnen. Die
folgenden Abbildungen beziehen sich auf vier Beispielgl
die die Anwendung der Formeln auf praktische Fälle
erläutern sollen. Im Falle der Abb. 2 sind <5M und a"
Verhältnis massig klein, sodass der entsprechende Wert von X

verhältnismässig gross sein würde. Im Falle der Abb. 3
sind ass und dss gross wie für Abb. 2. Im dritten Beispiel
(Abb. 4) ergibt der Stab D einen ziemlich grossen Betrag
zum Integral in Gl. (13). Somit wird der Wert von X kleiner
werden. Im Falle der Abb. 5 würde der von L herrührende
Anteil viel grösser sein als die der übrigen Stäbe, sodass
die Schwingungsfrequenz nur wenig von der eines
Kragträgers der Länge L verschieden wäre.

Im folgenden soll die obige Methode auf einf|belie-
biges statisch unbestimmtes System angewendet werden,
wobei wir die von W. Kaufmann gewählten Bezeichnungen
benützen1). Das Biegungsmoment in irgend einem Punkt
lässt sich in der Form bringen:

M=M0-hM* Xa+MiXt+ ...-\-MnX„. (14)
worin Xa, Xt, X„ statisch unbestimmte Grössen sind.
Mo bedeutet das von den äussern Kräften herrührende
Biegungsmoment, Ma das Biegungsmoment für^«-= 1, usw.

') W. Kaufmann, „Statik". Verlag
Julius Springer. S 198.
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Setzen wir

0aa= l-gj dS Oat Ota J £J
dS

mMj3

EI ds
(15)

wobei daa, zum Beispiel, die Verschiebung des Punktes a
unter der alleinigen Einwirkung der Kraft Xa 1 darstellt,
und setzen wir ferner

Ka -J^-ds, Kb

K„--

CM0Mh
~J &

El

ds

ds
(16)

dann lauten die Gleichungen zur Bestimmung der
Unbekannten Xa, Xb ••• X„

Xadaa + Xid6„-\-...+X„d„a=Ka
Xa 6a6 + Xi du -{-¦¦¦ -+- Xin ö„i Kt (17)

Xa 6an -f- Xi dfo, -f-. -\- X„ b„n Kn

woraus

Xa=^-KaW^fKt Jan ff

xn
Jna

Ka
Ant,

Kh

Jtn

dnn

J " ' J
oder anders geschrieben:

Xa ti-aaKa + üatKt +
Xt=-&iaKa + #tiKi-\-

K„

K„

(18)

$an Kn
&t„K>-

#»« K„
(19)

Xn $naKa-h&KiKtW--
Somit können wir mit Hilfe der Gleichung (14) für

jeden beliebigen Punkt das Biegungsmoment berechnen,
das durch die Wirkung äusserer Kräfte entsteht.

Nehmen wir nun an, das Moment M0 rühre von einer
einzigen im Punkte S, parallel zur ^Y-Axe angreifenden
Einheitskraft her. Dann haben wir auf Grund des Prin-
zipes der virtuellen Verschiebungen1)

1 ass f3L[M0-\-MaXa-\- MtXt+...-\-M„Xn]ds

m =J^mxaj^dswXiJ^ds
+ + XnJ^ds

Ka Xa — Ki Xi — — K„ X„m'Ol
EI ds

ass Ka (tiaa Ka + dai Ki~\-
— Ki (&ia Ka-+-&biKi-\-...)

— Kn (PnaKa 4 &niKi + (20)
wobei wir gesetzt haben

Da die Gleichung (20) nun keine
Unbekannten mehr enthält, können wir den Wert
von a« für jeden Wert von s berechnen.

Zum Schluss mögen noch einige
Bemerkungen am Platze sein betreffend die quadra-
tischen Formen in Ka, Kb ¦ ¦ ¦, K„, die in
Gl. (20) vorkommen. Es ist nämlich:

Ka Aa -f Ki Xi + -|- Kn X„
Ka (&aa Ka + ÖaiKiW

-+-Ki(&iaKa-\-#uKi+

+ K„ (&„a Ka + &„i Kt +
Xa (daa Xa -f- bat Xi -+-

+ Xt (Öia Xa + Sil Xt -+-
-+¦
-\- X„ (d„a Xa +- dnl Xt -f-

Nun erkennt, man dass dieser letzte Ausdruck nichts
anderes bedeutet als die Deformationsarbeit, die dem Kräftesystem

Xa, Xb, ¦ ¦ ¦ X„ entspricht. Somit muss die Summe
dieser quadratischen Form stets positiv sein.

Aus Gleichung (20) geht also deutlich der Unterschied
hervor, der zwischen statisch bestimmten und unbestimmten
Systemen besteht.

Wir können auf die gleiche Weise den Ausdruck
für yss finden, und wir erhalten

a„ -+- yss «si -4- ya — 2 Ka (#aa Ka -+- $ai Kt -}-
— 2 Kb (-»ia KaW&iiKi-j-

— 2Kn (0„ Ka + dniKi -j- (22)
oder, durch Einsetzung der Werte für Xa, Xb,
ass -4- ySs ass -f- yss — 2 Xa (daa XaW^aiXi-\-

2 Xi (Öia Xa -4- du X6 -\-

— 2 X„(d„a Xa + dniXt 1 (23)
Zum Schluss sei noch erwähnt, dass die Methode

Müller-Breslau die Berechnung wesentlich vereinfachen
wird, denn, wenn wir von dieser Methode ausgehen, so
erhalten wir

dal äac ¦ ¦ ¦ O.

und die quadratische Form in Gl. (21) reduziert sich auf
Vaa Ka2 -\-&tiKi*+ H ¦&„„ K„*

oder
daa Xa* + 4» Xb* + • • • + d„n Xn*

Durch diese Methode wird also die Aufgabe auf die
Berechnung einer orthogonalen quadratischen Form
zurückgeführt.

Die „Musterhäuser" an derWasserwerkstrasse,
Zürich, Ausstellung „Das Neue Heim", 1928.

(Hierzu Tafeln i bis 4.)

Die „Musterhäuser" an der Wasserwerkstrasse, die
acht Tage nach der Eröffnung des im Zürcher
Kunstgewerbemuseum untergebrachten ersten Teils der von Direktor
A. Altherr veranstalteten Ausstellung „Das Neue Heim"
eröffnet werden konnten, verdienen besondere Beachtung
als erstes Symptom eines sich vorerst sehr zögernd regenden

Interesses öffentlicher Stellen für die Bestrebungen
der modernen Architektur. Nicht dass etwa ein Rappen
für eigentliche Versuchszwecke bewilligt worden wäre, für"
die das verarmte Deutschland, in richtiger Erkenntnis ihrer

(21)
eben-') Man beachte, dass hier die Parameter X„, Xt

falls „pro Einheitskraft" aufgefasst werden müssen, damit
die Homogenität der Gleichurjgen gewahrt bleibe
(Anmerkung des Uebcrsctzers).

1131

^^^^ur WASSI*«*m^

'12 -

tRÖEffiB!
N&OT

smVON

V^— V- v4-ü-äi^4^J'M
V7) O 17

'
A-> W OBSTWIESEM

-—UMMATKANAl

Abb. 1. Lagcplan der MusterhSuser an der Wasserwerkstrasse In Zürich. — 1 :600.
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