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Détermination des fréquences critiques d'une pièce élastique.
Par E. HAHN, Professeur à l'Université de Nancy.

1. Dans un mémoire sur la vitesse critique des arbres
et la formule de Dunkerley, paru dans cette revue en
novembre 1918, j'ai montré comment cette formule pouvait
s'étendre sans difficulté au cas de masses continues et j'ai
indiqué en note, qu'il y avait là le point de départ d'une
détermination commode de la vitesse critique des arbres.

Un nouvel examen de la question m'a fait constater
que la portée de ma remarque était beaucoup plus générale

et, qu'en suivant la voie indiquée, on arrivait à la
détermination des fréquences critiques d'une pièce élastique
vibrant sous l'effet d'une cause quelconque. C'est ce que
je me propose d'établir dans ce travail.

2. Considérons tout d'abord le cas d'une pièce telle
que la position d'une masse élémentaire puisse être définie
à l'aide d'une seule coordonnée x. Ce cas comprend donc
celui des arbres, celui des aubes de turbines et aussi celui
des disques, lorsque par vibration ils affectent la forme
d'une cloche. Le cas plus général d'une déformation avec
diamètres nodaux sera envisagé plus loin.

Soit y F cos /. / (1)
l'élongation à un instant quelconque d'un point de masse
dm; cette elongation est comptée à partir de la position
non déformée de la pièce. Dans la formule (1), Y désigne
une fonction

Y f{x)
_ _

(2)
qui définit la forme affectée par la pièce dans sa position
de déformation maximum.

3. Désignons en général par dFs la force qui sollicite

la pièce au point d'abscisse x s et par axs le
coefficient d'influence relatif à la pièce considérée et établi en
tenant compte de la forme et des liaisons de celle ci. Nous
trouvons immédiatement pour la déformation au point x
l'expression :

y \axsdFs (3)

où les limites expriment que l'intégrale est à étendre à la
pièce entière.

Si, simultanément, la pièce est sollicitée en s par un
couple élémentaire d Cs, l'expression (3) comporte un terme
de plus que l'on forme aisément en faisant intervenir les
coefficients d'influence yxs relatifs aux couples. Il vient:

y \.axsdFs 4- \yxsdCs (4)

Comme on le verra par la suite, il est nécessaire de
considérer aussi l'inclinaison de la ligne élastique; on peut
former pour celle-ci une expression analogue à (4) en
introduisant les coefficients d'influence ßxs et ôxs des forces
et des couples sur l'inclinaison r de la ligne élastique.
On trouve :

^xsdFs H- \ôxsdCs (5)

J'ai indiqué dans le mémoire précité comment les coefficients

/?, y, ô se déduisent aisément des coefficients a; il
suffit de rappeler ici les résultats trouvés:

ßxs

7xs

ôXs

dx
8 a_vs

ds
9a a.„
dxds

(6)

4. Supposons, pour commencer, que la pièce considérée

n'est sollicitée par aucune force extérieure. Dans ce
cas, d F, et dCs se réduisent aux forces et aux couples
d'inertie résultant de la vibration. Soit M la masse de
l'unité de longueur au point s et 0, le moment d'inertie
d'une tranche de longueur 1, par rapport à un axe
perpendiculaire au plan xy et passant par le centre de gravité

de cette tranche ; nous pouvons écrire les relations :

dF, —yJ'Mds, dCs — xs"0ds (7)
où le double accent désigne la dérivée seconde par
rapport au temps et l'indice 5 spécifie qu'il s'agit de
grandeurs relatives au point d'abscisse s. Mais

y" — 22 Y cos X t
donc: dFs X*MY cos XIds X*Myds (8)
D'autre part,

d1 dv \ 9 „
(JX

— ;.2ir)y „1 -dx ' T

et par suite:
dCs X*@z,ds (9)

Si l'on porte les valeurs (8) et (9) dans (4) et (5) on
arrive au système d'équations intégrales homogènes :

y ?.*\[axsMys 0 ts] ds
S —= o

(to)

(II)

s — o

que l'on peut mettre aussi sous la forme:

y X*l\[o.;:My: m yR 6t:] d;
O

I

t X»l \\ß&Myt -m <% 0rr]dÇ
o

à condition de poser
X f /, s 'Ql.

