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Angenäherte Berechnung von Schwingungszahlen mit Hilfe des Seilpolygons.
Von Prof. Dr.-Ing. OTTO FÖPPL, Braunschweig.

Wir|||ehandeln zuerst die Aufgabe, die Eigenschwingungszahl

eines gespannten Seiles zu berechnen, das mit
mehreren Lasten behaftet ist. Der gleiche Weg, der hier
zur Lösung führt, kann auch zur Berechnung der Eigen-
schwingungszahl einer Zug- und Druckfeder eingeschlagen
werden, die mit aufgesetzten Massen behaftet ist, oder einer
Welle, die Schwungmassen trägt. Der folgenden Betrachtung
wohnt deshalb
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weitergehende
Bedeutung inne,
als es nach den
zuerst folgenden

Ausführungen
scheinen mag.

Wir beziehen uns auf Abbildung i, in der ein mit
der KraftHgespanntes Drahtseil mit den Massen nti, m%...
dargestellt ist. Das Eigengewicht des Drahtseils wird
vernachlässigt. Das Drahtseil mit den Lasten kann Schwingungen

senkrecht zur Axe ausführen, deren Ausschläge
fu fa klein sein sollen gegenüber den Abständen
li, 1% zwischen den einzelnen Massen. Auf jede Masse
m werden durch das Seil Kräfte von beiden Seiten her
übertragen. Die wagrechten Kraftkomponenten sind in
erster Annäherung gleich H; sie heben sich für jede
Masse heraus. In lotrechter Richtung wirkt auf die Masse

m„ von links die Komponente — H j und von

\ * ~"" ; das negative Vorzeichen gibt an,In -\-1
asse m„ durch die Kraft nach der Nullage zu

Es ist also:

rechts + H
dass die
beschleunigt wird

mM Hmm £» + '
1)

Ä2 ** V In li

Die Gleichung (i) und die entsprechenden Gleichungen
für die üSgen Massen haben bei s Massen s Lösungen.
Von Interesse ist gewöhnlich nur die Lösung I. Ordnung.
Um sie zu finden, muss eine Gleichung von sfm Grad gelöst
werden, was bei s ^> 3 erhebliche Schwierigkeiten
verursacht. Die Lösung von der I. Ordnung kann aber in
angenäherter Weise auch gefunden werden, wenn die
ungefähre Form, nach der das gespannte Drahtseil schwingt,
bekannt ist, und darauf bauen die nachfolgenden
Ausführungen auf.

Wir stützen uns auf den Aufsatz des Verfassers:
„Berechnung der Biegungsschwingungszahl einer Welle,
die mit mehreren Massen behaftet ist", in der „Zeitschrift
für angewandte Mathematik und Mechanik" Jahrgang 1927,
Heft r, wo die Biegungsschwingungszahl einer mit Einzellasten

behafteten Welle mit Hilfe des Impulssatzes
angenähert bestimmt worden ist. Wir bezeichnen mit foi'^02---
die Grösstausschläge, die bei der Schwingung auftreten, und
setzen den Ausschlag J» zur Zeit t gleich c %m. Der Koeffizient

c ist nur von der Zeit abhängig; er hat also für alle
Ausschläge zu einer bestimmten Zeit gleiche Grösse.
Wenn nr die minutliche Schwingungsdauer I. Ordnung und

die Winkelgeschwindigkeit der Schwingung ist,00/— 60

können wir c cos coit setzen.
Mit A und B bezeichnen wir die beiden durch die

Festpunkte übertragenen Kräfte in lotrechter Richtung, die
bei der Schwingung auftreten; es ist also

A —ti¬ li H^cos out
n

und B H- H- COS CO/t
*+« U

Nach der dynamischen Grundgleichung ist ferner die
Summe der äussern Kräfte in lotrechter Richtung gleich
der Summe der Massen multipliziert mit ihren Beschleunigungen

in dieser Richtung:

A + B "S" m
d*£n

03r cos co t x' m„ (2)

