Zeitschrift: Schweizerische Bauzeitung

Herausgeber: Verlags-AG der akademischen technischen Vereine

Band: 89/90 (1927)

Heft: 15

Artikel: Die 15 kV Einphasenstrom-Fahrleitungen der Schweizerischen

Bundesbahnen

Autor: Schuler, H.W.

DOI: https://doi.org/10.5169/seals-41781

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 18.10.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Die 15 kV Einphasenstrom-Fahrleitungen der Schweizerischen Bundesbahnen.

Von H. W. SCHULER, Elektroingenieur, Zürich.

Die Elektrifikation der Strecke Erstfeld-Bellinzona der Gotthardlinie, die Ende 1913 beschlossen wurde, war gedacht als eine Versuchsausführung im Grossen. Von ihrer Bewährung sollte es abhängen, ob und wie die Elektrifikation der Schweizerischen Bundesbahnen weiter auszudehnen sei. Die Gründe, die dazu zwangen, eine solche selbstverständliche Erwägung fallen zu lassen und die Ausdehnung der Elektrifikation über diese Stammstrecke hinaus schon vor ihrer Vollendung zur Folge hatten, sind bekannt.

Diese Ausdehnung, zuerst im August 1918 nach Süden bis Chiasso beschlossen, dann schon im April 1919 nach Norden bis Luzern und Zürich, wurde begonnen in einem Zeitpunkt, in dem nur ungefähr vorauszusehen war, wann es möglich sein werde, auf Erstfeld-Bellinzona mit dem 15 kV Einphasensystem Erfahrungen zu sammeln. Wird noch berücksichtigt, dass im Herbst 1917 beschlossen wurde, Thun-Bern zu elektrifizieren, und schon im Oktober 1920 das Projekt über die Elektrifikation der Strecke Sitten-Lausanne vom Verwaltungsrat genehmigt worden ist, so wird es ohne weiteres verständlich, dass die Fahrleitungs-Anlagen der verschiedenen heute elektrisch betriebenen Linien nicht eine einheitliche Bauart aufweisen.

Zwangen die Verhältnisse des Jahres 1918 im Interesse eines raschen Baubeginnes auf Thun-Bern dazu, an Stelle eiserner Maste Holzmaste zu verwenden und die Fahrleitungsbauart der Lötschbergbahn zu übernehmen, so war anderseits für die Strecken Bellinzona-Chiasso und Erstfeld-Luzern und -Zürich noch kein Grund vorhanden, von der für die Strecke Erstfeld-Bellinzona gewählten Bauart im wesentlichen abzuweichen. Immerhin schien, hauptsächlich mit Rücksicht auf die Elektrifikation eines so ausgedehnten Bahnhofes wie Zürich, der Einbau einer etwas "durchsichtigern" Fahrleitung, deren Montage auch weniger Zeit erforderte, vorteilhaft. So wurden die Stationen der Strecken Luzern-Zug und Goldau-Zürich mit Fahrleitungen ohne Zwischenseil ausgerüstet. In der Folge wurde die Leitungsbauart Gotthard überhaupt verlassen und bei den nach Luzern-Chiasso begonnenen Arbeiten der Fahrdraht direkt am Tragseil aufgehängt und durch Gewichte nachgespannt. Diese Bauart wurde nicht nur mit der von der Gotthard-Fahrleitung übernommenen normalen Spannweite von 60 m, sondern, in der Westschweiz, auch mit 100 m Normalspannweite ausgeführt, sodass heute im wesentlichen drei verschiedene Fahrleitungs-Bauarten unterschieden werden können, die im folgenden beschrieben werden sollen.

DIE GOTTHARD-FAHRLEITUNG MIT ZWISCHENSEIL.