On montre dans la théorie des équations intégrales
qu'un tel système peut être remplacé par une équation
unique: a

• • (ta)&(Ç) X»l $__(£,£) #(_)-.
à condition de choisir la

/_(£,£) ac:M,

K(t -) Yt.-e,

K(ï, C) kxM,

K{è 0 k:0,
et de poser

<p(f)
<2>C T -

pour

pour

pour

pour

fonction K de telle manière que
o < £ < -
0 < < 1

o<£<-
1 <.t < a

1 < - < a

o<C<i
I < ¦. < a
1 < < 2

(13)

('4)pour o <^ Ç << 1

pour 1 <C C <C a

5. De même qu'un système de n équations linéaires
et homogènes n'admet des solutions non toutes nulles que
si le déterminant des coefficients des inconnues s'annule,
l'équation (12) ne possède des solutions différentes de zéro
que si une certaine série entière Z)(/2/) du paramètre Â2/
s'annule pour un certain nombre de valeurs du paramètre.
Fredholm a démontré que cette série est de la forme

D(jM)

-0
(*¦/) Ai -

(X*7)
A*

?'¦
A,

('S)
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Calculer les fréquences critiques revient donc à trouver les
racines de l'équation D(Xll) o.

Par un raisonnement qui consiste à étendre à un
déterminant comportant un nombre infini de termes, le
développement employé dans mon précédent mémoire pour
un déterminant de n termes, on démontre d'autre part que
le terme Ap a pour expression

(«t fc :::::!„« *><-6>A* n-
ou

K Cii £2

désigne le déterminant symétrique d'ordre p formé avec p
valeurs quelconques de la fonction K. En particulier on a

A, 5_.(f,o_? (.7)

et

A, -)) K
Si, -s

d£i rf|a (18)

D'après un théorème de Mr. Hadamard, le coefficient
de {X%l)n est inférieur en valeur absolue à

Ar,. „ n 'N'1 • 2" • ;—

N étant une limite supérieure de K{£, l)\. On voit
aisément que dans le problème qui nous occupe, ces coefficients

décroissent très rapidement. On pourra donc presque

toujours, lorsqu'il s'agit de la première fréquence
critique, négliger tous les termes, sauf le premier. On aura
dans ces conditions la relation très simple

• • (19)

(19 bis)

/* IA,
c'est-à-dire, si l'on met pour A, sa valeur:

i« 1

Cette relation se réduit à

„* ï

S*«
(19 ter)

M di

dans le cas où l'effet des moments d'inertie 0 est
négligeable. C'est ce qui se produit pour toutes les pièces rec-
tilignes non chargées de masses additionnelles à grand
moment d'inertie.

L'emploi des formules (19) ne nécessite que la
détermination (par la méthode de Mohr, par exemple) des
quelques valeurs des coefficients d'influence ag et _fj
nécessaires pour tracer la courbe de la fonction act-M -f- b& 0,
puis une quadrature facile à effectuer graphiquement.

Les formules (iç) constituent donc un moyen rapide
et commode de détermination de la fréquence critique du
premier ordre.

6. Reprenons maintenant la question dans le cas plus
général où des forces extérieures données sollicitent la
pièce concurremment avec les forces d'inertie provenant
de la vibration. Nous envisagerons ici le cas important au
point de vue pratique où la pièce est sollicitée par des
forces centrifuges dirigées parallèlement à l'axe des x et
résultant d'une rotation de vitesse angulaire co. Soit x0 la
distance de l'origine de la pièce à l'axe de rotation.

La masse Mds située à la distance (s -j- x0) de cet

axe, développe une force centrifuge dFJ or2 M (s -f- x0)ds
qui détermine un moment fléchissant d CJ ysdFs'. Ce

moment tend généralement à redresser la pièce, par suite
la flèche ôy' qu'il produit en x, ôy' yxsdCs', vient en
diminution de celle créée par les forces d'inertie. Le
second membre des équations (3) et (4) est donc à

compléter dans le cas présent par le terme soustractif

-_y* ; dCj.

