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Methode purement optique
de determination des tensions interieures se produisant dans les constructions.

Par HENRY FAVRE, ingenieur E. P. Z., Zürich.

§ i. INTRODUCTION.

II est de premiere necessite pour l'ingenieur de pou-
voir determiaer le jeu des forces interieures qui sollicitent
ses constructions. La Theorie generale de l'eiasticite, fondre

sur le Principe de l'independance des effets des forces
quant aux deformations, ne lui permet de resoudre qu'un
nombre tres restreint de problemes. Des theories appro-
chees, connues sous le nom de Resistance des materiaqx,
sont basses sur un trop grand nombre d'hypotheses in-
certaines pour inspirer confiance.

L'ingenieur a des lors senti la necessite d'utiliser
l'experience directe, soit pour remplacer l'integration des
equatShs differentielles auxquelles conduit la Theorie
generale de l'eiasticite, soit pour verifier les hypotheses et
les resultats des theories de la Resistance des materiaux.

M. Mesnager a donne en 1900 une methode permettant
de calculer les tensions interieures se produisant dans

des modeles transparents de constructions toutes les fois
qu'il s'agit d'un etat de sollicitation ä deux dimensions.1)
II a egalement montre qu'en s'appuyant sur une remarque
due ä Maurice Levya) il est facile de calculer les tensions
interieures de la construction elle-meme lorsqu'on a prea-
lablement determine celles qui se produisent dans un modele
de cette construction. La methode de M. Mesnager a ete
appliquee depuis 1900 avec succes ä la resolution d'un
grand nombre de problemes, par son auteur lui-meme8), et
par d'autres ingenieurs.4)

Cette methode consiste ä determiner, par des expe-
riences faites sur un modele transparent et isotrope de la
construction:

i° A l'aide de la lumiere polarisee,
a) la direction des tensions principales ol et a2 en

un nombre quelconque de points.
b) la valeur de la difference (öx—a2) en ces mSmes

points.
20 A l'aide de mesures de diformation (dilatation

laterale), la valeur de la somme (o1-\~o2) des tensions
principales aux points envisages.

Connaissant (ox — aj et (öj -|- <j2) on calcule facile-
ment or et a2.

II ne nous est pas possible d'exposer ici en detail
cette methode et les belles applications qui en ont ete
faites. Nous renvoyons le lecteur aux articles de M.
Mesnager dans les Annales des Ponts et Chaussees et La
Technique Moderne, et ä ceux de M. Coker dans
^Engineering (Sc. cit.).6)

Ayant ä organiser, sous la haute direction de M. le
Prof. Dr. F. Tank, le nouveau „Laboratoire de d6termina-

') Mesnager. La deTormation des solides. (Congres international des
mfithodes d'essai des materiaux de construction, Paris, 1900, T. I, p. 149.)

*) Maurice Levy. (Comptes Rendus de l'Academie des Sciences de

Paris, 2 Mai 1898).
3) Citons, parmi les nombreuses publications de ce savant, les trois

plus importantes: Contribution ä l'fitude de la d6formation elastique
(Annales des Ponts et Chauase'es, 1901, T. IV, p. 129). — Determination
complete sur un modele r£duit des tensions qui se produiront dans un

ouvrage. (Annales des Ponts et Chaussees, 1913, T. IV, p 135.) — Les
Tensions interieures rendues visibles. (La Technique Moderne, 15 Mars 1924.)

4) En tout premier lieu*^. Coker. Citons priiicipalement ses articles
parus dans TEngineering les 6 Janvier, 21 et 28 Avril 1911, 25 Fevrier
1916, 20 et 27 FeVrier 1920, 7 Janvier 1921, 6 Janvier 1922, 19 Oc-
tobre 1923.

tion optique des tensions interieures" de l'Ecole
Polytechnique de Zürich, nous croyons utile de signaler la
methode que nous mettons actuellement au point, cette
methode differant sensiblement de celle utilisee depuis 1900.

Nous etablirons tout d'abord, par deux voies diffe-
rentes, deux relations fondamentales concernant la bir6-
fringence accidentelle des plaques planes transparentes
soumises ä un etat de sollicitation ä deux dimensions au
point de vue des tensions (§ 2 et § 3). Nous exposerons
ensuite la „Methode purement optique" (§ 4), en indiquant
comment on resoud ses equations (§ 5), et comment on
l'applique6) (§ 6). Pour terminer nous donnerons une
premiere application de la methode (§ 7).