Das Summenzeichen ist über die sämtlichen Massen
zu erstrecken, die auf dem schwingenden Drahtseil sitzen.
Der grösste Ausschlag ist zur Zeit t o vorhanden;
dann ist:

A0 + B0 - CO/a V (3)

Die Gleichung (3) gilt für die Schwingungslinie. Wir
vergleichen sie mit einer entsprechenden Gleichung, die
für die statische Seillinie aufgestellt ist und die angibt,
dass das Gewicht mg der Massen m von den beiden
Festpunkten aus getragen wird:

A + B — g^mn (4)

Wir finden, dass beide Gleichungen, abgesehen von
~.. .3

- nennen wollen, dadurcheinem Faktor, den wir p== —
6

von einander verschieden sind, dass unter dem einen
Summenzeichen die Massen und unter dem andern die
Massen m multipliziert mit den Durchbiegungen f0 in der
Nullage auftreten. Wir können deshalb sagen, „die
Schwingungskurve ist jene Seilkurve, die entsteht, wenn man das
Seil statt durch die Massen m durch die Massen multipliziert

mit den Grösstdurchbiegungen belastet". Wir setzen
deshalb im nachfolgenden statt der Massen m fingierte
Massen xm f0 ein. Damit die fingfegten Massen auch wirklich

die Dimension von Massen haben, muss der Faktor x
die Dimension cm-' haben. Wir werden sehen, dass x bei
der Aufstellung der Gleichung für die Schwingungsdauer
herausfällt.

Die Grössen der einzelnen Werte f0 sind uns nicht
bekannt. Wir kennen aber die Senkungen fc, die die
Massen durch elastisches Nachgeben des Seils unter ihrem
Eigengewicht erfahren. Für die angenäherte Berechnung
nehmen wir an, £0 sei gleich £g und die fingierten Massen
infolgedessen x m £c. Den fingierten Massen entsprechen
lotrechte Seilzüge an den beiden Festpunkten:

Ar Bc ¦g* ~y,m %g (5)

Wenn die Schwingungskurve in der Endlage gleich
der Seilkurve ist, gibt Gleichung (5) auch die bei der
Schwingung in der Totlage von aussen auf das System
übertragene lotrechte Kraft an. Die Werte in einer
Zwischenlage zur Zeit t erhalten wir wieder durch
Multiplikation der rechten Seite von Gleichung (5) mit c

cos mit:
A-\-B gx cos wit^miJG ¦ ¦ • (6)

Wir betrachten nun den Schwingungsvorgang von
der Zeit t o, zu der die Massen in der äussersten

Tt 2 31
Schwingungslage sind, bis zur Zeit t=ta — des& & & ' 4 4 CD]

Durchganges der Massen durch die Mittellage. Mit 77 ist
die Schwingungsdauer I. Ordnung in Sekunden bezeichnet,
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ti; gibt die minutliche Schwingungszahl an. Auf eine
Viertelschwingung leisten die beiden äussern Kräfte den
Impuls Z:

Der Unterschied im Werte der beiden Ausdrücke für

Z= f* (A + B)dt=-gx — ^mScJ Ü)J r {
(7)

Dieser Impuls ist dazu verwendet worden, um die

Massen aus der Totlage (Geschwindigkeit -f- o bis zur

Mittellage a (Geschwindigkeit \-r\ —: £0 co/(sin coit)t ta

— £0 <*>/ — £c con zu beschleunigen. Das negative
Vorzeichen, das die Richtung der Geschwindigkeit angibt, ist
im folgenden ohne Bedeutung. Der Impuls Z ist gleich der
den fingierten Massen mitgeteilten Bewegungsgrösse:

Z J5? (x m £g) co\ £g x co\ J3 m £*a (8)

Aus (7) und (8) folgt:

-=1/S5 (9)

;?i
3°
n \ £. m S.G

T, 27 ¦yJL_i_\

(9a)

(9b)

Wenn die Schwingungskurve proportionale
Ausschläge mit der statischen Seilkurve hat, dann gilt
Gleichung (9) streng. Das trifft z. B. zu, wenn nur eine Masse
mit dem Drahtseil schwingt oder wenn zwei gleich grosse
Massen symmetrisch zur Mittellage befestigt sind. Im
allgemeinen Fall ist eine Abweichung zwischen statischer
Seilkurve und Schwingungskurve vorhanden. Die Gleichungen

(9) geben aber eine Näherung an das wahre Ergebnis,
die in sehr vielen Fällen vollständig befriedigt.

