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Méthode purement optique

de détermination des tensions intérieures se produisant dans les constructions.
Par HENRY FAVRE, ingénicur E. P. Z., Zurich,

§ 1. INTRODUCTION.

Il est de premicre nécessité pour l'ingénieur de pou-
voir déterminer le jeu des forces intérieures qui sollicitent
ses constructions. La Théorie générale de I'élasticité, fon-
dée sur le Principe de l'indépendance des effets des forces
quant aux déformations, ne lui permet de résoudre qu'un
nombre trés restreint de problemes. Des théories appro-
chées, connues sous le nom de Résistance des matériaux,
sont basées sur un trop grand nombre d’hypothéses in-
certaines pour inspirer confiance.

L'ingénieur a dés lors senti la nécessité d'utiliser
I'expérience directe, soit pour remplacer l'intégration des
équations différentielles auxquelles conduit la Théorie gé-
nérale de I'élasticité, soit pour vérifier les hypothéses et
les résultats des théories de la Résistance des matériaux.

M. Mesnager a donné en 1900 une méthode permet-
tant de calculer les tensions intérieures se produisant dans
des modeles transparents de constructions toutes les fois
qu'il s’agit d'un état de sollicitation a deux dimensions.!)
Il a également montré qu'en s'appuyant sur une remarque
due a Maurice Lévy?) il est facile de calculer les tensions
intérieures de la construction elle-méme lorsqu'on a préa-
lablement déterminé celles qui se produisent dans un modéle
de cette construction. La méthode de M. Mesnager a été
appliquée depuis 1900 avec succés a la résolution d'un
grand nombre de problemes, par son auteur lui-méme3), et
par d'autres ingénieurs.*)

Cette méthode consiste & déterminer, par des expé-
riences faites sur un modéle transparent et isotrope de la
construction :

1° A laide de la lumiére polarisée,

a) la direction des tensions principales ¢, et o, en
un nombre quelconque de points.

b) la valeur de la différence (o,—0,) en ces mémes
points.

2° A laide de mesures de déformation (dilatation
latérale), la valeur de la somme (o, +0,) des tensions prin-
cipales aux points envisagés.

Connaissant (6; — g,) et (o, + 0,) on calcule facile-
ment o, etog,.

Il ne nous est pas possible d'exposer ici en détail
cette méthode et les belles applications qui en ont été
faites. Nous renvoyons le lecteur aux articles de M. Mes-
nager dans les Annales des Ponts et Chaussées et La
Technique Moderne, et a ceux de M. Coker dans I’Engi-
neering (loc. cit.).5)

Ayant a organiser, sous la haute direction de M. le
Prof. Dr. F. Tank, le nouveau ,Laboratoire de détermina-

') Mesnager. La déformation des solides. (Congres international des
méthodes d’essai des matériaux de construction, Paris, 1900, T. I, p. 149.)

*) Maurice Lévy. (Comptes Rendus de I’Académie des Sciences de
Paris, 2 Mai 1898).

%) Citons, parmi les nombreuses publications de ce savant, les trois
plus importantes: Contribution a 1'étude de la déformation élastique (An-
nales des Ponts et Chaussées, 1901, T.IV, p. 129). — Détermination
compléte sur un modele réduit des tensions qui se produiront dans un
ouvrage. (Annales des Ponts et Chaussées, 1913, T.IV, p. 135) — Les
Tensions intérieures rendues visibles. (La Technique Moderne, 15 Mars 1924.)

%) Eu tout premier lieu 47, Coker. Citons principalement ses articles
parus dans I'Eogineering les 6 Janvier, 21 et 28 Avril 1911, 25 Février
1916, 20 et 27 Février 1920, 7 Janvier 1921, 6 Janvier 1922, 19 Oc-
tobre 1923.

tion optique des tensions intérieures“ de I'Ecole Poly-
technique de Zurich, nous croyons utile de signaler la
méthode que nous mettons actuellement au point, cette mé-
thode différant sensiblement de celle utilisée depuis 1900.

Nous établirons tout d'abord, par deux voies diffé-
rentes, deux relations fondamentales concernant la biré-
fringence accidentelle des plaques planes transparentes
soumises a un état de sollicitation a deux dimensions au
point de vue des tensions (§ 2 et § 3). Nous exposerons
ensuite la ,Méthode purement optique” (§ 4), en indiquant
comment on résoud ses équations (§ 5), et comment on
I'applique®) (§ 6). Pour terminer nous donnerons une pre-
miére application de la méthode (§ 7).