§ 2. DEUX RELATIONS FONDAMENTALES.
PREMIERE DEMONSTRATION.

Considerons une plaque plane mince, d'epaisseur
constante que nous choisirons pour l'instant egale ä l'unite

(figure 1). Nous supposons cette
plaque faite d'une matiere
transparente, homogene et isotrope.

Soient:
Eetv les constantes elastiques

de la matiere en question (mo-
dule d'Young et coefficient de
Poisson).

n l'indice de refraction7) de
cette matiere lorsqu'elle n'est
soumise ä aucun effort.

Supposons tout d'abord que
la plaque ne soit sollicitee par
aucune force exterieure. Dans
ces conditions, un rayon polarise
SO*) (fig. 1) arrivant en O sur
la plaque sous une ineidence
nulle et vibrant parallelement ä
la direction A traverse cette plaque

sans modifier la direction de ses vibrations: ä l'emergence,
nous aurons donc encore un rayon polarise 0' S' vibrant
parallelement ä A'IIA.

Si maintenant nous appliquons ä notre plaque sur
son bord c un Systeme de forces en equilibre P1 P%... P„
situees toutes dans le plan equidistant des deux faces, eile
prendra un etat de sollicitation parfaitement defini, et cet
etat sera ä deux dimensions au point de vue des tensions9)
(figure 2). En chaque point tel que O tout element de

i) 11 vient egalement de paraitre sur cette methode un excellent
memoire de M. Delanghe. (G£nie Civil des ro, 17 et 24 Septembre 1927.)
Voir aussi: Heymans, La Photo £lasticim6trie. (Bulletin de lajäoclffifj Beige
des Ingenieurs et des Industriels 1921, T. II, p. 99 a 214) — Louis Baes,
La Photo-elasticit.5. (Conference du 22 Novembre 1924 publice ä Bruxelles
en 1925J — Marcolte (Arts et Metiers, F6vrier ä Mai 1927)

6) Cette melhode, comme celle de M. Mesnager, ne permet de
resoudre que les problemes d'61asticit£ ä deux dimensions dsns lesquels
le module d'eJasticitt* E et le coefficient de Poisson v sont constants.

') Nous supposerons, daJis tout ce qui va suivre, qu'il s'agit de
lumiere monochromatique de longueur d'onde bien delerminee X; l'indice n
se rapporte donc ä cette longueur d'onde.

a) Nous utilisons la th6orie et le langage de Fresnel.

9) Pour que cet etat de sollicitation soit rigoureusement ä deux
dimeusions au point de vue des tensions, il faut que chaque force P soit
repaitie uniform6ment le long d'une gemSratrice du cylindre constituant
le bord c.

——d

---i^'

Fig. 1. Plaque non sollicitee
SOO'S' rayon polaris^ traversant

la plaque sous une ineidence
nulle et vibrant parallelement
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surface perpendiculaire aux faces subira une tension normale
o et une tension tangentielle t, et il existera deux directions
orthogonales bien determinees 1 et 2 correspondant aux
tensions principales o1 et o2 relatives ä ce point.

a,/

§
i

III Ol

2II di WiI &'

Figure 2.

Plaque sollicitee par les forces P.
ffj et ö., tensions principales

au point O.
1 et 2 directions respectives

de ces tensions: 1 X 2.

<7'k.. H(Trace du rayon O'S,

Figure 3.

J': direction de Vibration
du rayon O'S' avant mise en Charge.

1 et 2 : directions respectives de
Vibration des deux rayons O' S'

apres mise en Charge.

Quelles seront les modifications que subira ä l'emergence
le rayon lumineux ö S difini ci-dessus, modifications pro-
duites par la mise en charge de la plaque par le Systeme
de forces P

Nous savons:
i° Qu'ä l'emergence le rayon Ö S se transformera

en deux nouveaux rayons polarises de meme support O' S'
et vibrant parallelement aux axes i et 2, c'est-ä-dire
parallelement aux tensions principales agissant en O (figure 3).

