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Détermination des fréquences critiques d’une piéce élastique.
Par E. HAHN, Professeur a 'Université de Nancy.

1. Dans un mémoire sur la vitesse critique des arbres
et la formule de Dunkerley, paru dans cette revue en
novembre 1918, j'ai montré comment cette formule pouvait
s'étendre sans difficulté au cas de masses continues et j'al
indiqué en note, qu'il y avait 1a le point de départ d'une
détermination commode de la vitesse critique des arbres.

Un nouvel examen de la question m'a fait constater
que la portée de ma remarque était beaucoup plus géné-
rale et, qu'en suivant la voie indiquée, on arrivait a la
détermination des fréquences critiques d'une piece élastique
vibrant sous l'effet d'une cause quelconque. Clest ce que
je me propose d'établir dans ce travail.

2. Considérons tout d'abord le cas d'une picce telle
que la position d'une masse ¢lémentaire puisse étre définie
a l'aide d'une seule coordonnée x. Ce cas comprend donc
celui des arbres, celui des aubes de turbines et aussi celui
des disques, lorsque par vibration ils affectent la forme
d'une cloche. Le cas plus général d'une déformation avec
diamétres nodaux sera envisagé plus loin.

Soit wi— Y eos Az L E ()
I’¢élongation a un instant quelconque d'un point de masse
dm; cette élongation est comptée a partir de la position
non déformée de la piece. Dans la formule (1), Y désigne

une fonction
Y—f(x) . . « . . . . (2

qui définit la forme affectée par la piece dans sa position
de déformation maximum.

3. Désignons en général par dF la force qui solli-
cite la piéce au point d'abscisse x = s et par ay le coef-
ficient d'influence relatif a la piéce considérée et établi en
tenant compte de la forme et des liaisons de celle-ci. Nous
trouvons immédiatement pour la déformation au point x
I'expression:

si=/
y=\awdF, . . . . .. @

ol les limites expriment que l'intégrale est a ¢tendre a la
piéce entiére.

Si, simultanément, la piéce est sollicitée en s par un
couple élémentaire d C;, 1'expression (3) comporte un terme
de plus que l'on forme aisément en faisant intervenir les
coefficients d'influence y,. relatifs aux couples. Il vient:

s=1 s=4#
1'—\(1\:dF+\,\, N 1)
s=o s=o0

Comme on le verra par la suite, il est nécessaire de con-
sidérer aussi l'inclinaison de la ligne élastique; on peut
former pour celle-ci une expression analogue a (4) en in-
troduisant les coefficients d'influence S, et d,; des forces
et des couples sur linclinaison z de la ligne élastique.
On trouve:

si=14 S=d
=N d Pt \GadC, L < L ()

J'ai indiqué dans le mémoire précité comment les coeffi-

cients 5, 7, 0 se déduisent aisément des coefficients «; il
suffit de rappeler ici les résultats trouvés:
0 oz
/3,\': = 8;
0 ax
Foe T g et - fn s = KB
= 891.-“
Oy hs

4. Supposons, pour commencer, que la piéce consi-
dérée n'est sollicitée par aucune force extérieure. Dans ce
cas, dF; et dC; se réduisent aux forces et aux couples
d'inertie résultant de la vibration. Soit 4/ la masse de
I'unité de longueur au point s et ©, le moment d'inertie
d'une tranche de longueur 1, par rapport a un axe per-
pendiculaire au plan xy et passant par le centre de gra-
vité de cette tranche; nous pouvons écrire les relations:

dF, = — y/" Mds, dC,= — 1" 0Ods . (7)
ott le double accent désigne la dérivée seconde par rap-
port au temps et l'indice s spécifie qu'il s'agit de gran-
deurs relatives au point d'abscisse s. Mais

v = —22Y cos It
donc: dF; = 22 MY cos Atds = 22 Myds . . . (8)
D’autre part,
Oy . 0 (av o
T = 3 ¥ = g ) = g U e R

et par suite:

dC; = 12@ruds's o' . (9)
Si l'on porte les valeurs (8) et (9) dans (4) et (5) on ar-
rive au systeme d’'équations intégrales homogénes:

s=1
= A2 \[axs M,)’s —+ Vxs @Ts] ds
= (10)
7.— A2 \[ﬂleyJ —+ 04 O1ds
que l'on peut mettre aszsi sous la forme:
y = ]2/ S[a; My: + ye: O:)de
: ool i (EB)
7 S[ﬁ -My: + g Ov:) dl
a condition de poser ’
x =&l s = Bl