Beispiel:
Wenn wir als Beispiel die Eigenschwingungszahl eines

gespannten Seils mit vielen Massen berechnen wollten,
so wäre es schwer möglich, den mit der Annäherung
verbundenen Fehler zu ermitteln, da die zeichnerische
Ungenauigkeit einen Fehler von gleicher Grössenordnung
zur Folge hat. Wir behandeln deshalb ein Beispiel, bei
dem wir die Gleichung (9) analytisch lösen und dabei
feststellen können, welche Abweichungen gegenüber der
ebenfalls analytisch genau bestimmbaren Eigenschwingungsdauer

auftreten. Diese Möglichkeit besteht bei der Berechnung

der Saitenschwingung. Eine Saite ist ein gespanntes
Seil, das mit sehr vielen sehr kleinen Massen von gleicher
Grösse gleichmässig besetzt ist. Wenn H die Saitenspannung,

/ die Länge, / der Querschnitt und u — die be-
s

zogene Masse des Baustoffes sind, dann erhalten wir die
Schwingungsdauer 21 nach der genauen Formel zu:

IT (IO)

Um die Gleichung (9 b) anwenden zu können, bestimmen

wir £G an den einzelnen Stellen x unter dem
Eigengewicht. Die tatsächliche Durchhängung erfolgt nach der
Seillinie, die wir
angenähert durch eine
Parabel ersetzen können,

was bei den
hier in Frage
kommenden geringen
Durchhängungen nur mit einer ganz geringen
Vernachlässigung verbunden ist. Die Gleichung der Parabel bezogen
auf den Festpunkt A lautet (Abbildung 2):

^=^H'-*) •. • • • ¦ (ij>
Den Wert aus Gleichung (11) setzen wir in Gleichung (9b)
ein und erhalten:

TZ

71 3/

I'111 ' Illilllllli||lill ¦i'ii;ii:;i|: \\m,
>*. y __J - *

P-I-9-

Abb.2

71=17=2/

71 nach den Gleichungen (10) und (12) ist 11 — m 100 ¦

l/WWWi^

Abb.3

Abb.4

Abb.5

—1

t__

Abb.6

(12)

0,6 °/0. Mit der Anwendung der Annäherungsrechnung
ist also in diesem Falle ein Fehler von o,6 °/0 verbunden.

Uebertragung des Ergebnisses auf anders geartete
Schwingungsvorgänge.

In meinem Buch „Grundzüge der technischen
Schwingungslehre" (Berlin 1923) habe ich gezeigt, dass die im
vorausgehenden behandelte Seilschwingung den nämlichen
Gleichungen gehorcht, wie die Schwingung von Massen m,
die zwischen Federn gehalten sind (Abb. 3) oder von
Schwungmassen, die auf einer Welle sitzen (Abb. 4). Stau
des Seilzuges H (Abb. 1) tritt die Elastizitätszabl r,,1) der
Feder (Abb. 3) bezw. der Welle (Abb. 4) auf. Mit Hilfe der
Gleichung (9) können wir deshalb auch zugleich die Schwin¬

gungsdauern für
Anordnungen nach
den Abb. 3 und 4
mit lösen. Da die
Anordnung nach
Abb. 4 für die
Berechnung von
Maschinenwellen auf

>7i^Sische Dreh-
schwingungs - Zahlen

grosse
praktische Bedeutung
hat, wollen wir uns
mit diesem Fall
eingehender befassen.