§ 2. DEUX RELATIONS FONDAMENTALES.
PREMIERE DEMONSTRATION,

Considérons une plaque plane mince, d'épaisseur
constante que nous choisirons pour l'instant égale a 'unité
(figure 1). Nous supposons cette
plaque faite d’'une matiére trans-
parente, homogéne et isotrope.

Soient:

[ ety les constantes élastiques
de la matiére en question (mo-
dule d'Young et coefficient de
Poisson).

n l'indice de réfraction?) de
cette matiere lorsqu'elle n’est
soumise a aucun effort.

Supposons tout d'abord que
la plaque ne soit sollicitée par
aucune force extérieure. Dans
ces conditions, un rayon polarisé
S O3%) (fig. 1) arrivant en O sur
la plaque sous une incidence
nulle et vibrant parallelement a
ladirection /A traverse cette plaque
sans modifier la direction de ses vibrations: a I'émergence,
nous aurons donc encore un rayon polarisé O' S’ vibrant
parallélement a A'/4.

Si maintenant nous appliquons a notre plaque sur
son bord ¢ un systéeme de forces en équilibre P P, ... P,
situées toutes dans le plan équidistant des deux faces, elle
prendra un état de sollicitation parfaitement défini, et cet
état sera a deux dimensions au point de vue des tensions?)
(figure 2). En chaque point tel que O tout élément de

Fig. 1.

Plaque non sollicitée
S00'S’ rayon polarisé traversant
la plaque sous une incidence
nulle et vibrant parallélement

a 4'))4.

5) 11 vient également de paraitre sur cette méthode un excellent
mémoire de M. Delanghe, (Génie Cwil des 1o, 17 et 24 Septembre 1927.)
Voir aussi: Heymans, La Photo élasticimétrie. (Bulletin de la Sociélé Belge
des Ingénieurs et des Industriels. 1921, T.1I, p. 99 a 214) — ZLouis Baes,
La Photo-élasticité. (Conférence du 22 Novembre 1924 publiée a Bruxelles
en 1925.) — Marcotte (Arts et Métiers, Février a Mai 1927)

%) Cette méthode, comme celle de M. Mesnager, ne permet de
résoudre que les problémes d’élasticité a deux dimensions dsns lesquels
le module d'élasticité £ et le coefficient de Poisson » sont constants.

) Nous supposerons, dans tout ce qui va suivre, qu'il s’agit de
lumiére monochromatique de longueur d’onde bien déterminée 4; l'indice »
se rapporte donc a cette longueur d’onde.

%) Nous utilisons la théorie et le langage de Fresnel.

9 Pour que cet état de sollicitation soit rigoureusement a deux
dimeosions au point de vue des tensions, il faut que chaque force 7 soit
répartie uniformément le long d'une génératrice du cylindre constituant
le bord ¢
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surface perpendiculaire aux faces subira une tension normale
o et une tension tangentielle 7, et il existera deux directions
orthogonales bien déterminées 1 et 2 correspondant aux
tensions principales o, et o, relatives a ce point.

k7 1/ 6,
% 2/ 0, ///-»4,
| ///
| vd
i s
| 2
i 7
//
77 A (S S PR, 0

(7’"‘/- au rayon 0'S)

Figure 2.
Plaque sollicitée par les forces P. /(38

Figure 3.
direction de vibration

o, et 0, tensions principales du rayon O'S" avant mise en charge.

au point O. 1 et 2: directions respectives de
1 et 2 directions respectives vibration des deux rayons O'S’
de ces tensions: 1 L 2. aprés mise en charge.

Quelles seront les modifications que subira a I'émergence
le vayon lumineux O'S' défini ci-dessus, modifications pro-
duites par la mise en charge de la plaque par le systéme
de forces P?

Nous savons:

1° Qu'a I'émergence le rayon O'S’ se transformera
en deux nouveaux rayons polarisés de méme support O’ S’
et vibrant paralleélement aux axes 1 et 2, c’est-a-dire paral-
lélement aux tensions principales agissant en O (figure 3).