Diese Fahrleitung besteht über den Hauptgeleisen aus einem Drahtseil von 7 Drähten aus verzinktem Eisen von 4 mm Durchmesser, Gesamtquerschnitt 88 mm², aus einem Zwischenseil von 19 Drähten aus verzinktem Eisen von 2,5 mm Durchmesser, Gesamtquerschnitt 93 mm², und aus einem Fahrdraht aus hartgezogenem Kupfer, Querschnitt 107 mm². Ueber den Nebengeleisen besteht das Tragseil aus 7 Drähten von 3 mm Durchmesser, Gesamtquerschnitt 50 mm², das Zwischenseil aus 19 Drähten von 2,2 mm Durchmesser, Gesamtquerschnitt 73 mm², und der Fahrdraht aus hartgezogenem Kupfer von 70 mm² Querschnitt. Der an Stelle dieses Kupferfahrdrahtes auf einzelnen Stationen eingebaute Eisenfahrdraht von 90 mm² Querschnitt hat sich im Betrieb nicht bewährt und ist daher in den letzten Jahren wieder entfernt worden. Die Normalspannweite beträgt auf der Strecke Erstfeld-Bellinzona 56 m, auf den Strecken Bellinzona-Chiasso und Erstfeld-Luzern 60 m. Die Spannweite von 56 m ergab sich als günstigste Spannweite wegen der vielen Kurven zwischen Erstfeld und Bellinzona, zwischen denen nur verhältnismässig kurze gerade Strecken den Einbau grösserer Spannweiten gestattet hätten.

Abbildung 1 zeigt schematisch die Anordnung der Fahrleitung. Der Fahrdraht ist alle 7,5 m mittels Hänger am Zwischenseil aufgehängt, das seinerseits auf der freien Strecke alle 30 m, in den Stationen alle 15 m am Tragseil aufgehängt ist. Dieses ist alle 60 m über ein Tragjoch geführt. Nach vier Spannweiten, also nach 240 m, geht der Fahrdraht in das Zwischenseil über, wie in Abbildung 2 angedeutet; der Zug in Fahrdraht und Zwischenseil ist daher bei allen Temperaturen der gleiche; er beträgt bei - 200

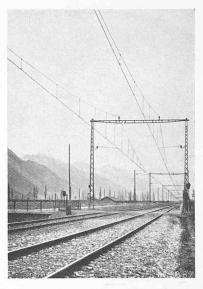


Abb. 7. Fahrleitung von 100 m Spannweite, ohne Zwischenseil, auf gerader Strecke.

rd. 400 kg und nimmt bei steigender Temperatur ab, bis er bei der angenommenen Höchsttemperatur von 34° noch 230 kg beträgt. Wäre der Fahrdraht nicht in der angegebenen Art mit dem Zwischenseil kombiniert, so würde der Zug bei 34° bis auf 53 kg sinken. Im Zwischenseil allein würde bei dieser Temperatur der Zug noch 300 kg

betragen.

Die zunehmende Temperatur bewirkt einerseits eine Verlängerung des Fahrdrahtes und des Zwischenseiles infolge der Wärmedehnung, anderseits eine Abnahme des Zuges. Diese Abnahme nun hat eine Vergrösserung des Durchhanges, also eine Verlängerung, und eine Verkleinerung der elastischen Dehnung, also eine Verkürzung, zur Folge. Die Verlängerung infolge Wärmedehnung von vier Spannweiten Fahrdraht und vier Spannweiten Zwischenseil, vermindert um die Differenz von Verlängerung infolge Durchhangsvergrösserung und Verkürzung infolge Verminderung der elastischen Dehnung der gleichen vier Spann-weiten Fahrdraht und Zwischenseil, ergibt die effektive Verlängerung, der anderseits ein ganz bestimmter Zug entspricht. Die graphische Darstellung Abbildung 3 zeigt ohne weiteres wie, ausgehend von 400 kg Zug bei - 200, der einer Temperatur von 34° entsprechende Zug gefunden wird. Der Zug von 230 kg, der dieser Temperatur entspricht, ist im Hinblick auf die Höchstgeschwindigkeit von 90 km/h und den kleinen Stromabnehmer-Anpressungsdruck eher klein. Dazu kommt als besondere Eigentümlichkeit dieser Fahrleitungsbauart, dass auch eine wesentliche Erhöhung des Zuges bei tiefster Temperatur keine ähnliche Erhöhung des Zuges bei der Höchsttemperatur zur Folge hat. Zeichnet man die in Abbildung 3 enthaltenen Kurven auf einen Höchstzug von 600 kg um, so ergibt sich bei der Höchsttemperatur nur ein Zug von 260 kg.