On montre dans la théorie des équations intégrales
qu'un tel systéme peut étre remplacé par une équation
unique:

D) =1\ K (E 0 D)L (12)
a condition de choisir la fo;ction K de telle maniere que:
K(Eyé—)—:a’::M, pour{ozgzi
R
< £ < 2 (13)
K(§0) = fa M, pour {0 . z %
K(§,0) = 0z 6, pour {:EZEZ
et de poser
D) = y: pour o <~ { <1 s
DL =z pour Fh il i W

5. De méme qu'un systéme de » équations linéaires
et homogénes n'admet des solutions non toutes nulles que
si le déterminant des coefficients des inconnues s'annule,
I'équation (12) ne posséde des solutions différentes de zéro
que si une certaine série entiére D (A2/) du parametre A2/
s'annule pour un certain nombre de valeurs du parameétre.
Fredholm a démontré que cette série est de la forme

D@l =1 — 2 4, 4+ 2D

Ly
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Calculer les fréquences critiques revient donc a trouver les
racines de [I'équation D (J2]) = o.

Par un raisonnement qui consiste a étendre a un
déterminant comportant un nombre infini de termes, le
développement employé dans mon précédent mémoire pour
un déterminant de » termes, on démontre d’autre part que
le terme A,, a pour expressmn

&1y Eoyone 5,,) 5 X
A/) _J} (;1, 52’ ..... ‘E,ﬁ dsx ----- ([\1, (I6)
otl
(Ex, Biaaos: 5,)
S1y Ei ..... 5,,

désigne le déterminant symétrique d’ordre p formé avec p
valeurs quelconques de la fonction XK. En particulier on a

A = \K (& & de (17)

o il 8) o

D'aprés un theoreme de Mr. Hadamard, le coefficient
de (42/)* est inférieur en valeur absolue a

n
2

et

(18)

Nn L 0
n!

N étant une limite supérieure de K(£, ). On voit aisé-
ment que dans le probleme qui nous occupe, ces coeffi-
cients décroissent trés rapidement. On pourra donc pres-
que toujours, lorsqu’il s’agit de la premiéve fréquence cri-

tique, négliger tous les termes, sauf le premier. On aura
dans ces conditions la relation tres simple
- I
A2 =94 oo (19)
c'est-a-dire, si 'on met pour A4, sa valeur:
I .
It = — (19 bis)
! flage M + 3g: 0) dE
Cette relation se réduit a
- I
A2 = (19 ter)

lfa:—:- Mds
dans le cas ol l'effet des moments d'inertie @ est négli-
geable. C'est ce qui se produit pour toutes les piéces rec-
tilignes non chargées de masses additionnelles & grand
moment d’inertie.

L’emploi des formules (19) ne nécessite que la dé-
termination (par la méthode de Mohr, par exemple) des
quelques valeurs des coefficients d'influence ags et dgz né-
cessaires pour tracer la courbe de la fonction ag M ~+ dg: 6,
puis une quadrature facile a4 effectuer graphiquement.

Les formules (19) constituent donc un moyen rapide
et commode de détermination de la fréquence critique du
premier ordre.

6. Reprenons maintenant la question dans le cas plus
général ou des forces extérieures données sollicitent la
piéce concurremment avec les forces d'inertie provenant
de la vibration. Nous envisagerons ici le cas important au
point de vue pratique ot la piece est sollicitée par des
forces centrifuges dirigées parallelement a l'axe des x et
résultant d'une rotation de vitesse angulaire w. Soit %, la
distance de l'origine de la piéce a I'axe de rotation.

La masse Mds située a la distance (s - x) de cet
axe, développe une force centrifuge dF, = wQM(s+ x,)ds
qui détermine un moment fléchissant dC = y,dF/. Ce
moment tend généralement a redresser la piéce, par suite
la fleche 9y’ qu'il produit en x, 8y = y.dC/, vient en
diminution de celle créée par les forces d'inertie. Le se-
cond membre des équations (3) et (4) est donc a com-
pléter dans le cas présent par le terme soustractif

\/ xs

De méme, au second membre de (5) doit figurer le terme

— 56,“ dC;.
On est donc conduit au nouveau systéme d'équations:
S=
Y = S[iz Oxs MY ~+ 12y Ot — 503 M (s + %) yxs] ds

=1

7 = \[42 Bus M. ~+ 1285s Ov, — 3.3 M (s + %o) dys] ds.