2° Que la différence de marche ¢, de ces deux nou-
veaux rayons est donnée par la loi de Wertheim que nous
écrivons sous la formel?):

0y =ce(o, — 0,) . (1)
(dans cette formule, ¢ représente une constante dépendant
de la matiére de la plaque et de la longueur d'onde 1,
¢ 1'épaisseur de la plaque que nous avons choisie pour le
moment égale a 1'unité).

Avec les deux lois que nous venons de citer, nous
sommes parfaitement renseignés sur la marche relative des
deux nouveaux rayons, mais non pas sur leur marche
absolue. Or il est certain que la marche du rayon vibrant
parallélement a 1 est en avance ou en retard sur la
marche du rayon primitif vibrant parallelement 2 4, et
qu'il en est de méme quant a la marche du rayon vibrant
parallelement a 2 relativement a la marche du rayon pri-
mitif vibrant parallelement a A'.

\
Ne=v

Fig. 4. Z': marche du rayon O'S’ avant mise en charge.
marches respectives des deux rayons O'S’ aprés mise en charge.
A, 0'A;, O'A,: amplitudes respectives de ces trois rayons.

Zy et

Q

"? &

Appelons (fig. 4):

0, la différence de marche entre le nouveau rayon
vibrant parallelement a 1 et le rayon primitif (avant mise
en charge) vibrant parallelement a A'.

0, la différence de marche entre le nouveau rayon
vibrant parallélement & 2 et le rayon primitif (avant mise
en charge) vibrant parallelement a 4"

Je dis que dans les conditions envisagées 9y et o,
des fonctions linéaires de o, et o, de la forme:

0, =ao, + bo,

by = b6, + ag,
%) Nous affectons tout de suite J de Iindice 3, cela en vue de la
symétrie de nos équations futures,

sont

o, et 0, variant entre des limites convenables, a et b étant
des constantes dépendant cvidemment de la longuenr d’onde A
et des propriélés optiques el élastiques de la matiére de la
plaque.

En effet:

d; et 0, ne peuvent dépendre que la longueur d’onde 7,
des propriétés optiques et élastiques de la matiére de Ja
plaque, et de ¢, et 6,, Comme, par hypothése, les pro-
priétés optiques et élastiques de cette matiére sont les mémes
en tous les points de la plaque, et que nous n'utilisons
que la longueur d’onde Z, 0, et 6, ne dépendent que de g, et
0, pour une matiére de p\aque ‘donnée. Nous avons donc:

0 = /i (o1, o),
8 = 3ot o)

Développons par exemple f; (o;, 0,) en série, en né-
gllgeant les termes dont le degré est supérieur a un ('ex-
périence seule pourra nous dire entre quelles limites devront
varier g, et 6, pour que cette négligence soit permise). Il vient:

9/ (o, ) 7, (o,
b = fi (o %) =1 (O0) 5 <—j;'(:0) o + ST 62)

0 oy
Nous avons en tout cas f; (0,0) = o, car lorsque o; =
0y =0, 0; = o (conséquence du principe de causalité).
On peut donc écrire, pour des valeurs convenables
de o, et o,:

5 o‘fx (0,0) o= 0 f; (0.0)
1 d o, o1 d o, 29
en posant
dfi(00) d £ (0,0) =0
(e i, A g !

nous obtenons:

0, =ao; + boy;
et en remarquant qu'il suffit, par suite de la symétrie, de
permuter a et b pour avoir d,:

Oy = bo; + ao,.

La proposition énoncée ci-dessus est donc démontrée.

Si notre plaque a une épaisseur non plus égale a
I'unité, mais égale a ¢, 0, et 9, auront pour valeur:

0 =aeo,—+ beos (2)
{(ngbeolJraeoz (3)

Et maintenant ces formules (2) et (3) nous renseignent
parfaitement sur la marche absolue de nos deux nouveaux
rayons.

Ces formules satisfont 4 la loi de Wertheim (1). En
effet, par définition (voir fig. 4):

ds =0, — 0 )
d'ol, en remplagant 6, et d, par les valeurs trouvées, et
en posant a—b=
63 =ce (01 — 0'2).

Remarquons que 1'établissement des formules (2) et
(3) a l'aide du développement en série suppose que les
coefficients @ et 4 ne sont pas tous les deux nuls. Or ces
coefficients ne sont certainement pas nuls ensemble, car
si c'était le cas le coefficient ¢ de la loi de Wertheim le
serait aussi en vertu de la relation @ — b = ¢, ce qui est
impossible.