Der Zug im Tragseil über Hauptgeleisen beträgt bei der tiefsten Temperatur 670 kg. Es besteht also, da das Seil eine Zugfestigkeit von 50 kg/mm² aufweist, eine 7,3 fache Sicherheit gegen Zerreissen. Bei der angenommenen Höchsttemperatur von $+34^{\circ}$ beträgt der Zug noch 600 kg. Dieser Zugverminderung entspricht eine Durchhangvergrösserung, die zur Folge hat, dass sich die Aufhängepunkte des Zwischenseiles senken. Da diese Bewegung praktisch senkrecht zur Geleiseebene erfolgt, verschiebt sich auch der Fahrdraht praktisch parallel gegen das Geleise hin oder von ihm weg. Diese Parallelverschiebung beträgt in den Temperaturgrenzen von -20° bis $+34^{\circ}$ insgesamt 46 cm. Der Fahrdraht wird nun bei der mittlern Montagetemperatur so verlegt, dass alle seine Aufhängepunkte gleichen Abstand vom Geleise haben. Bei

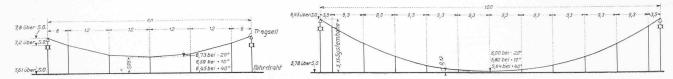


Abb. 4 und 5. Aufhängung der Fahrleitung ohne Zwischenseil auf freier Strecke, bei 60 bezw. 100 m Spannweite. - Masstab 1:1000.

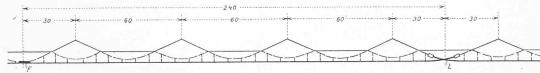


Abb. 2. Fixpunkt (F) und Lagewechsel (L) zwischen Fahrdraht und Zwischenseil bei der Gotthard-Fahrleitung. - 1: 2000.

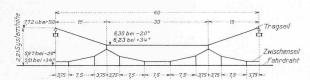


Abb. 1. Gotthard-Fahrleitung auf freier Strecke. - 1:1000.

den angenommenen Grenztemperaturen ist aber dieser Abstand nicht mehr überall der gleiche; im ungünstigsten Falle tritt bei der Zwischenseil-Spannweite von 30 m (Zweipunkt-Aufhängung) ein Unterschied von 10 cm, bei der Zwischenseil-Spannweite von 15 m (Vierpunkt-Aufhängung) ein solcher von 5,5 cm auf zwischen tiefstem und höchstem Punkt des Fahrdrahtes über Schienenoberkante. Diese geringe Welligkeit, bezogen auf die Zwischenseil-Spannweite, ist es, die auch bei hohen Temperaturen, also bei kleinem Zug im Fahrdraht, eine zuverlässige und funkenfreie Stromabnahme bei hohen Fahrgeschwindigkeiten ermöglicht.

Eine Nachregulierung der Fahrleitung in den ersten Betriebsjahren mittels der in das Zwischenseil eingebauten Spannschlösser war nötig wegen der den Kupferdrähten eigentümlichen dauernden Dehnung, die erst nach länger dauernder Zugbeanspruchung zur Ruhe kommt.

DIE FAHRLEITUNGS-BAUARTEN OHNE ZWISCHENSEIL.

Wie schon eingangs bemerkt, kam nach Verlassen der Gotthard-Bauart nicht auf dem ganzen Netz die gleiche Fahrleitungsbauart ohne Zwischenseil zur Anwendung. Grundsätzlich unterscheiden sich allerdings die beiden Bauarten nicht, da sowohl bei 100 m als auch bei 60 m Normalspannweite (vergl. Abbildungen 4, 5, 7 und 8) das Tragseil an jedem Tragpunkt festgehalten ist, während der Fahrdraht durch Gewichte nachgespannt wird, die ihm bei allen vorkommenden Temperaturen eine gleichbleibende Zugspannung geben. Von der Bauart der Gotthardleitung wurde nur die Aufhängung des Fahrdrahtes in Abständen

von 7,5 m an seinem Tragorgan über-In der nommen. Folge wurde aber durch eingehende Versuche mit der höchstzulässigen Geschwindigkeit von 90 km/h festgestellt, dass auf Hauptgeleisen ein Hängerabstand von 12 m bei einem Zug im Fahrdraht von 600 kg ohne weiteres noch zulässig sei. Diesem Zug entspricht ein Fahrdrahtdurchhang zwischen zwei Hängern von 2,9 cm.