Gewöhnlich ist
die Welle nicht an
den beiden Enden
festgehalten,
sondern sie kann frei
ausschwingen
(Abbildung 5). Für die

Ausrechnung der Eigenschwinguhgszahl kommt es aber

nur auf die Produkte von Massen mal Längen an. Wir
können deshalb die Anordnung nach Abbildung 5 sofort
in eine solche nach Abbildung 4 überführen, wenn wir die
Schwungmassen durch Wellenstücke von gleichen
Zahlenkoeffizienten und umgekehrt die Wellenstücke durch Massen

von gleichen Zahlenkoeffizienten ersetzen.

[Wenn die Aufgabe vorliegt, die Eigenschwingungszahl
einer Welle zu berechnen, die an einem Ende

festgehalten ist und am andern Ende frei ausschwingen kann
(Abbildung 6), dann ist zu beachten, dass die
Eigenschwingungszahl dieser Anordnung die gleiche ist wie die
der gestrichelt ergänzten in Abbildung 6, die durch
symmetrische Ausbildung relativ zum ursprünglichen Festpunkt
erhalten ist.]

Durchrechnung eines Zahlenbeispiels.

Wir stellen uns die Aufgabe, die Drehschwingungszahl.
I. Ordnung der durch Abbildung 7 gegebenen Welle

mit zugehörigen Schwungmassen zu berechnen. Die gleiche
Aufgabe ist an anderer Stelle behandelt.8)

Es ist dort gezeigt, dass die Drehschwingungs-Anord-
nung nach Abb. 7 mit Schwungmassen und Wellenstücken
die gleiche Eigenschwingung hat, wie die geradlinige
Schwingungsanordnung nach Abb. 8 mit Massen und Federstücken,
wenn die Elastizitätsziffer c0 der Feder in Abb. 8 mit io8 kg
angegeben wird. Die Anordnung nach Abb. 8 hat wiederum
die gleiche Schwingungszahl wie die nach Abb. 9, die durch
Vertauschen der Massen und Federn aus Abb. 8 hervorgeht.

') c0 ist das Tausendfache der Kraft, die (bezw. des Momentes, das)

ausgeübt werden muss, um ein Stuck Feder (Welle) von der Länge I um
V1000 zusammenzudrücken oder zu dehnen (um den Winkel '/iooo zu ver"
drehen).

*) O. Föppl Grundinge der Technischen Schwingung*lehre"
Berlin 1923.
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Wir betrachten nun Abbildung 9 als Darstellung
jgges mit den Massen w behafteten Seiles, das mit H
io8 kg gespannt ist, und ziehen in bekannter Weise die
Seillinie. Aus Abbildung 10a entnehmen wir die Durch-
hängung an den Stellen mx, w2, m% zu £g\ 2,89 • io—2,

fcj 3,55 • io-2 und fc3 1,49 • io—2 cm. Das Einsetzen
der Werte in Gleichung (9 b) liefert nx 2080 pro min mit
einem Fehler von <^j 15 % gegenüber der genauen Rechnung,

die 1785 pro min ergibt.
Die Abweichung der Annäherungsrechnung ist im

Zahlenbeispiel deshalb besonders gross, weil die
Massenverteilung ganz besonders ungleichmässig angenommen
worden ist. Wir haben aber jetzt ein Mittel an der Hand,
um uns an das wahre Resultat mehr und mehr anzunähern :

Wir zeichnen eine neue Seilkurve (Abb. 10 b), bei der die
Belastungen nicht m^ sondern m1 $G\ 1 ^2 '£2 >

sind. Aus der neuen Seilkurve mit den Durchhängungen
fd\ 1 fg\ 1 • • • bilden wir neue fingierte Belastungen
mi £g'i w2 fg\ • • •, die wir abermals zur Konstruktion
einer neuen Seilkurve (10 c) verwenden und so fort, mit
dem Ergebnis, dass zwei aufeinanderfolgende Seilkurven
in ihrer Gestaltung immer ähnlicher werden: sie nähern
sich der Gestalt an, die das Seil bei der Schwingung
annimmt. Die absolute Grösse des Ausschlages f ist ohne
Einfluss auf die Schwingungsdauer. Wir müssen deshalb
eine Gleichung für T suchen, die unabhängig von der
absoluten Grösse von f ist.