Disons tout de suite que nos premiéres expériences,
en particulier celle indiquée au § 7, nous ont permis de
constater que pour le verre les lois (2) et (3) sont satisfaites
pour desvaleursde g, et o, comprises entre o et +1,30kg/mm?

§ 3. DEUX RELATIONS FONDAMENTALES.

SECONDE DEMONSTRATION.

On peut arriver aux équations (2) et (3) établies ci-
dessus par une autre voie. Neumann 1!) a créé en 1841 une
belle théorie de la biréfringence accidentelle des corps iso-
tropes transparents soumis a un état de sollicitation quel-
conque a trois dimensions. Cette théorie a été reprise par
Mach 12) et d’autres physiciens, notamment M. Bouasse!®).

1) Neumann. Die Gesetze der Doppelbrechung des Lichtes in com-
primierten oder ungleichférmig erwirmten unkrystallinischen Kérpern 1841.
(Gesammelte Werke, Bd. III 1912 Teubner Leipzig)

12) Mach. Die Doppelbrechung des Glases durch Druck. (Optisch-
Akustische Versuche. Prague 1873 Calve’»che Univ. Buchhandlg.)

18) Bouasse, Cours de Physique: Double Réfraction. 1925.
et suiv.

P- 355
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Appliquons cette théorie en nous basant sur le Cours de
Physique de M. Bouasse (loc. cit). Les premiéres notes qui
suivent sont tirées de ce livre. Nous avons, pour la facilité
de notre exposition, apporté quelques modifications aux
notations et au texte.

,Hypothese: [la maticve non sollicitée est isotrope.
L’ellipsoide des indices se réduit donc a la sphére:

2 (a% - y? bg?) =1
v étant la vitesse de propagation de la lumiére dans le
milieu non déformé.“

,Aprés déformation 1ellipsoide est représenté, les
axes de coordonnées étant convenablement choisis, par
I'équation :

A2x% 4 B2y2 4 (C222=1
A, B, C étant les vitesses de propagation principales apres
d¢formation.

,La théorie de I'é¢lasticité admet que les phénoménes
dus a la déformation sont des fonctions linéaires des six
qQuantités ., &, € Vi Ve Vys qui définissent la déforma-
tion. Relativement a un systéme d'axes cartésiens x, ¥, 3,
et en appelant #, v, w les composantes du déplacement
d'un Point P (x, ¥, =) suivant ces axes, nous avons:

) du | dv | dw |
& = Y=y s TR

dv du dw | Ou dw | dv
Yo =z T8y T¥T 62 T 9s ' 17T 9y T E

&x, &, & sont les déformations linéaires spécifiques; yu,
Vx5 Vye les déformations angulaires.”

,Pour les directions principales de deéformation les y
disparaissent, appelons &, &, & les déformations linéaires
spécifiques correspondantes. Par raison de symétrie, les
axes de l'ellipsoide des indices coincident en chaque point
avec les directions principales de déformation en ce point.”

,Nous poserons, conformément a ces hypotheses:

A2 — v® = ay; &+ ay (& + &)
et deux équations symétriques. A cause de la petitesse des
coefficients a,; et a;, nous pouvons extraire la racine par
approximation. Soit a;, = 2 pv, a;; = 2 qv, il vient:
A=v+qe+p(e + &)
B=v-+4qe&+ pe &)
C:1J+(183+P(€1+82)

,Soient 7 la vitesse de la lumiére dans le vide, »
l'indice de réfraction de la matiére non sollicitée, s, 1, 74
les indices principaux aprés la déformation.¥) Nous avons:

V=nv=mn A=ny B=mny; C

vV =
T ;:%VZ q &+ p (e &)
1 1
et a cause de la petitesse des coefficients p et ¢:
n—n; = n(%f‘l —+—% (& +63)) o et (4)

On obtient des formules symétriques pour #, et ;"

,Les quantités % = :“ et % = ;‘?22 sont des grandeurs
numériques. Ce sont les paramétres qui réglent le phe-
nomene.