S§=o0
Il est préférable d'introduire ici aussi les variables & et £
et d'écrire en ordonnant les termes:

y = z*/ﬂ[aw — 5 (e1 o) 7| My: 4y O et
° (20)

S—iY J{[p =L (Cl—{~x0) (ngi] My: —+ os @1:} dt

Nous retrouvons donc ici un systéme d'équations in-
tégrales homogénes analogue au systéme (11) et qui se ré-
tout exactement de la méme maniére. Les fréquences cri-
tiques sont données par les racines de la série D (12/)
correspondante. En particulier, si nous arrétons le déve-
loppement au premier terme en A2/, nous aurons comme
équation définissant la vitesse critique:

1 —A/l4"=o (21)
ou, par analogie a (17)

Ay = J(ag M+ dg @) de — §<cz+ o) pee M (22)
La premlere de ces intégrales n'est autre que la grandeur
A,, définie par (17); désignons la seconde, pour abréger,
par B, la relation (21) devient:

w?
1— B (4 — 5 B) =
soit: 2lA, = 1+ w2Bl
Mais /A4, est I'inverse du carré de la fréquence critique

de la piéce, lorsqu'elle n’est sollicitée par aucune force
extérieure; soit 1’ cette fréquence, il vient donc:

(%)2 — 1Bl . (23)
relation intéressante puisqu'elle indique de combien Ia fré-
quence critique se trouve relevée du fait de l'action de la
force centrifuge. Par exemple, si I'on détermine expérimen-
talement 2 pour une aube de turbine a vapeur, en opé-
rant au repos, la formule 23 permet immédiatement de
calculer (la détermination du facteur B ne présente pas
de difficulté) quelle sera cette fréquence, lorsque I'aube
sera montée sur une roue de vitesse angulaire donnée.

7. Considérons maintenant le cas d'un disque vibrant
autour de plusieurs diamétres nodaux. Soient x et ¢ ou
s et 3 les coordonnées polaires définissant la position
d'un point quelconque du plan médian du disque, Nous
supposons que l'épaisseur / est relativement faible, ce qui
permet d’opérer comme si la masse du disque était con-
centrée sur le plan médian. Nous admettons que le disque
tourne autour de son axe avec la vitesse angulaire w et
qu'il vibre autour de m diamétres nodaux. L'’élongation
s, de la vibration au point s, ¥, peut s'exprimer par une
fonction de la forme

Ys,p = Y cos At cos my,

I'accélération correspondante au méme point,

Ve = — A2Y cos A¢ cos TP = = N2
détermine unec force d'inertie

dF. ., = — y'dm = 12y, , dm,

dm désignant la masse élémentaire située en s, p. Cette
masse a pour expression, si l'on représente par u la
masse spécifique,

(24)

dm = uhsdyds,

dF" = 12y, ., uhsdyds
D’autre part, la force centrifuge
AF' = w?sdm = w?uhs®dsdy
développée par la rotation du disque, suscite au point
s,y un moment fléchissant d’'intensité:
dC = ygywuhstdsdy

donc 25)

(26)
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qui tend & atténuer les déformations y. Faisons de nou-
veau usage des coefficients d'influence, soit «a (x, ¢; s, 1)
le coefficient relatif aux points x,p et s, pour les forces
paralléles 2 I'axe de rotation et y (x,p; s,3) celui relatif
aux couples contenus dans les plans radiaux?); on peut
écrire immédiatement pour la fleche y, ,, la relation:

W =%S[a(x,rp;s, W)A2hs — y (%, p; s, ) w2hs?| uy,  dsdy (27)
ou l'intégrale double est & étendre a la masse enticre du
disque. Posons, pour abréger

WHSI=Vg
et mettons A2 en ¢évidence, nous obtenons finalement

T - =
Vi, p = A2 U [a (x, @;s,9p) — ’/.07;1 (%, 55, 9) styx, wdsdy (29)

Telle est l'équation intégrale homogéne a deux varia-
bles qui reégit le probléme. Les propriétés de 1'équation de
Fredholm rappelées au paragraphe 5 peuvent étre éten-
dues a l'équation (29), de sorte que, dans ce cas aussi,
la recherche des fréquences critiques revient a déterminer
les valeurs de A? qui annulent une certaine série entiere
analogue a (15):

