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Angenaherte Berechnung von Schwingungszahlen mit Hilfe des Seilpolygons.
Von Prof. Dr.-log. OTTO FOPPL, Braunschweig.

Wir behandeln zuerst die Aufgabe, die Eigenschwin-
gungszahl eines gespannten Seiles zu berechnen, das mit
mehreren Lasten behaftet ist. Der gleiche Weg, der hier
zur Losung fithrt, kann auch zur Berechnung der Eigen-
schwingungszahl einer Zug- und Druckfeder eingeschlagen
werden, die mit aufgesetzten Massen behaftet ist, oder einer
Welle, die Schwungmassen trigt. Der folgenden Betrachtung
wohnt  deshalb

weitergehende

Bedeutung inne,
als es nach den
zuerst folgenden <[
Ausfiithrungen G
scheinen mag.

Wir beziehen uns auf Abbildung 1, in der ein mit
der Kraft A gespanntes Drahtseil mit den Massen #,, m;. ..
dargestellt ist. Das Eigengewicht des Drahtseils wird
vernachlidssigt. Das Drahtseil mit den Lasten kann Schwin-
gungen senkrecht zur Axe ausfithren, deren Ausschliage
&, & ... klein sein sollen gegeniiber den Abstinden
ly, ls ... zwischen den einzelnen Massen. Auf jede Masse
m werden durch das Seil Krifte von beiden Seiten her
ibertragen. Die wagrechten Kraftkomponenten sind in
erster Anniherung gleich /; sie heben sich fir jede
Masse heraus. In lotrechter Richtung wirkt auf die Masse
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m, von links die Komponente — H und von

rechts -+ H Z“T—=" - das negative Vorzeichen gibt an,

In 41
dass die Masse 2, durch die Kraft nach der Nullage zu
beschleunigt wird. Es ist also:
d? &, f:‘u'—‘ Sn—1 ;:u—{»—!—:-:n
e :_H( T T ) e

Die Gleichung (1) und die entsprechenden Gleichungen
fir die abrigen Massen haben bei s Massen s Losungen.
Von Interesse ist gewdhnlich nur die Losung I. Ordnung.
Um sie zu finden, muss eine Gleichung von s** Grad gelost
werden, was bei s > 3 erhebliche Schwierigkeiten ver-
ursacht. Die Losung von der I. Ordnung kann aber in
angendherter Weise auch gefunden werden, wenn die
ungefihre Form, nach der das gespannte Drahtseil schwingt,
bekannt ist, und darauf bauen die nachfolgenden Aus-
fiihrungen auf.

Wir stitzen uns auf den Aufsatz des Verfassers:
,Berechnung der Biegungsschwingungszahl einer Welle,
die mit mehreren Massen behaftet ist“, in der ,Zeitschrift
far angewandte Mathematik und Mechanik“ Jahrgang 1927,
Heft 1, wo die Biegungsschwingungszahl einer mit Einzel-
lasten behafteten Welle mit Hilfe des Impulssatzes ange-
nihert bestimmt worden ist. Wir bezeichnen mit &, &y, ...
die Grosstausschlage, die bei der Schwingung auftreten, und
setzen den Ausschlag &, zur Zeit ¢ gleich ¢ &,,. Der Koeffi-
zient ¢ ist nur von der Zeit abhingig; er hat also far alle
Ausschlige zu einer bestimmten Zeit gleiche Grésse.

Wenn 7; die minutliche Schwingungsdauer I. Ordnung und
2T ny
60
kénnen wir ¢ = cos w;? setzen.
Mit 4 und B bezeichnen wir die beiden durch die
Festpunkte {ibertragenen Krifte in lotrechter Richtung, die
bei der Schwingung auftreten; es ist also

m,,

;= die Winkelgeschwindigkeit der Schwingung ist,

A= j—‘:H’%cos wrt
1 1

= Hf/i‘f— cos w;t
s

X

und

Bo=H:

{.r+1

Nach der dynamischen Grundgleichung ist ferner die
Summe der #dussern Krifte in lotrechter Richtung gleich
der Summe der Massen multipliziert mit ihren Beschleu-
nigungen in dieser Richtung:

n

A+B= >m, {f‘zﬂf"— =—awp2 cos wt >m &, . (2)
n=o

Das Summenzeichen ist {iber die si@mtlichen Massen

zu erstrecken, die auf dem schwingenden Drahtseil sitzen.