,D’une maniére générale, chaque élément d'un corps
isotrope est transformé en biaxe. Les formules précédentes
satisfont au principe de superposition formulé par Brewster:
quand on impose au milieu des déformations consécutives
puis simultanées, l'effet produit par ces dernieres est la
somme des effets résultant des impositions successives.
Cela revient a dire que les formules qui donnent la varia-
tion des indices sont linéaires par rapport aux six quan-
tités qui définissent la déformation.“

Nous allons maintenant appliquer la formule (4),
donnée par la théorie de Neumann, au calcul de 4§, et &,.

Considérons comme précédemment une plaque plane
mince faite d'une matiére transparente, homogéne et iso-

trope. Soient £ et » les constantes élastiques, #, % et%
les constantes optiques de la matiére de la plaque. Soit
encore ¢ (et non plus 1) son épaisseur (figure 3).

W) 4, ¢, v, n, m, ny, ng, etc.sont relatifs a une longueur d’onde
déterminée A.

Appliquons au bord ¢ de notre plaque un systéme
de forces en équilibre P, Py ... P, situées toutes dans le
plan équidistant des deux faces. Nous aurons alors un état
de sollicitation 2 deux dimensions au point de vue des

§

b

Figure 5.
Plaque sollicitée par les forces P.
1, 2, 3 directions principales
de déformation en O:

tensions.

A tout point tel que O cor-
respondent deux directions
orthogonales 1 et 2 qui sont
celles des tensions princi-
pales o, et g, agissant en ce
point.

Les directions principales
de déformation en O sont
les directions 1 et 2 (toutes
deux paralléles aux faces de
la plaque) et la direction 3
perpendiculaire a 1 et 2.

Les déformations linéaires
spécifiques relatives aux axes
1, 2, 3 ont ici pour expres-
sion:

1 et 2 sont respectivement paralléles 1

aux tensions principales o, et o, agis- &= E (Ul =1 OB) ’
sant en O; 3 perpendiculaire 2 1et2. 1
S0O0'S' rayon traversant la plaque €9 =— (Uz =¥ 01) ) (5)
sous une incidence nulle. o
B —‘E—(”1 + o)

Supposons qu'un rayon polarisé SO arrive sur la
plaque en O sous une incidence nulle, en vibrant paral-
lelement a la direction 1. Que la plaque soit sollicitée par
le systeme P ou non, ce rayon la traversera sans modifier
la direction de ses vibrations: le rayon émergent O S’

vibrera encore parall¢lement

/ a la direction 1. Seulement,
7 par la mise en charge, .le
74 rayon O' S’ subit une varia-
tion de marche: soit d; cette

g o v il St
55 2 ? 5 varlation.
‘/lﬂ Pour calculer ¢, considé-
/ rons deux points D et D'
situés de part et d'autre
% de la plaque sur le rayon
— SOO0'S (figure 6). Soit /
Coupe de la plague suivant la distance géométrique DD’
le plan 1.0-3. Le chemin optique Z du

S00'S rayon traversant la plaque

sous une incidence nulle. D et D’

points arbitraires de ce rayon, situés
de part et d’autre de la plaque.

rayon SOO'S' relatif a
I'espace géométrique D D'
a pour expression, avant la
mise en charge:
=/4+m—1)e . . . . . (6)
Par suite de la mise en charge, L varie de ¢ L. Dif-
férentions 1'équation (6), en remarquant que seuls # et ¢
varient.
dL=mn—1)de+tedn.
Or o —d L. Nous avons donc:
60 =— [(n—1)de+edn] . . . (7)
Nous pouvons facilement calculer de et dn.
de= e, e et en vertu de la formule (4):
dn:nl—n:—n(% & —L% (82—+—F3)>;
substituant dans la formule (7): :
o =c¢e [—(n— T) gg +n (%51 'J‘%(fz‘f“fa))] ]
En introduisant les valeurs de ¢, &, ¢ données par
les équations (5), il vient:

d'ou, en

04 =e%((n—1)1'—}—ni—{ﬂ2111'%>01—0—
?