De même, au second membre de (5) doit figurer le terme
— \djadCf

On est donc conduit au nouveau système d'équations:

}*»«(_,__¦>_ '- 1 xs —''i ysm*M(s -m. 0) I XS ds

* $[# ßxs My s -m /2 àXi 0 ts — y s o>« M (s + x0) ôxs] ds.
s o

Il est préférable d'introduire ici aussi les variables f et C

et d'écrire en ordonnant les termes:

m@ri
o
I

l" * J {[ftt --_! (d + *o) 3__] Myr + % 0 tt] di

(20)

Nous retrouvons donc ici un système d'équations
intégrales homogènes analogue au système (n) et qui se
rétout exactement de la même manière. Les fréquences
critiques sont données par les racines de la série D (X21)

correspondante. En particulier, si nous arrêtons le
développement au premier terme en X2l, nous aurons comme
équation définissant la vitesse critique :

XHAx' (21)

¦£-("(#+'*)yft_/-ï(__)

où, par analogie à (17)
1

Ai' \j{a^Mm-à^6)d:ç
o o

La première de ces intégrales n'est autre que la grandeur
Ai, définie par (17); désignons la seconde, pour abréger,
par B, la relation (21) devient:

;.2/ (a, „»

soit : )}lAi 1

B
>*BI

Mais lA, est l'inverse du carré de la fréquence critique
de la pièce, lorsqu'elle n'est sollicitée par aucune force
extérieure ; soit /.' cette fréquence, il vient donc :

(4) T "+- «2 Bl (23)

relation intéressante puisqu'elle indique de combien la
fréquence critique se trouve relevée du fait de l'action de la
force centrifuge. Par exemple, si l'on détermine expérimentalement

X pour une aube de turbine à vapeur, en opérant

au repos, la formule 23 permet immédiatement de
calculer (la détermination du facteur B ne présente pas
de difficulté) quelle sera cette fréquence, lorsque l'aube
sera montée sur une roue de vitesse angulaire donnée.

7. Considérons maintenant le cas d'un disque vibrant
autour de plusieurs diamètres nodaux. Soient x et q> ou
s et rp les coordonnées polaires définissant la position
d'un point quelconque du plan médian du disque. Nous

supposons que l'épaisseur h est relativement faible, ce qui
permet d'opérer comme si la masse du disque était
concentrée sur le plan médian. Nous admettons que le disque
tourne autour de son axe avec la vitesse angulaire m et

qu'il vibre autour de m diamètres nodaux. L'élongation
ySiV de la vibration au point s, tp, peut s'exprimer par une
fonction de la forme

ys>,t, Y cos Xt cos mxp, (24)
l'accélération correspondante au même point,

ys,y," — X2Y cos Xt cos m-tp — X%ys,w

détermine une force d'inertie
dFr, y, — y" dm — X'1 ys> v dm,

dm désignant la masse élémentaire située en s, ip. Cette
masse a pour expression, si l'on représente par /< la
masse spécifique,

dm /< h s d\p ds,
donc ,,7 /dt /Jys^ppihs dxp ds (25)
D'autre part, la force centrifuge

dF' œisdm co2 fi h s2 ds dip
développée par la rotation du disque, suscite au point
s,%p un moment fléchissant d'intensité:

dC ySiVœ2 juh sidsdip (26)
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qui tend à atténuer les déformations y. Faisons de
nouveau usage des coefficients d'influence, soit a (x, cp ; s, y)
le coefficient relatif aux points x,<p et s,\p pour les forces
parallèles à l'axe de rotation et y (x,cp; s,ip) celui relatif
aux couples contenus dans les plans radiaux ') ; on peut
écrire immédiatement pour la flèche^, _ la relation:

yx, v \ya (x,cp; s, ip)X*hs — y (x, cp; s, tp) a>8As*] uySt,,,dsdxp (27)
où l'intégrale double est à étendre à la masse entière du
disque. Posons, pour abréger

pihs 2 (28)
et mettons X1 en évidence, nous obtenons finalement

Vx,,, À1 J j « (x, cp; s, ip) — jj y (x, cp; s, yj) s zys> w ds dip (29)

Telle est l'équation intégrale homogene à deux variables

qui régit le problème. Les propriétés de l'équation de
Fredholm rappelées au paragraphe 5 peuvent être étendues

à l'équation (29), de sorte que, dans ce cas aussi,
la recherche des fréquences critiques revient à déterminer
les valeurs de „2 qui annulent une certaine série entière
analogue a (15) :

DU2) 1 „«__, A*

Si, pour abréger, ou écrit (29) sous la forme

yx,q> ^2)\K{x,cp; s,xp)ySiVdsdip,

on vérifie facilement que les deux premiers coefficients A
sont donnés par les relations suivantes:

A1=§K(x,(p;x,<p)dxd<p (30)

a, ^55 iK(x>'/' > x>(p) Kisxw ; sxw) —

Ki(x,cp; s,xp)\dsdip dxdcp (31)
Il n'y aurait pas de difficultés à former les coefficients

suivants sous forme d'intégrales multiples des
déterminants d'ordres supérieurs que l'on peut tirer de la matrice
constituée par les valeurs de la fonction K(x,q>; s,tp).