Der grosste Ausschlag ist zur Zeit /= o vorhanden;

dann ist:
AO *i— BO =i w12 ‘2,‘ m,, Eou . . . . (3)

Die Gleichung (3) gilt fiir die Schwingungslinie. Wir
vergleichen sie mit einer entsprechenden Gleichung, die
fiir die statische Seillinie aufgestellt ist und die angibt,
dass das Gewicht m g der Massen 7 von den beiden Fest-
punkten aus getragen wird:

A+B=—g>m, . . . . . (4

Wir finden, dass beide Gleichungen, abgesehen von
a)[2

einem Faktor, den wir p = 2 nennen wollen, dadurch

von einander verschieden si;d, dass unter dem einen
Summenzeichen die Massen und unter dem andern die
Massen s multipliziert mit den Durchbiegungen &; in der
Nullage auftreten. Wir kdnnen deshalb sagen, ,die Schwin-
gungskurve ist jene Seilkurve, die entsteht, wenn man das
Seil statt durch die Massen s durch die Massen multipli-
ziert mit den Grosstdurchbiegungen belastet“. Wir setzen
deshalb im nachfolgenden statt der Massen . fingierte
Massen xm &, ein. Damit die fingierten Massen auch wirk-
lich die Dimension von Massen haben, muss der Faktor
die Dimension cm~—* haben. Wir werden sehen, dass x bei
der Aufstellung der Gleichung fiir die Schwingungsdauer
herausfallt.

Die Grossen der einzelnen Werte &, sind uns nicht
bekannt. Wir kennen aber die Senkungen &; die die
Massen durch elastisches Nachgeben des Seils unter ihrem
Eigengewicht erfahren. Fiir die angeniherte Berechnung
nehmen wir an, &, sei gleich & und die fingierten Massen
infolgedessen xm &;. Den fingierten Massen entsprechen
lotrechte Seilziige an den beiden Festpunkten:

AG'—!—Bg':gzzmefg N )

Wenn die Schwingungskurve in der Endlage gleich
der Seilkurve ist, gibt Gleichung (5) auch die bei der
Schwingung in der Totlage von aussen auf das System
Gbertragene lotrechte Kraft an. Die Werte in einer
Zwischenlage zur Zeit ¢ erhalten wir wieder durch Multi-
plikation der rechten Seite von Gleichung (5) mit ¢ =
cos wyit:

A+B=gxcos wit >mé . . . (6)

Wir betrachten nun den Schwingungsvorgang von

der Zeit # = o, zu der die Massen in der Zussersten
s 3 5 . 7; 7

Schwingungslage sind, bis zur Zeit f=1f, =~ = 27 des

4 4w
Durchganges der Massen durch die Mittellage. Mit 77 ist
die Schwingungsdauer I. Ordnung in Sekunden bezeichnet,
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n; gibt die minutliche Schwingungszahl an. Auf eine
Viertelschwingung leisten die beiden &dussern Krifte den
Impuls Z:
-YFI_
T I'# L% s Fge
Ze / (A+Bydt=gx—

Dieser Impuls ist dazu verwendet worden, um die

o) bis zur

>'méc (7)

Massen aus der Totlage | Geschwindigkeit i
g g dt

d =
at

Mittellage @ (Geschwindigkeit ( ) = —& w(sin w7 l)— 4,

= —&wr— & m/) zu beschleunigen. Das negative Vor-

zeichen, das die Richtung der Geschwindigkeit angibt, ist
im folgenden ohne Bedeutung. Der Impuls Z ist gleich der
den fingierten Massen mitgeteilten Bewegungsgrosse:

Z= E (Z m ;‘:(;) ] «SG = % W E m 5,2, (8)
Aus (7) und (8) folgt:
o= (9)
& = - (9a)
Ti=z2mn . (9b)

Wenn die Schwingungskurve proportionale Aus-
schlige mit der statischen Seilkurve hat, dann gilt Glei-
chung (9) streng. Das trifft z. B. zu, wenn nur eine Masse
mit dem Drahtseil schwingt oder wenn zwei gleich grosse
Massen symmetrisch zur Mittellage befestigt sind. Im all-
gemeinen Fall ist eine Abweichung zwischen statischer
Seilkurve und Schwingungskurve vorhanden. Die Gleichun-
gen (9) geben aber eine Ndherung an das wahre Ergebnis,
die in sehr vielen Fillen vollstindig befriedigt.