Von der linken Seite wird die lotrechte Auflagekraft

HB3?3 cos co t Ivon rechts H- 27, cos CO t
ls 4-1 ls -4-1

vom Fundament auf das schwingende System übertragen.
Der während der Viertelschwingung von t o bis t ta

übertragene Impuls Z ist also:

Z H Vi.
cos oi\ t dt H + ¦ (13)

Aehnlich wie bei Aufstellung der Gleichung (8)

können wir den Impuls gleichsetzen der Bewegungsgrösse :

ymn£m (14)z-2-»m„ 03\

daraus:

co«.

' H thi+Ji3\
und 71 27r

2 m |0

m h-

('S)

In dieser Gleichung treten die £-Werte sowohl im
Nenner als auch im Zähler in der ersten Potenz auf. Eine
verhältnismässige Vergrösserung aller Werte ist deshalb
ohne Einfluss auf die Schwingungsdauer 71 Wir brauchen
uns um den Masstab, in dem die f-Werte gemessen
werden, nicht zu kümmern, sondern wir können ihn so

wählen, dass der verfügbare Platz richtig ausgenützt wird.
In Abbildung 10 haben wir nacheinander die

Seilkurven aufgetragen. Die erste Kurve mit den £g -Werten
kommt unter der Erdanziehung zustande. Bei der zweiten
Kurve mit den £c'-Werten sind die Belastungen m fc
vorausgesetzt, bei der dritten Kurve m£c usw. Die
Annäherung ist für Schwingungen I. Ordnung immer konvergent.
In unserem Fall, bei dem durch die ungleichmässige
Lastverteilung ganz besonders ungünstige Verhältnisse
angenommen sind, beträgt die Abweichung der Annäherungs-
Rechnung (15) nach fünfmaliger Umzeichnung noch 1 °/0.

Man kann aber wesentlich rascher zum Ziel kommen,
wenn man die erste Umzeichnung statt mit Belastungen
m £g mit m £g2 oder bei sehr ungleichmässiger Lastverteilung

sogar mit m £<j8 durchführt. Die weitern
Annäherungsschritte müssen dann natürlich wieder mit Belastungen
in £g fortgeführt werden. In Abbildung 11 ist die
Annäherung eingetragen, die mit den einzelnen Schritten
verbunden ist. Die Kurve mit den Kreuzen (Dreiecken)

'SOG

1185

1 1 1 1

aseilpolygone mltlmDals Belastung

¦Seilpolggon bmit(mlf)BlsBelastung

Seilpolygon b millm Sf)alsBelastung

Abb. 11 de/Seilpolygone

bezieht sich darauf, dass der erste Schritt mit m |g2 (mit
m fcs) zurückgelegt ist. Wie man sieht, hat man infolge dieses

Kunstgriffes (m £g3) schon bei der ersten Umzeichnung nur
noch eine Abweichung von 2,5 °/0 von der wahren
Schwingungszahl n —= 1785 pro min. Die zweite Umzeie§nung, bei

der die Ordinaten fc' der ersten Umzeichnung mit den

zugehörigen m multipliziert die Belastungen des Seiles

angeben, nähert sich dem wahren Ergebnis auf 1 % an-

Der Vorteil der Verwendung der Gleichung (15)

liegt darin, dass die mit ihrer Hilfe bestimmte Schwingungsdauer

nicht von der Grösse der Ordinaten, sondern nur
von der Form der Seilkurve abhängt. Man kann deshalb
auch die erste Seilkurve schätzungsweise aufzeichnen, und
die so erhaltenen Ordinaten für die weitere Annäherung
verwenden. Wenn nur eine rohe Schätzung ohne weitere
Annäherungsschritte gewünscht ist, dann hat Gleichung (9)
den Vorzug vor Gleichung (15).
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