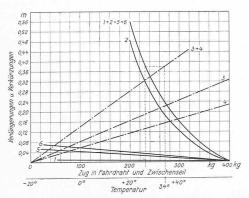


Abb. 3. Verhalten von Fahrdraht und Zwischenseil bei der Gotthard Fahrleitung.

bei der Höchstgeschwindigkeit und bei einem Stromabnehmer-Druck von 3,5 bis 4 kg ist trotz dieser Welligkeit des Fahrdrahtes einnen immer mit einer

Die Stromentnahme

wandfrei. Auf Nebengeleisen, auf denen immer mit einer Geschwindigkeit gefahren wird, die weit unter der genannten Höchstgeschwindigkeit liegt, wurde der Hängerabstand auf 15 m festgesetzt, bei spezifisch gleichem Zug im Fahrdraht. Durch diese Vereinfachungen gegenüber der Gotthard-Fahrleitung gelang es, das Gewicht der Fahrleitung von 3,25 kg/m auf 1,38 kg/m herunterzubringen, ein Ergebnis, das sich namentlich in den Kosten von Bau und Unterhalt der Leitung vorteilhaft auswirkt.

Der Zug im Drahtseil beträgt 600 kg bei —20°; er sinkt mit steigender Temperatur und beträgt bei 40°, bei Spannweiten von 100 m, noch 532 kg, bei Spannweiten von 60 m noch 460 kg. Die Aenderung der Zugspannung mit steigender Temperatur zeigt das Berechnungsdiagramm Abbildung 6. Schneelast wurde bei der Berechnung der Leitungen nicht berücksichtigt, von der Annahme ausgehend, dass infolge der durch vorbeifahrende Züge ausgelösten Erschütterungen eine grössere Schneeansammlung an den Leitungen micht möglich ist. Diese Annahme wurde durch die Erfahrungen allgemein als richtig bestätigt. Bis jetzt wurden nur in der eigentlichen Gebirgsgegend der Gotthardlinie grössere Schneemengen, am Drahtwerk haftend, festgestellt. Hier aber fördert die durch das Zwischenseil geschaffene Engmaschigkeit des Drahtwerkes das Ablagern von Schnee.

DIE LAGE DES FAHRDRAHTES INBEZUG AUF DAS GELEISE.

Der bei steigender Temperatur abnehmende Zug im Tragseil bewirkt eine Zunahme des Durchhanges. In der Mitte der Spannweite verändert sich daher die Höhe des Fahrdrahtes über Schienenoberkante in bestimmtem Umfang. Bei 100 m Spannweite beträgt diese Höhenänderung im angenommenen Temperaturbereich von total 60° 36 cm, bei 60 m Spannweite beträgt sie 28 cm. Der Fahrdraht wird nun so eingebaut, dass er bei der Temperatur von 5° C genau parallel zur Geleise-Ebene liegt. Da die unter den beiden Tragpunkten einer Tragseilspannweite liegenden Stellen des Fahrdrahtes sich infolge der Temperaturänderung

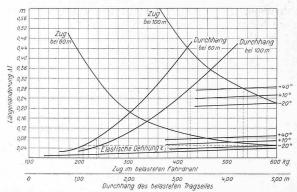


Abb. 6. Berechnungsdiagramm für Fahrleitungen ohne Zwischenseil $von\ 60\ m\ und\ 100\ m\ Spannweite.$

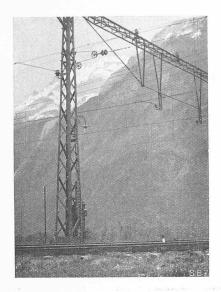
LEGENDE zu Abb. 3: 1. Geometrische Verlängerung des Fahrdrahtes auf 240 m Länge; 2. Geometr. Verlängerung des Zwischenseils auf 240 m Länge; 3. Verlängerung des Fahrdrahtes durch Temperaturerhöhung; 4. Verlängerung des Zwischenseils durch Temperaturerhöhung; 5. Elastische Verkürzung des Zwischenseiles; 6. Elastische Verkürzung des Fahrdrahtes.

Abb. 8. Kurvenabzug über mehrere Geleise bei 60 m Spannweite (Bahnhof Zürich).

Abb. 11. Fahrdraht-Spreizung über engl. Weichen.

nur um wenige Zentimeter nach oben und unten verschieben, wird zwischen diesen beiden Stellen im Bereich von —20° bis +5° der Fahrdraht nach oben (negativer Durchhang), im Bereiche +5° bis +40° nach unten durchhängen. Da nun der Stromabnehmer den Fahrdraht anhebt, die Stromabnahme dann aber immer am funkenfreiesten erfolgt, wenn eine gegen das Geleise hin konkave Drahtwelle vor dem Stromabnehmer her geschoben wird, wird eben der Fahrdraht so eingebaut, dass er, auf die ganze Spannweite bezogen, im grössern Bereich der angenommenen Temperaturgrenzen nach unten durchhängt.