Beispiel :

Wenn wir als Beispiel die Eigenschwingungszahl eines
gespannten Seils mit vielen Massen berechnen wollten,
so wire es schwer moglich, den mit der Anniherung
verbundenen Fehler zu ermitteln, da die zeichnerische
Ungenauigkeit einen Fehler von gleicher Gréssenordnung
zur Folge hat. Wir behandeln desbalb ein Beispiel, bei
dem wir die Gleichung (9) analytisch ldsen und dabei
feststellen konnen, welche Abweichungen gegeniiber der
ebenfalls analytisch genau bestimmbaren Eigenschwingungs-
dauer auftreten. Diese Moglichkeit besteht bei der Berech-
nung der Saitenschwingung. Eine Saite ist ein gespanntes
Seil, das mit sehr vielen sehr kleinen Massen von gleicher
Grosse gleichmidssig besetzt ist. Wenn /A die Saitenspan-

nung, / die Lange, / der Querschnitt und u = die be-

zogene Masse des Baustoffes sind, dann erhalten wir die
Schwingungsdauer 7] nach der genauen Formel zu:

lezll//g. ¥ ' v w e (1O}

Um die Gleichung (9b) anwenden zu koénnen, bestim-
men wir &; an den einzelnen Stellen x unter dem Eigen-
gewicht. Die tatsichliche Durchhéngung erfolgt nach der
Seillinie, die wir an-
genahert durch eine
Parabel ersetzenkén-
nen, was bei den
hier in Frage kom-
menden  geringen
Durchhingungen nur mit einer ganz geringen Vernach-
lassigung verbunden ist. Die Gleichung der Parabel bezogen
auf den Festpunkt 4 lautet (Abbildung 2):

to=4Zx(1—2) (1)

Den Wert aus Gleichung (11) setzen wir in Gleichung (g9b)
ein und erhalten: A
T — SR s 7 ]/‘u.f

Va2t

(12)

Werte der

7\ nach den Gleichungen (10) und (12) ist (1 ——lj ) . 100 =
10

Der Unterschied im beiden Ausdriicke fir

0,6 °/y. Mit der Anwendung der Annéherungérechnung
ist also in diesem Falle ein Fehler von 0,6 °/, verbunden.

Uebertragung des Ergebnisses auf anders geartete
Schwingungsvorginge.

In meinem Buch ,Grundziige der technischen Schwin-
gungslehre“ (Berlin 1923) habe ich gezeigt, dass die im
vorausgehenden behandelte Seilschwingung den némlichen
Gleichungen gehorcht, wie die Schwingung von Massen 1,
die zwischen Federn gehalten sind (Abb. 3) oder von
Schwungmassen, die auf einer Welle sitzen (Abb. 4). Statt
des Seilzuges A (Abb. 1) tritt die Elastizititszahl cy!) der
Feder (Abb. 3) bezw. der Welle (Abb. 4) auf. Mit Hilfe der
Gleichung (9) konnen wir deshalb auch zugleich die Schwin-
gungsdauern  fir
Anordnungennach
den Abb. 3 und 4
mit losen. Da die
Anordnung nach
Abb. 4 far die Be-
rechnung von Ma-
schinenwellen auf
kritische Dreh-
schwingungs - Zah-
len grosse prak-
tische Bedeutung
hat, wollen wir uns
mit diesem Fall ein-
gehender befassen.

Gewdhnlich st
die Welle nicht an
den beiden Enden
festgehalten, son-
dern sie kann frei
ausschwingen (Ab-
bildung 5). Far die
Ausrechnung der Eigenschwingungszahl kommt es aber
nur auf die Produkte von Massen mal Lingen an. Wir
konnen deshalb die Anordnung nach Abbildung 5 sofort
in eine solche nach Abbildung 4 tberfihren, wenn wir die
Schwungmassen durch Wellenstiicke von gleichen Zahlen-
koeffizienten und umgekehrt die Wellenstiicke durch Massen
von gleichen Zahlenkoeffizienten ersetzen.