D@%) =1 — 224, +—
A2p
(=
Si, pour abréger, on ¢crit (29) sous la forme
Vo — 42 -\SK(x,qn; $,Y) Vs, dS d,
on vérifie facilement que les deux premiers coefficients 4
sont donnés par les relations suivantes:

(28)

A4

4, = S\ K (x,p; x,p) dxdp (30)
4 = \\N[K (505 %) K (555 s,) —
K2 (x,p; s,p)] dsdy dx dp (31)

Il n'y aurait pas de difficultés a former les coeffi-
cients suivants sous forme d'intégrales multiples des déter-
minants d'ordres supérieurs que I'on peut tirer de la matrice
constituée par les valeurs de la fonction K (x,¢; s,v).

Pour simplifier 1'écriture, les limites des intégrales
n'ont pas été indiquées explicitement, elle sont a choisir
de maniére a correspondre a toute l'étendue du disque,
cela pour chaque variable. .

S'il s’agit de déterminer uniquement la premiére fré-
quence critique, on peut arréter le développement au pre-
mier terme en /2, et 'on a comme équation de condition

o=1— %4, . . - (32)
ou encore, si l'on introduit dans (30) l'expression explicite
de K,

0=1— /I‘A’\Sa(x,(p; x, @) zdxdp -+ l
w2 i\ y(x,p; x@)xvzdydy

Désignons respectivement par H, et H, les deux in-
tégrales doubles du second membre, nous obtenons pour
la premiére fréquence critique du disque, suivant qu'il est
immobile ou qu'il tourne a la vitesse w, les deux valeurs:

(33)

, 1
2 ZV 7 (34)
L F W’ M,
Ay = VT (35)
On a par suite aussi:
ik =V1+ o H (36)

8. Dés 1914, M. Stodola a indiqué une méthode de
détermination des fréquences critiques basée sur un théo-
réme de Rayleigh. Il est donc naturel de comparer les
avantages respectifs de sa solution et de la mienne au
point de vue des applications numériques.

On sait que la méthode Stodola nécessite le calcul
du travail de déformation, du travail des forces centrifuges
et de l'énergie cinétique de la piéce et cela pour trois
formes au moins de la ligne élastique; d'apres le théoréme
de Ragleigh, la fréquence cherchée est en effet un minimum
dont la détermination nécessite la connaissance de trois
valeurs au moins de 4.

1) Pour ces couples et pour ceux-la seulement la relation (6) entre
les coefficients o et y subsiste.

En ce qui concerne les picces a axe rectiligne, telles
que les aubes de turbines, par exemple, il ne parait pas
douteux que cet ensemble de calculs ne soit beaucoup plus
long que l'application de la formule (15). L’emploi de la
méthode de Mohr permet en effet de trouver rapidement
les trois ou quatre valeurs du coefficient d'influence a,,
qui suffisent amplement pour en tracer avec une précision
suffisante la courbe en fonction de a.

Il en va sans doute encore de méme dans le cas des
disques vibrant sans diamétres nodaux, quoique 1a d¢ja, la
détermination des coefficients a soit plus difficile que pour
les piéces droites.

Pour les disques vibrant avec diamétres nodaux, la
méthode de M. Stodola garde I'avantage, car la détermi-
nation exacte des coefficients d'influence se heurte a de
grandes difficultés.

Néanmoins les formules (34) et (35) conservent leur
intérét. Tout d'abord, elles montrent nettement quels sont
les facteurs essentiels qui déterminent l'ordre de grandeur
de la fréquence critique. Elles facilitent aussi I'étude expé-
rimentale de la question. Au lieu d'avoir a entreprendre
des essais compliqués sur des disques en rotation, il suf-
fira désormais de déterminer quelques valeurs du coeffi-
cient a (x,p; x,¢) par des essais de flexion des disques
au repos et sollicités par des charges concentrées conve-
nablement distribuées. Ces formules se prétent enfin a une
évaluation rapide de 4 dont il est parfois utile de con-
naitre l'ordre de grandeur, sans étre obligé de recourir a
de trop longs calculs.