Ueber die Höhenlage des Fahrdrahtes in Bezug auf das Geleise bestehen eidgenössische Vorschriften. Diese lassen über tiefliegenden Ueberbauten, wie Tunnel und Wegüberführungen, eine Fahrdrahthöhe von 4,8 m über S. O. zu. Damit kommt der Fahrdraht an die obere Begrenzungslinie des Lichtraumprofils zu liegen. Da die obere Umgrenzungslinie der Fahrzeuge 4,5 m über S. O. liegt, bleibt ein Schutzabstand von 30 cm zwischen Fahrdraht und "Erde". Anderseits musste zwischen tiefster Fahrdrabtlage und Unterkante Ueberbau ein Abstand von mindestens 50 cm vorhanden sein, um die Fahrleitung, bestehend aus Tragseil, Zwischenseil und Fahrdraht, frei durchzubringen. Die Isolierung der Leitung an den Enden der Ueberbaute erforderte auch dann, wenn die Fahrleitung kein Zwischenseil besass, komplizierte Konstruktionen (Abb. 9). Zudem waren solche Stellen der Fahrleitung immer sehr schwer einregulierbar. Die Auftrennung des Tragseiles und seine isolierte Befestigung an den Stirnseiten der Ueberbaute beseitigte alle Mängel, die solchen Unterführungen anhafteten (Abbildung 10). Auf der durch keine Hindernisse beengten freien Strecke ist eine Fahrdrahthöhe von 5,5 m über S. O. vorgeschrieben, die bei mehr als 3 m breiten schienengleichen Wegübergängen 5,8 m betragen muss. Da der Uebergang von einer Fahrdrahthöhe zu einer andern wegen der Höchstgeschwindigkeit von 90 km/h nur mit einer Neigung von höchstens 2 0/00 erfolgen darf, kann, wenn sich in der Nähe solcher Wegübergänge tiefliegende Ueberbauten befinden, die verlangte Höhe von 5,8 m nicht eingehalten werden. In solchen Fällen sind auf beiden Seiten der Geleise quer über die Strasse Schutzportale zu stellen, die auf die Gefahr des tiefliegenden Fahrdrahtes aufmerksam machen und zugleich die zulässige Ladehöhe der Strassenfuhrwerke angeben.


In Stationen muss vorschriftsgemäss eine Fahrdrahthöhe von mindestens 6 m eingehalten werden, mit Rücksicht auf das Beladen und Entladen von Wagen und auf das Besteigen von Wagendächern zu Revisionszwecken. Dieser Vorschrift kann natürlich nur da nachgelebt werden, wo keine Ueberbauten zu kleinerer Fahrdrahthöhe zwingen. Nun zeigt aber die Erfahrung, dass nur in etwa der Hälfte aller Stationen die Fahrdrahthöhe von 6 m eingehalten werden kann, und zwar sind gerade in den grössern Bahnhöfen fast immer Ueberbauten vorhanden, die eine solche Höhe nicht zulassen.

Die Lage des Fahrdrahtes inbezug auf die Geleiseaxe ist bestimmt durch die Breite des Stromabnehmers. Wegen der vielen Tunnel mit engem Profil kann die gesamte Breite nicht mehr als 1320 mm betragen, sodass für das eigentliche Schleiftück aus Alumium nur 950 mm übrig bleiben. Die möglichst gleichmässige Abnützung der Schleiffläche des Schleifstückes verlangt in der Geraden die Zickzackführung des Fahrdrahtes, an deren Stelle in den Kurven die Polygonführung tritt. Die grösste Abweichung des Fahrdrahtes aus der Geleiseaxe beträgt 20 cm. In der Geraden wird in einer Spannweite von einem Maximum zum andern gegangen, sodass der Fahrdraht in der Mitte der Spannweite senkrecht über der Geleiseaxe liegt. In der Kurve liegt der Punkt der grössten Abweichung immer da, wo der Fahrdraht seitlich festgehalten wird. Es bleibt somit am Schleifstück eine nicht beschliffene Fläche von 2 + 27,5 cm Länge, die nur bei seitlichem Schwanken des Fahrzeuges und des Stromabnehmers selbst zur Stromabnahme herangezogen wird.