[Wenn die Aufgabe vorliegt, die Eigenschwingungs-
zahl einer Welle zu berechnen, die an einem Ende fest-
gehalten ist und am andern Ende frei ausschwingen kann
(Abbildung 6), dann ist zu beachten, dass die Eigen-
schwingungszahl dieser Anordnung die gleiche ist wie die
der gestrichelt ergénzten in Abbildung 6, die durch sym-
metrische Ausbildung relativ zum urspringlichen Festpunkt
erhalten ist.]

Abb.3

Abb.6

Durchrechnung eines Zahlenbeispiels.

Wir stellen uns die Aufgabe, die Drehschwingungs-
zahl I. Ordnung der durch Abbildung 7 gegebenen Welle
mit zugehdrigen Schwungmassen zu berechnen. Die gleiche
Aufgabe ist an anderer Stelle behandelt.?)

Es ist dort gezeigt, dass die Drehschwingungs-Anord-
nung nach Abb. 7 mit Schwungmassen und Wellenstiicken
die gleiche Eigenschwingung hat, wie die geradlinige Schwin-
gungsanordnung nach Abb. 8 mit Massen und Federstiicken,
wenn die Elastizitatsziffer ¢, der Feder in Abb. 8 mit 108 kg
angegeben wird. Die Anordnung nach Abb. 8 hat wiederum
die gleiche Schwingungszahl wie die nach Abb. 9, die durch
Vertauschen der Massen und Federn aus Abb. 8 hervorgeht.

1) ¢, ist das Tausendfache der Kraft, die (bezw. des Momentes, das)
ausgeiibt werden muss, um ein Stiick Feder (Welle) von der Lénge 1 um
1/.000 zusammenzudriicken oder zu debnen (um den Winkel !/ zu ver-
drehen).

?) O. Féppl
Berlin 1923.

,, Grundziige der Technischen Schwingungslchre®
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Mye1433 daraus
Ny;+326 L2 Eul s “/A = .
5 [ m,,!wmy/((]‘fl%‘" / H (’/l’ =+ / = nmg
Sy = 289- iy <355-10"7cm Ll 149767 wy= W\. ,_ - tind. Ty =2 ,"/ —E;—T (‘5)
i A e e, e <= W8S H (T =+ r,)
R B 1,400 g, In dieser Gleichung treten die E-Wer‘te sowohl im
b Nenner als auch im Zahler in der ersten Potenz auf. Eine
e TR R ——— T verhaltnismissige Vergrosserung aller Werte ist deshalb
e ohne Einfluss auf die Schwingungsdauer 7. Wir brauchen
T == e uns um den Masstab, in dem die &Werte gemessen
a werden, nicht zu kimmern, sondern wir konnen ihn so
¥J// wihlen, dass der verfiigbare Platz richtig ausgenitzt wird.
e In Abbildung 1o haben wir nacheinander die Seil-
w kurven aufgetragen. Die erste Kurve mit den &;-Werten
Ji kommt unter der Erdanziehung zustande. Bei der zweiten
T Kurve mit den &;-Werten sind die Belastungen m &; vor-
g — ausgesetzt, bei der dritten Kurve m&; usw. Die Anni-
e herung ist fir Schwingungen I. Ordnung immer konvergent.
h e ————— In unserem Fall, bei dem durch die ungleichmissige Last-
1 o verteilung ganz besonders ungiinstige Verhaltnisse ange-
! nommen sind, betragt die Abweichung der Annaherungs-
p Rechnung (15) nach finfmaliger Umzeichnung noch 1%,

Abb.10

Wir betrachten nun Abbildung ¢ als Darstellung
eines mit den Massen . behafteten Seiles, das mit /H =
108 kg gespannt ist, und ziehen in bekannter Weise dic
Seillinie. Aus Abbildung 1oa entnehmen wir die Durch-
hingung an den Stellen 1, , my, my zu &6 = 2,89 - 1077
&gy = 3,55+ 1072 und &g, = 1,49 - 10~ % cm. Das Einsetzen
der Werte in Gleichung (9b) liefert 7, = 2080 pro min mit
einem Fehler von ~ 159/, gegeniiber der genauen Rech-
nung, die 1785 pro min ergibt.