I
B e
v

ﬁ((n—I)l‘-F(I—I')it ””*ﬁl,)“z s "8

Si le rayon incident SO, au lieu de vibrer paralle-

lement & 1, vibre parallélement 4 2, on obtient pour la

variation de marche d, du rayon O'S’ vibrant parallele-
ment a 2:

o[ Dy (Let+2 +y3))];
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Abb. 4. Triebradsatz mit als Kupplungs-Gehduse ausgestaltetem Zahnrad.

d'ol, en introduisant comme précédemment ¢ e e, don-
nées par (5):

(nge;—j((n-I)w—i—(I~1/)n-é—n 11’) 0y -

: g ?
eE((n—I) e — @Y 7)62 . (9)

Enfin si le rayon S O arrive en O sur la plaque en
vibrant parallelement a une direction 4 qui ne coincide
ni avec 1 ni avec 2, le rayon émergent O’ S’ sera, avant
mise en charge un rayon polarisé vibrant parallélement
a /4, aprés mise en charge un rayon composé de deux
vibrations de support O’ S’ dont l'une vibre parallélement
a 1 et l'autre parallelement & 2. Les différences de marche
d; et 0, de ces deux vibrations relatives a la vibration du
rayon O'S’ avant mise en charge, sont données par les
formules (8) et (9).

Posons

%((71—1)1!—#/1%——2711'%):a,
%((1’1——1) r—&—(l—v)n%—nv q):b;

v
nous avons finalement:

{51:51301—{—1)602 (1)
0, =0beo, +aceo, (2")
ol a et b sont des constantes dépendant de la matiére

de la plaque et de la longueur d'onde utilisée.
Les relations (1') et (2') sont exactement les mémes
que les relations (1) et (2) trouvées au § 2. (a suivre)

Universal-Antrieb ,, Winterthur*

fiir elektrische Lokomotiven.
Von Ing. J. BUCHLI, Winterthur.

Vor kurzer Zeit brachte die Schweizerische Loko-
motiv- und Maschinenfabrik (SLM) den mechanischen Teil
einer elektrischen Lokomotive zur Ablieferung, die in ihrem
konstruktiven Aufbau verschiedene Neuerungen besitzt, und
auch inbezug auf die hohen Anforderungen, die der Betrieb
an sie stellt, interessant ist. Die Lokomotive (Abbildungen
1 und 2), tber die hier bereits kurz berichtet worden ist 1),
ist fur die Strecke Bombay-Paoona-Igatpuri der Great
Indian Peninsula Railway bestimmt, die mit 1500 Volt
Gleichstrom betrieben wird; sie muss bei den Abnahme-
Versuchen die Geschwindigkeit von 137 km/h erreichen,
eine Bedingung, die bis heute von keiner elektrischen
Schnellzuglokomotive gefordert wurde, und die besonders
an die mechanische Gestaltung der Maschine ausserordent-
liche Anforderungen stellt.

') Vgl. Band 89, Seite 174 (26. Mirz 1927). Red.

Abb. 6. Sog tes ,Java“-Drehgestell

Abb. 5. Blick in das Innere der Kreuzkupplung der S. LM,

Fir den Schnellzugsdienst sind vorgéingig der Be-
schaffung einer grossern Anzahl drei Probelokomotiven in
Auftrag gegeben worden. Es ist kein Zufall, dass daran
drei Schweizerfirmen direkt oder indirekt beteiligt sind,
denn die Elektrifikation der S. B. B. hat der schweizeri-
schen Maschinenindustrie Gelegenheit gegeben, in reichem
Masse Erfahrungen im Bau von elektrischen Fahrzeugen
zu sammeln, sodass sie als Lieferanten von Qualititserzeug-
nissen ihre Stellung im internationalen Wettbewerb weiter
befestigen konnten.

Ein Produkt dieser reichen Erfahrung ist der Uni-
versal-Antrieb ,,Winterthur”, mit dem die eingangs erwihnte
Schnellzuglokomotive ausgeristet ist.

Der Einzelachsantrieb als solcher nimmt, dank seiner
anerkannten Vorteile, wenigstens bei Personen- und Schnell-
zuglokomotiven, eine dominierende Stellung ein. Es be-
stehen verschiedene Systeme solcher Antriebe, die sich
durchaus bewahrten, aber weitere Verbesserungen nicht
ausschliessen. Der Universal-Antrieb , Winterthur® wurde
gebaut mit dem Zweck, die giinstigen Eigenschaften des
Systems beizubehalten, unter Aufhebung der Schwichen der
bestehenden Ausfiihrungen und unter Hinzufiigung weiterer
Vorteile besonders betriebstechnischer Natur. Er ist durch
zwei hauptsichliche Merkmale gekennzeichnet: durch die
koaxiale Lage der Motoren iber den Triebriddern sym-
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