20 Que la difference de marche 6S de ces deux
nouveaux rayons est donnee par la loi de Wertbeim que nous
ecrivons sous la forme10):

<5S c e (öj — a2) (1)
(dans cette formule, c represente une constante dependant
de la matiere de la plaque et de la longueur d'onde X,
e l'epaisseur de la plaque que nous avons choisie pour le
moment egale ä l'unite).

Avec les deux lois que nous venons de citer, nous
sommes parfaitement renseignes sur la marche relative des
deux nouveaux rayons, mais non pas sur leur marche
absolue. Or il est certain que la marche du rayon vibrant
parallelement ä 1 est en avance ou en retard sur la
marche du rayon primitif vibrant parallelement ä Ä, et
qu'il en est de m€me quant ä la marche du rayon vibrant
parallelement ä 2 relativement ä la marche du rayon
primitif vibrant parallelement ä Ä.

m\

Fig. 4. 2': marche du rayon O'S' avant mise en Charge.
Zx et Za: marches respectives des deux rayons O'S' apres mise en Charge.

O'A, 0'Ax, O'As'. amplitudes respectives de ces trois rayons.

Appelons (fig. 4):
d1 la difference de marche entre le nouveau rayon

vibrant parallelement ä 1 et le rayon primitif (avant mise
en charge) vibrant parallelement ä _'.

ö2 la difference de marche entre le nouveau rayon
vibrant parallelement ä 2 et le rayon primitif (avant mise
en charge) vibrant parallelement ä Ä.

Je dis que dans les conditions envisagees dx et 82 sont
des fonetions lineaires de ax et 02 de la forme:

<3j a ox -\- b o2
<52 b öj -\- a o2

10) Nous affectons tout de suite S de l'indice 3, cela en vue de la
symetrie de nos Equations futures.

Oj et o2 variant entre des Limites convenables, a et b etant
des constantes dependant evidemment de la longueur d'onde X

et des proprietes optiques et elastiques de la matiere de la
plaque.

En effet:
(Sj et <52 ne peuvent dependre que la longueur d'onde X,

des proprietes optiques et elastiques de la matiere de la
plaque, et de ax et o2- Comme, par hypothese, les
proprietes optiques et elastiques de cette matiere sont les m€mes
en tous les points de la plaque, et que nous n'utilisons
que la longueur d'onde X, öx et <52 ne dependent que de ox et
ö2 pour une matiere de plaque donnee. Nous avons donc:

Öl /l (Ö1E CT2^E

<52 =/2 ll o2).
Developpons par exemple fx (a1, oa) en serie, en ne-

gligeaDt les termes dont le degre est superieur ä un
(l'experience seule pourra nous dire entre quelles limites devront
varier ax et a2 pour que cette negligence soit permise). II vient:

^i=/i(»i«%)=/,(o,o)+7pd/i (0,0) + ÖA (0,0)

Nous avons en tout cas fx (0,0) o, car lorsque öj
rineipe de causalite).

pour des valeurs convenables

I d /, (0,0)

•V— °. <5i o (consequence du principe de causalite).
On peut donc ecrire,

de ox et oa:
«5/i (0,0)pm d Oj

en posant
<3/,(oo)

d o2

da»

"2.

b,

nous obtenons:
<5j a ox -\- b a2;

et en remarquant qu'il suffit, par suite de la symetrie, de
permuter a et b pour avoir <52:

t52 b Oj -\- a oz.
La proposition enoncee ci-dessus est donc demontree.
Si notre plaque a une epaisseur non plus egale ä

l'unite, mais egale ä e bi et o2 auront pour valeur:
c5j a e ox -\- b e 01 (2)
<52 b e ai -\- a e a» (3)

Et maintenant ces formules (2) et (3) nous renseignent
parfaitement sur la marche absolue de nos deux nouveaux
rayons.

Ces formules satisfont ä la loi de Wertheim (1). En
effet, par definition (voir fig. 4):

<?s <5i — ö2

d'oü, en remplaeant dx et (5- par les valeurs trouvees, et
en posant a — b c :

83 c e (oi — <j2)-

Remarquons que l'etablissement des formules (2) et
(3) ä l'aide du developpement en serie suppose que les
coefficients a et b ne sont pas tous les deux nuls. Or ces
coefficients ne sont certainement pas nuls ensemble, car
si c'etait le cas le coefficient c de la loi de Wertheim le
serait aussi en vertu de la relation a — b c ce qui est
impossible.