Pour simplifier l'écriture, les limites des intégrales
n'ont pas été indiquées explicitement, elle sont à choisir
de manière à correspondre à toute l'étendue du disque,
cela pour chaque variable.

S'il s'agit de déterminer uniquement la première
fréquence critique, on peut arrêter le développement au
premier terme en 22, et l'on a comme équation de condition

0=1— X*AX (32)
ou encore, si l'on introduit dans (30) l'expression explicite
de K,

o 1 — X2 \ \ a (x, cp ; x, cp) z dx dcp -f- I

co2 \\ j- (x, cp ; x,cp) xs dx dcp

Désignons respectivement par H, et H2 les deux
intégrales doubles du second membre, nous obtenons pour
la première fréquence critique du disque, suivant qu'il est
immobile ou qu'il tourne à la vitesse co, les deux valeurs:

--fk - ¦ ¦ - -

m^^3- ¦ ¦

On a par suite aussi:
Xi : Xi =]'i + œ*H* (36)

8. Dès 1914, M. Stodola a indiqué une méthode de
détermination des fréquences critiques basée sur un
théorème de Rayleigh. Il est donc naturel de comparer les
avantages respectifs de sa solution et de la mienne au
point de vue des applications numériques.

On sait que la méthode Stodola nécessite le calcul
du travail de déformation, du travail des forces centrifuges
et de l'énergie cinétique de la pièce et cela pour trois
formes au moins de la ligne élastique; d'après le théorème
de Ragleigh, la fréquence cherchée est en effet un minimum
dont la détermination nécessite la connaissance de trois
valeurs au moins de X.

') Pour cea couples et pour ceux-là seulement la relation (6) entre
les coefficients a et y subsiste.

(33)

(34)

(35)

En ce qui concerne les pièces à axe rectiligne, telles
que les aubes de turbines, par exemple, il ne paraît pas
douteux que cet ensemble de calculs ne soit beaucoup plus
long que l'application de la formule (15). L'emploi de la
méthode de Mohr permet en effet de trouver rapidement
les trois ou quatre valeurs du coefficient d'influence axx
qui suffisent amplement pour en tracer avec une précision
suffisante la courbe en fonction de .r.

Il en va sans doute encore de même dans le cas des
disques vibrant sans diamètres nodaux, quoique là déjà, la
détermination des coefficients a soit plus difficile que pour
les pièces droites.

Pour les disques vibrant avec diamètres nodaux, la
méthode de M. Stodola garde l'avantage, car la détermination

exacte des coefficients d'influence se heurte à de
grandes difficultés.

Néanmoins les formules (34) et (35) conservent leur
intérêt. Tout d'abord, elles montrent nettement quels sont
les facteurs essentiels qui déterminent l'ordre de grandeur
de la fréquence critique. Elles facilitent aussi l'étude
expérimentale de la question. Au lieu d'avoir à entreprendre
des essais compliqués sur des disques en rotation, il suffira

désormais de déterminer quelques valeurs du coefficient

a (x,cp ; x,cp) par des essais de flexion des disques
au repos et sollicités par des charges concentrées
convenablement distribuées. Ces formules se prêtent enfin à une
évaluation rapide de X dont il est parfois utile de
connaître l'ordre de grandeur, sans être obligé de recourir à

de trop longs calculs.
Dans ce but, on peut en effet décomposer le disque

en anneaux concentriques, indépendants les uns des autres,
et traiter chaque secteur compris entre deux diamètres
nodaux consécutifs comme un prisme encastré à ses deux
extrémités. La détermination des coefficients a redevient
ainsi facile et le calcul des intégrales Hx et //a ne
présente plus de difficultés. Il va sans dire qu'en opérant
ainsi, on exagère la flexibilité du disque et, par suite, on
obtient une valeur de X certainement inférieure à la réalité.

La connaissance de cette limite inférieure n'en sera
pas moins utile, surtout si des calculs comparatifs effectués

dans quelques cas concrets venaient fournir des
indications quant à l'ordre de grandeur de l'écart entre la
valeur exacte de X et celle fournie par le calcul approché1).

9. Dans ce travail, on n'a envisagé que la première
fréquence critique et arrêté par suite le développement
des séries D au premier terme en /.2. Il est évident que
pour obtenir les fréquences critiques des ordres suivants,
il suffit en principe de prendre un nombre convenable de
termes dans le développement. Le calcul se complique
naturellement beaucoup; pour les pièces droites, cependant,
la détermination de la seconde fréquence critique demeure
relativement aisée.