Das kleine zulässige Höchstmass der Abweichung von \pm 20 cm aus der Geleiseaxe hat zur Folge, dass in bestimmten Fällen zwischen die eigentlichen Tragwerke Zwischenmaste eingebaut werden müssen. Bei 60 m Normalspannweite werden solche Zwischenmaste in Kurven mit Radien unter 1000 m nötig; bei 100 m Spannweite wird auch in der Geraden und dazu in Kurven bis herab auf solche von 1000 m Radius ein Zwischenmast, in Kurven unter 1000 m deren zwei eingesetzt, sodass dann der Fahrdraht alle 33 m seitlich festgehalten ist.

In Stationen wird über englischen Weichen der eine der kreuzenden Fahrdrähte 40 cm gespreizt, damit beim Befahren der Weichen auf Ablenkung der Stromabnehmer auf keinen Fall vom Fahrdraht abgleite. Abbildung 11 zeigt die beschriebene Ausführung, von der die alte Ausführung insofern abweicht, als bei ihr beide kreuzenden Fahrdrähte je 20 cm gespreizt sind (siehe die in nächster Nummer folgende Abbildung 22, rechts vom Mast).

Jede Temperaturänderung verschiebt wegen der Wärmedehnung den Fahrdraht in der Richtung des Geleises, bei steigender Temperatur gegen das Nachspanngewicht hin, bei sinkender Temperatur von ihm weg gegen den Fixpunkt hin. Die Länge einer Nachspannstrecke zwischen Fixpunkt und Nachspanngewicht beträgt höchstens 750 m; in der

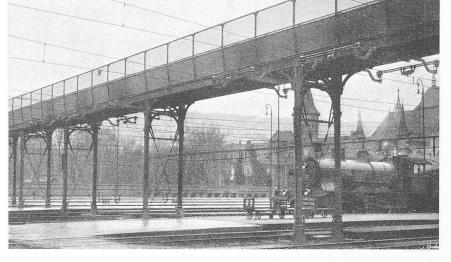


Abb. 12. Durch Gewicht nachgespannte Leitung.

Abb. 9. Unterführung von Fahrdraht und Tragdraht unter einer Passerelle (Bahnhof Zürich).

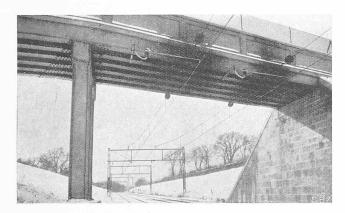


Abb. 10. Abfangen des Tragseils unter Ueberbauten; Fahrdraht frei durchgeführt.

Regel, insbesondere in Kurven werden 600 m nicht überschritten. Bei dieser Länge ist der Betrag der Reibung, die dem Zug der Gewichte entgegenwirkt, noch so klein, dass eine wesentliche Verminderung des Fahrdrahtzuges zwischen Fixpunkt und Nachspanngewicht nicht festzustellen ist. Auf der freien Strecke und über langen Stations-Geleisen wird der Fixpunkt so gebildet, dass der Fahrdraht am Tragseil verankert wird. Fahrdrähte über kürzern Stationsgeleisen werden am einen Ende an einem Ankermast verankert und am andern mit Gewichten nachgespannt (Abbildung 12). Dabei wird bei kreuzenden Fahrdrähten darauf geachtet, dass sie sich in ihrer gegenseitigen Verschiebung nicht stören.

DAS DRAHTWERK.

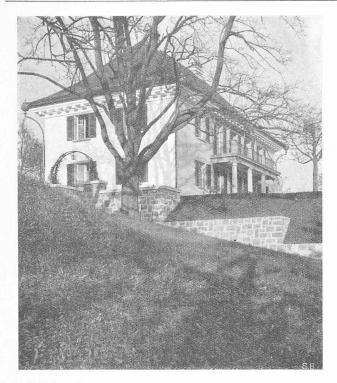
Die Systemhöhe des Drahtwerkes, unter der man den Abstand zwischen Fahrdraht und Auflagepunkt des Tragseiles versteht, ist in erster Linie gegeben durch den Durchhang des Tragseiles beim festgesetzten Höchstzug. Sie ist ferner durch die Länge des kürzesten Hängers in der Mitte der Spannweite bestimmt. Bei der Bauart mit 100 m Spannweite ist der kürzeste Hänger 12 cm lang, da, mit Rücksicht auf die Mastlänge, mit dem Tragseil möglichst an den Fahrdraht herangegangen werden musste. Bei der 60 m Spannweite durfte in der Mitte der Spannweite der Abstand zwischen Fahrdraht und Tragseil nicht zu klein vorgesehen werden, weil sonst die Joche zu tief in das Gesichtsfeld des Führers herabgekommen wären und weil die Verwendung von Jochen und Auslegern mit schrägen Streben nach unten an den Mast eine einfache Anordnung der Seitenisolation nicht mehr ermöglicht hätte.