Disons tout de suite que nos premieres experiences,
en particulier celle indiquee au § 7, nous ont permis de
constater que pour le verre les lois (2) et (3) sont satisfaites
pour des valeurs de öi et o3 comprises entre o et +1,30 kg/mm2.

§ 3. DEUX RELATIONS FONDAMENTALES.
SECONDE DEMONSTRATION.

On peut arriver aux equations (2) et (3) etablies ci-
dessus par une autre voie. Neumann li) a cree en 1841 une
belle theorie de la birefringence accidentelle des corps
isotropes transparents soumis ä un etat de sollicitation quel-
conque ä trois dimensions. Cette theorie a ete reprise par
Mach l3) et d'autres physiciens, notamment M. Bouasse"8).

n) Neumann. Die Gesetze der Doppelbrechung des Lichtes in com-
primierten oder ungleichförmig erwärmten unkrystallinischen Körpern 1841.
(Gesammelle Werket Bd. III 1912 Teubner Leipzig)

lä) Mach. Die Doppelbrechung des Glases durch Druck. (Optisch-
Akustische Versuche. Prague 1873 Calve'.che Univ. Buchbandlg.)

ls) Bouasse. Cours de Physique: Double Refraction. 1925. p. 355
et suiv.
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Appliquons cette theorie en nous basant sur le Cours de
Pbysique de M. Bouasse (loc. cit). Les premieres notes qui
suivent sont tirees de ce livre. Nous avons, pour la facilite
de notre exposition, apporte quelques modifications aux
notations et au texte.

„Hypothese: la matiere non sollicitee est isotrope.
L'ellipsoide des indices se reduit donc ä la sphere:

•t)2(a;2-(-jV2H-Ä2) 1

v etant la vitesse de propagation de la lumiere dans le
milieu non deforme."

„Apris deformatmk l'ellipsoide est repräsente, les
axes de coordonnees etant convenablement choisis, par
l'equation:

A* B2y*-+-C*z2
A, B, C etant les vitesses de propagation principales apres
deformation."

„La theorie de l'eiasticite admet que les pbenomenes
dus ä la deformation sont des fonctions lineaires des six
quantitcs sx, ey, ezt fxy, y**, fyz qui definissent la deformation.

Relativement ä un Systeme d'axes cartesiens x, y, e,

et en appelant u, v, w les composantes du deplacement
d'un Point P (x, y, z) suivant ces axes, nous avons:

du
_

dv ; dw
Sx=~äx~' e-»' Ty~ ' S* ~ä7 '

_
dv du dw du dw dv

£x) <5yi «* sont les deformations lineaires specifiques; yxy,

Yx*i yyi les deformations angulaires."
„Pour les directions principales de deformation les y

disparaissent, appelons £j, e2, e8 IiH deformations lineaires
specifiques correspondantes. Par raison de symetrie, les
axes de l'ellipsoide des indices co'incident en chaque point
avec les directions principales de deformation en ce point."

„Nous poserons, conformement ä ces hypotbeses:
A* — vz an «j -+- aJ2 (e2 -f- e8)

et deux equations symetriques. A cause de la petitesse des
coefficients «jj et a12 nous pouvons extraire la racine par
approximation. Soit a12 "zpv, an 2 qv, \\ vieüt:

A v -\- q gj -+-/> (% -f- es)

B — v + q e2 4- p («j -+- es)

C v H- q e3 -\-p (£j + e2)

„Soient V la vitesse de la lumiere dans le vide, n
l'indice de refraction de la matiere non sollicitee, nv «a, «g
les indices principaux apres la deformation.14) Nous avons:

V= nv «j A «j B ns C
V V n — n\
-n--^ -»-^-V= 1 \+/ & + *>'

et ä cause de la petitesse des coefficients p et q:

n — «j n (-f-ej H-^- (82 + fi3)) (4)

On obtient des formules symetriques pour «2 et w3."

„LesMuantites — -VV et — —— sont des grandeurs
» V 2 V2 V 2 V* °

numeriques. Ce sont les parametres qui reglent le
phenomene."