Mon mémoire de 1918 contenait une discussion au
sujet de l'erreur commise sur X2 du fait de la suppression
des termes contenant les puissances supérieures. Elle est
naturellement applicable ici. Cette erreur ne dépasse pas
quelques centièmes et n'a aucune importance pratique.

10. Je voudrais encore en terminant faire une
remarque au sujet de la relation qui existe entre la fréquence
critique d'un arbre et le nombre de tours critique. Dans
les notes complémentaires (Anhang) ajoutées à la 6me
édition allemande de son ouvrage sur les turbines à vapeur2),
M. Stodola signale la différence qui existe entre ces deux
grandeurs dans le cas où l'arbre est chargé de masses
dont le moment d'inertie 0 n'est pas négligeable. Il montre
que la fréquence critique est plus petite que le nombre de
tours critique. Ce fait résulte immédiatement de nos équations

et de celles établies dans mon mémoire de 1918. La
') Faute de temps et d'aide, l'auteur n'a pu entreprendre de

calculs comparatifs de ce genre. Il serait reconnaissant aux spécialistes et

aux bureaux d'études de maisons de construction qui pourraient être amenés

à en faire, de vouloir bien lui en communiquer les résultats.
2) Voir aussi 2me édition française.
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Abb. 5. Kirchgemeindehaus Enge in Zürich. Haupteingangseite {Nordfront) an der Bcdcrstrassc.

fonction H\, qui figure au dénominateur de la formule
(19 bis) se compose des deux termes additifs

1 1

l\ac;Mdï et /$%e#.
o o

Si, au contraire, on traite le problème de la vitesse
critique (voir le mémoire de 1918 cité précédemment), on

O." Q 9M S

o.0
PU^

m

u& <Mr:
¦'x

i-I0
ï_^Vv:["<

-iTJiiC

"19.76

__ à

«19.60

=»

&SDES-

constate que le second figure avec le signe —, on a donc

ÛJc2 _ (37)

J>ffA/- Scc&)dl

La différance entre / et a>c apparaît donc immédiatement,

on a

i2
_,.:

$(«Hèi-3ne)G Ssk9<%

S^s
(38)

Af. *«e)«_- /«« Mdl

Cette formule met mieux en évidence que celle de M.
Stodola les facteurs qui exercent une influence sur le
rapport X : co c, qu'elle permet de calculer rapidement. Les
raisons physiques de cette différence apparaissent aussi
nettement. Dans la pièce vibrante, les couples d'inertie
ajoutent leur action à celle des forces d'inertie, tandis que
dans le cas de l'arbre, les couples créés par l'inclinaison
des masses tendent à redresser l'arbre; les déformations
qu'ils produisent viennent en diminution de celles dues
aux forces centrifuges.

11. En dehors de l'intérêt que paraissent présenter,
à divers égards, les formules publiées ici, celui de la
méthode utilisée me semble justifier une dernière remarque.
Je n'ai pas connaissance que les équations intégrales aient
jamais été utilisées à la résolution de problèmes techniques.
Le présent exemple montre que, dans certains cas, elles
sont susceptibles de rendre à l'ingénieur aussi, de précieux
services.

Das Kirchgemeindehaus Enge in Zürich.
Architekten PFLEGHARD & HÄFELI, Zürich.

(Mit Tafeln i bis 4.)

Abb. 1. Lageplan des Kirchgemeindehauses Enge. — Masstab 1 : 1000.

Das Charakteristikum der Bauaufgabe eines
„Kirchgemeindehauses" ist ihre Vieldeutigkeit, und die Unklarheit
selbst der Bauherrschaft darüber, was eigentlich alles in einem
solchen Hause vorsichgehen soll, nach welcher Seite sich
der Betrieb entwickeln wird. Besonders der grosse Saal
ist ein nur negativ zu definierendes Lokal : er ist als Saal
einer Kirch-Gemeinde natürlich nicht bloss ein beliebiges
Vergnügungslokal, er wird also eine gewisse Würde
besitzen müssen, andererseits ist er aber auch kein Betsaal.
Eine neutrale, ruhig-unaufdringliche Haltung ist also wohl
das Gegebene, und von Fall zu Fall können dann die
entscheidenden Akzente nach irgend einer Richtung durch
abnehmbare Dekorationen u. dergl. gegeben werden. Ferner
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