Die einzelnen Teile des Drahtwerkes und zum Teil auch die an sie gestellten Anforderungen haben ganz bestimmte Entwicklungen durchgemacht, die teils durch Erfahrungen im Bau und im Betrieb, teils durch neue Ueberlegungen veranlasst worden sind. Es würde zu weit führen, hier auf Einzelheiten dieser Entwicklungen einzugehen, es kann höchstens bei der Beschreibung des Geltenden kurz auf wichtigere Stufen hingewiesen werden.

Als Fahrdraht wurde von Anfang an ein Runddraht mit zwei Furchen verwendet, dessen Querschnittform mit jener des normalen amerikanischen Trolleydrahtes übereinstimmt. Abbildung 13 zeigt die vier normalisierten Querschnitte. Fahrdraht mit 57 mm² Querschnitt wird über allen Stationsgeleisen verlegt, auf denen mit weniger als 45 km/h gefahren wird. Eine Ausnahme bilden die Stationen der Strecke Luzern-Chiasso, wo überall auf solchen Geleisen Fahrdraht von 70 mm2 Querschnitt zur Verwendung gekommen ist. Ueber allen Stationsgeleisen, die mit mehr als 45 km/h befahren werden, und über allen Geleisen der freien Strecke wird Fahrdraht von 107 mm² Querschnitt verlegt. Der Fahrdraht besteht aus hartgezogenem Elektrolyt-

Abb. 13. Fahrdraht-Profile. - 1:1.

kupfer von mindestens 99,8 º/o chemischer Reinheit. Er wird zur Erreichung langer Walzdrahtlängen aus möglichst schweren Wire-bars


gewalzt. Die Walzdrähte werden mit Silber sorgfältig gelötet, sodass im fertig gezogenen Draht die Lötstellen die gleiche Festigkeit aufweisen wie der homogene Draht.

Die den Drahtwerk-Berechnungen zu Grunde liegenden Konstanten der beiden jetzt ausschliesslich verwendeten

Fahrdrahtarten sind: 57 mm² 107 mm² Ohm/km 0,295 Widerstand 0,157 1,2.106 Elastizitätsmodul kg/cm² 1,2.106 Wärmeausdehnungskoeffizient cm/10 C 1,7.10-5 1,7.10-5 Spezifisches Gewicht 8,9.10-3 8,9.10-3 kg/cm³ Gewicht 0,508 kg/m 0,953 Gesamt-Zugfestigkeit 1820 kg 3440

Der 107 mm² Draht wird mit 600 kg, der 57 mm² mit 300 kg nachgespannt. Die Sicherheit gegen Zerreissen ist daher eine 5,7- bis 6,1-fache. Die spezifische Zugfestigkeit des Drahtes muss mindestens 35 kg/mm2, die Dehnung nach dem Bruch gemessen auf 20 cm Messlänge mindestens $4.5 \, ^{0}/_{0}$ betragen.

Als Tragorgan des Fahrdrahtes wird an Stelle des bereits erwähnten Tragseiles der Gotthard-Fahrleitung von 88 mm² Querschnitt, Tragseil von 50 mm² Querschnitt oder

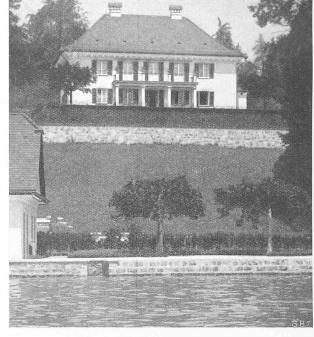


Abb. 4. Südwestseite des Hauses G. Küpfer.

Abb. 3. Ansicht vom See aus.