„D'une maniere generale, chaque element d'un corps
isotrope est transforme en biaxe. Les formules precedentes
satisfont au principe de superposition formule par Brewster:
quand on impose au milieu des deformations consecutives

puis simultanees, 1'effet produit par ces dernieres est la
somme des effets r6sultant des impositions successives.
Cela revient ä dire que les formules qui donnent la Variation

des indices sont lineaires par rapport aux six quan-
tites qui definissent la deformation."

Nous allons maintenant appliquer la formule (4),
donnee par la theorie de Neumann, au calcul de d1 et <32.

Considerons comme precedemment une plaque plane
mince faite d'une matiere transparente, homogene et

isotrope. Soient E et v les constantes elastiques, n, — et —

les constantes optiques de la matiere de la plaque. Soit
encore e (et non plus 1) son epaisseur (figure 5).

li) Pi i\ vi ni ^i. "21 "s. et° • sont relatifs ä une longueur d'onde

determin'ie X.

Appliquons au bord c de notre plaque un Systeme
de forces en equilibre PxPt. P„ situees toutes dans le
plan equidistant des deux faces Nous aurons' alors un etat
de sollicitation ä deux dimensions au point de vue des

tensions.
A tout point tel que O cor-

respondent deux directions
orthogonales 1 et 2 qui sont
celles des tensions principales

öj et o., agissant en ce
point.

Les directions principales
de deformation en O sont
les directions 1 et 2 (toutes
deux paralleles aux faces de
la plaque) et la direction 3
perpendiculaire ä 1 et 2.

Les deformations lineaires
specifiques relatives aux axes
1, 2, 3 ont ici pour expres-
sion:

Figure 5.

Plaque sollicitee par les forces P.
1, 2, 3 directions principales

de deformation en O:
1 et 2 sont respectivement paralleles

aux tensions principales o, et a., agissant

en O ; 3 perpendiculaire ä 1 et 2.

SO O'S' rayon traversant la plaque
sous une ineidence nulle.

£i =: -fr K — 1 °a)

(ö2 — V öj)

E
i

-]g-(oi + a2)

(5)

Supposons qu'un rayon polarise S O arrive sur la
plaque en O sous une ineidence nulle, en vibrant
parallelement ä la direction i. Que la plaque soit sollicitee par
le Systeme P ou non, ce rayon la traversera sans moditier
la direction de ses vibrations: le rayon emergent Ö S

vibrera encore parallelement
ä la direction i. Seulement,
par la mise en charge, le
rayon Ö S subit une Variation

de marche: soit d-, cette
Variation.

Pour calculer dx considerons

deux points D et D'
situes de pto et d'autre
de la plaque sur le rayon
SO O'S' (figure 6). Soit /
la distance geometrique DD' ¦

Le chemin optique L du
rayon S O O' S' relatif ä

l'espace geometrique D D'
a pour expression, avant la
mise en charge:

L l-\-(n— i)e (6)
Par suite de la mise en charge, L varie de d L. Dif-

ferentions l'equation (6), en remarquant que seuls n et e

varient.
— i) d e -f- e dn.
d L Nous avons donc:

jx =— [(«— i)de-\-ednj
Nous pouvons facilement calculer de et dn.
d e £g e et en vertu de la formule (4):

FigEire 6.

Coupe de la plaque suivant
le plan 1-0*3.

SO O'S' rayon traversant la plaque
sous une ineidence nulle. D et D'
points arbitraires de ce rayon, situes

de part et d'autre de la plaque.

Or
dL
\°~i

(7)

dn «.
P

(«2

d'oü, en substituant dans la formule (7):

(«— i)es + « 1^— Sj

En introduisant les valeurs de
les equations (5), il vient:

1 /, q

-IE e2> e8 donnees par

<5. e- (n — 1) v -f-; 2 nv£_¦
l(« — 1) v -\- (1 — v) n- öo (8)

Si le rayon ineident S O, au lieu de vibrer parallelement

ä i, vibre parallelement ä 2, on obtient pour la
Variation de
ment ä 2:

marche öt du rayon ö S' vibrant parallele-

<5
2 e — (« — H 3 n (- P+ f(fi+£sl
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:=.

rs i—.