Die Abweichung der Anudherungsrechnung ist im
Zahlenbeispiel deshalb besonders gross, weil die Massen-
verteilung ganz besonders ungleichmissig angenommen
worden ist. Wir haben aber jetzt ein Mittel an der Hand,
um uns an das wahre Resultat mehr und mehr anzundhern:
Wir zeichnen eine neue Seilkurve (Abb. 10b), bei der die
Belastungen nicht 2, m2g, .. ... sondern #m, &gy, 5 &Gy - - -
sind. Aus der neuen Seilkurve mit den Durchhiangungen
&'y, &y, ... bilden wir neue fingierte Belastungen
my &Gy, my &Gy ..., die wir abermals zur Konstruktion
einer neuen Seilkurve (1oc) verwenden und so fort, mit
dem Ergebnis, dass zwei aufeinanderfolgende Seilkurven
in ihrer Gestaltung immer ahnlicher werden: sie nhern
sich der Gestalt an, die das Seil bei der Schwingung
annimmt. Die absolute Grosse des Ausschlages & ist ohne
Einfluss auf die Schwingungsdauer. Wir miissen deshalb
eine Gleichung fir 7 suchen, die unabhingig von der
absoluten Grosse von ¢ ist.

Von der linken Seite wird die lotrechte Auflagekraft
&s :H Sos

Is 1y Is 1y

% = Hil"i cosw t (Von rechts A
1

1 T T
vom Fundament auf das schwingende System (ibertragen.
Der wiahrend der Viertelschwingung von f=o bis { =14,
tibertragene Impuls Z ist also:
ta

Z:./.H(‘_&,—i”—%—%)coswltdt:i}[{(iﬁ_}_ Sos )

1 lx—i—x

cos w l)

(13)
Aehnlich wie bei Aufstellung der Gleichung (8)
konnen wir den Impuls gleichsetzen der Bewegungsgrosse:

< dz < =
Z= 2 n (717)1:, = W _,_'\ My Eon (14)

Man kann aber wesentlich rascher zum Ziel kommen,
wenn man die erste Umzeichnung statt mit Belastungen
m & mit m &% oder bei sehr ungleichmiassiger Lastver-
teilung sogar mit m &;® durchfihrt. Die weitern Annihe-
rungsschritte miissen dann natiirlich wieder mit Belastungen
m & fortgefihrt werden. In Abbildung 11 ist die Anni-
herung eingetragen, die mit den einzelnen Schritten ver-

bunden ist. Die Kurve mit den Kreuzen (Dreiecken)
2200 T T T
V.;\ oSeilpalygone mil (m$)als Belaslung|
= 2100 \\ «Seijpolygon b mitim\als Belastung)
\

§ W o Seifpolygon b millm \;)als Belastung
c v\
S 2000 LA
3 Y
FS A\
Sy A
Q L \
§ \ \,\\
g 1800 D S
& 1785 |

T

1700
|

a b c d e if g h i K

Abb1T ) Seipalygone

bezieht sich darauf, dass der erste Schritt mit » £c* (mit
m &%) zurtickgelegt ist. Wie man sieht, hat man infolge dieses
Kunstgriffes (# &%) schon bei der ersten Umzeichnung nur
noch eine Abweichung von 2,5°%, von der wahren Schwin-
gungszahl # = 1785 pro min. Die zweite Umzeichnung, bei
der die Ordinaten & der ersten Umzeichnung mit den
zugehorigen m multipliziert die Belastungen des Seiles an-
geben, nahert sich dem wahren Ergebnis auf 19/, an.

Der Vorteil der Verwendung der Gleichung (15)
liegt darin, dass die mit ihrer Hilfe bestimmte Schwingungs-
dauer nicht von der Grosse der Ordinaten, sondern nur
von der Form der Seilkurve abhangt. Man kann deshalb
auch die erste Seilkurve schitzungsweise aufzeichnen, und
die so erhaltenen Ordinaten far die weitere Anniherung
verwenden. Wenn nur eine rohe Schitzung ohne weitere
Annaherungsschritte gewiinscht ist, dann hat Gleichung (9)
den Vorzug vor Gleichung (15).




	Angenäherte Berechnung von Schwingungszahlen mit Hilfe des Seilpolygons