Bimetalldraht von 63,6 mm² Querschnitt verwendet. Verzinktes Stahlseil wird über allen Geleisen der Linien eingebaut, auf denen nach der Durchführung der Elektrifikation alle regelmässigen Züge elektrisch geführt werden. Auf Strecken, auf denen dies nicht zutrifft, kommt verbleit-verzinktes Stahlseil zur Verwendung. Bimetalldraht (Kupferpanzerstahldraht) wird in Tunneln und über den Geleisen derjenigen Stationen verlegt, in die auch nach der Elektrifikation noch Linien mit Dampfverkehr einmünden. An dessen Stelle wird Bronzeseil ver-

wendet, wenn dieses mindestens 10 % billiger zu stehen kommt; dabei muss die grössere Wärmedehnung, also die grössere Durchhangänderung der Bronzeteile im Bereich des angenommenen Temperaturintervalles in Kauf genommen werden.

Zu Berechnungen werden die folgenden Bedingungen und Konstanten der verschiedenen Tragorgan-Arten benützt:

		Stahlseil	Bronzeseil	Bimetalldraht
Elastizitätsmodul	kg/cm ²	1,8.106	1,05.106	1,6·10 ⁶
Wärmedehnungs-				
koeffizient	cm/I^0C	1,1.10-5	$1,7 \cdot 10^{-5}$	1,3.10-5
Spezifisches Gewicht	kg/cm ³	7,80.10-3	8,90.10-3	8,35.10-3
Gewicht	kg/m	0,400	0,450	0,531
Gesamt-Zugfestigkeit	kg	3600	3000	3600
Durchmesser	mm	9,0	9,0	9,0
Spez. Zugfestigkeit	kg/mm	72	60	57
Dehnung 1)	0/0	6,0	1,5	2,5
Die Ceile eind	D	b	D.	

Die Seile sind aus 7 Drähten von 3 mm Durchmesser zusammengesetzt. Durch Eintauchen des Drahtes in Kupfervitriollösungen 1:5 wird die Güte der Verzinkung der Einzeldrähte nachgeprüft. Nach sechs Eintauchungen von je einer Minute Dauer darf sich dabei keine zusammenhängende Kupferschicht bilden. In ähnlicher Weise wird die Güte der auf die Zinkschicht aufgebrachten Bleischicht kontrolliert; nur kommt hier ein Bad von 20 % iger Schwefelsäure von 50 °C zur Anwendung. Bei keiner der sechs Eintauchungen darf sich an der Drahtoberfläche Gasentwicklung zeigen. Ausserdem müssen die Einzeldrähte sich noch um Drähte gleichen Durchmessers aufwickeln lassen,

Abb. 7. Grundrisse 1:400. - Architekt A. Ammann, Luzern.

ohne dass die Zink- und Bleischicht rissig wird oder sich ablöst. Vom Bimetalldraht wird verlangt, dass sich die Oberfläche der Kupferschicht nicht aufrauht, und dass sich die Kupferschicht nicht vom Stahlkern löst, wenn der Draht um einen Zylinder von 20 mm Radius aufgewickelt wird. Die Stahlseele soll nicht mehr als 66 % des Gesamtquerschnittes beanspruchen, die Dicke der Kupferschicht darf an der dünnsten Stelle nicht unter 0,5 mm sinken.

Damit die Seile möglichst wenig Schweiss- und Lötstellen aufweisen, sollen die Einzeldrähte mindestens 1000 m lang sein. (Forts. folgt.)

Landhaus G. Küpfer in Kastanienbaum bei Luzern.

Von Arch. A. AMMANN, Luzern.

Nach 40-jähriger Lebensarbeit in Chile hat sich der Bauherr, ein gebürtiger Berner, nach der Heimat zurückgezogen, und am Ufer des Vierwaldstättersees sesshaft niedergelassen (Abbildung 1). In monatelanger, gemeinsamer Vorarbeit mit dem Architekten, bei der weder der englische Zug im Schrank für Kragen und Manschetten noch die Toilette mit Kalt- und Warmwasser für das Dienstpersonal vergessen worden sind, ist das schlichte Landhaus im Jahre 1925 entstanden. Der prächtige, alte Baumbestand gab von ersten Tage an einen Rahmen, der seinesgleichen sucht. Die horizontalen Linien, die Seemauer, Boothaus, Stützmauer, Dachgesims und First bilden, schaffen bewussten Kontrast mit den bewegten Formen der einfassenden Eichen und Obstbäume (Abbildungen 2 und 3).

¹⁾ Nach dem Bruch auf 20 cm Messlänge gemessen.