Abb. 4. Triebradsatz mit als Kupplungs-Gehäuse ausgestaltetem Zahnrad. Abb. Sogenanntes B|ava"-Drehgestell.

d'oü, en introduisant comme precedemment 1

n6es par (5):
l H'

dv e- n — i),+ (i-»; p

w i)v + -)V 1

don-

(9)

Enfin si le rayon S 0 arrive en O sur la plaque en
vibrant parallelement ä une direction A qui ne coincide
ni avec 1 ni avec 2, le rayon emergent O' S' sera, avant
mise en charge un rayon polarise vibrant parallelement
ä A, apres mise en charge un rayon compose de deux
vibrations de support O' S' dont l'une vibre parallelement
ä 1 et l'autre parallelement ä 2. Les differences de marche
<5j et <5a de ces deux vibrations relatives ä la Vibration du
rayon O' S' avant mise en charge, sont donnees par les
formules (8) et (9).

Posons

i)v p

-\- (1 — v) n- nv —.)-»;
nous avons

\
E
finalement:

f(5j a e öj -+- b e o2
\b2 b e öj -f- a e ö2

oü a et b sont des constantes dependant de la
de la plaque et de la longueur d'onde utilisee.

Les relations (1') et (2') sont exactement les m£mes
que les relations (1) et (2) trouvees au § 2. (ä suivre)

• (O
¦ (a')

matiere

Universal-Antrieb „Winterthur"
für elektrische Lokomotiven.

Von Ing. J. BUCHLI, Winterthur.

Vor kurzer Zeit brachte die Schweizerische
Lokomotiv- und Maschinenfabrik (SLM) den mechanischen Teil
einer elektrischen Lokomotive zur Ablieferung, die in ihrem
konstruktiven Aufbau verschiedene Neuerungen besitzt, und
auch inbezug auf die hohen Anforderungen, die der Betrieb
an sie stellt, interessant ist. Die Lokomotive (Abbildungen
1 und 2), über die hier bereits kurz berichtet worden istJ),
ist für die Strecke Bombay-Paoona-Igatpuri der Great
Indian Peninsula Railway bestimmt, die mit 1500 Volt
Gleichstrom betrieben wird; sie muss bei den Abnahme-
Versuchen die Geschwindigkeit von 137 km/h erreichen,
eine Bedingung, die bis heute von keiner elektrischen
Schnellzuglokomotive gefordert wurde, und die besonders
an die mechanische Gestaltung der Maschine ausserordentliche

Anforderungen stellt.
x) Vgl. Band 89, Seite 174 (26. März 1927). Red.
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Abb. 5. Blick in das Innere der Kreuzkupplung der S. L.-M.

Für den Schnellzugsdienst sind vorgängig der
Beschaffung einer grössern Anzahl drei Probelokomotiven in
Auftrag gegeben worden. Es ist kein Zufall, dass daran
drei Schweizerfirmen direkt oder indirekt beteiligt sind,
denn die Elektrifikation der S. B. B. hat der schweizerischen

Maschinellindustrie Gelegenheit gegeben, in reichem
Masse Erfahrungen im Bau von elektrischen Fahrzeugen
zu sammeln, sodass sie als Lieferanten von Qualitätserzeugnissen

ihre Stellung im internationalen Wettbewerb weiter
befestigen konnten.

Ein Produkt dieser reichen Erfahrung ist der Uni-
versal-Antrieb „Winterthur"'t mit dem die eingangs erwähnte
Schnellzuglokomotive ausgerüstet ist.

Der Einzelachsantrieb als solcher nimmt, dank seiner
anerkannten Vorteile, wenigstens bei Personen- und Schnell-
zuglokomotiven, eine dominierende Stellung ein. Es
besteben verschiedene Systeme solcher Antriebe, die sich
durchaus bewährten, aber weitere Verbesserungen nicht
ausschliessen. Der Universal-Antrieb „Winterthur" wurde
gebaut mit dem Zweck, die günstigen Eigenschaften des
Systems beizubehalten, unter Aufhebung der Schwächen der
bestehenden Ausführungen und unter Hinzufügung weiterer
Vorteile besonders betriebstechnischer Natur. Er ist durch
zwei hauptsächliche Merkmale gekennzeichnet: durch die
koaxiale Lage der Motoren über den Triebrädern sym-
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