Dans ce but, on peut en effet décomposer le disque
en anneaux concentriques, indépendants les uns des autres,
et traiter chaque secteur compris entre deux diameétres
nodaux consécutifs comme un prisme encastré a ses deux
extrémités. La détermination des coefficients « redevient
ainsi facile et le calcul des intégrales /; et H, ne pré-
sente plus de difficultés. Il va sans dire qu'en opérant
ainsi, on exagére la flexibilit¢é du disque et, par suite, on
obtient une valeur de 7 certainement inférieure a la réa-
lité. La connaissance de cette limite inférieure n'’en sera
pas moins utile, surtout si des calculs comparatifs effec-
tués dans quelques cas concrets venaient fournir des in-
dications quant a l'ordre de grandeur de 1'écart entre la
valeur exacte de / et celle fournie par le calcul approchél).

9. Dans ce travail, on n'a envisagé que la premiére
fréquence critique et arrété par suite le développement
des séries D au premier terme en /%2 Il est évident que
pour obtenir les fréquences critiques des ordres suivants,
il suffit en principe de prendre un nombre convenable de
termes dans le développement. Le calcul se complique
naturellement beaucoup; pour les pi¢ces droites, cependant,
la détermination de la seconde fréquence critique demeure
relativement aisée.

Mon mémoire de 1918 contenait une discussion au
sujet de l'erreur commise sur A2 du fait de la suppression
des termes contenant les puissances supérieures. Elle est
naturellement applicable ici. Cette erreur ne dépasse pas
quelques centiémes et n’a aucune importance pratique.

10. Je voudrais encore en terminant faire une re-
marque au sujet de la relation qui existe entre la fréquence
critique d'un arbre et le nombre de tours critique. Dans
les notes complémentaires (Anhang) ajoutées a la 6me édi-
tion allemande de son ouvrage sur les turbines & vapeur?),
M. Stodola signale la différence qui existe entre ces deux
grandeurs dans le cas ou l'arbre est chargé de masses
dont le moment d’inertie @ n'est pas négligeable. Il montre
que la fréquence critique est plus petite que le nombre de
tours critique. Ce fait résulte immédiatement de nos équa-
tions et de celles établies dans mon mémoire de 1918. La

1) Faute de temps et d’aide, I'auteur n’a pu entreprendre de cal-
culs comparatifs de ce genre, Il serait reconnaissant aux spécialistes et
aux bureaux d’études de maisons de construction qui pourraient étre ame-
nés a en faire, de vouloir bien lui en communiquer les résultats,

2) Voir aussi 2me édition frangaise.
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Abb. 5, Kirchgemeindehaus Enge in Zirich.

fonction #;, qui figure au dénominateur de la formule
(rg bis) se compose des deux termes additifs

/ \‘aggMdf et /Ségg@d&.

o o
Si, au contraire, on traite le probléme de la vitesse cri-
tique (voir le mémoire de 1918 cité précédemment), on

==
J
Loin

L]
)
n o
2 E
o
ol
o R
>
oz
[ °
>
2 M-V
b~ K
5 )
o g
= [ Al
& N
(]
2
m o
@
5 s
z ,»g
s K g
=1
z ° 'i
® 15
> —~,ud 5
2 %
z 5
) | »
g / «
o [N A =
m F\M'\\
)
2 o
g
. b
3 B
o |

99'vin

Haupteingangseite (Nordfront) an der Bederstrasse.

constate que le second figure avec le signe —, on a donc

= (37)

DL = -
! J‘ (e M — 8 0) d2

La différance entre 1 et w. apparait donc immédiate-
ment, on a

1 1
S (g i — 0¢:0) d3 J 250 5
e 9

>r—2>
Jwecardz
&S =

o o

Cette formule met mieux en évidence que celle de M.
Stodola les facteurs qui exercent une influence sur le rap-
port 1:w, qu'elle permet de calculer rapidement. Les
raisons physiques de cette différence apparaissent aussi
nettement. Dans la piéce vibrante, les couples d'inertie
ajoutent leur action & celle des forces d'inertie, tandis que
dans le cas de l'arbre, les couples créés par l'inclinaison
des masses tendent a redresser l'arbre; les déformations
qu'ils produisent viennent en diminution de celles dues
aux forces centrifuges.

11. En dehors de l'intérét que paraissent présenter,
a divers égards, les formules publiées ici, celui de la mé-
thode utilisée me semble justifier une derniére remarque.
Je n'ai pas connaissance que les équations intégrales aient
jamais été utilisées a la résolution de problémes techniques.
Le présent exemple montre que, dans certains cas, elles
sont susceptibles de rendre 4 l'ingénieur aussi, de précieux
services.
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Das Kirchgemeindehaus Enge in Ziirich.
Architekten PFLEGHARD & HAFELI, Zirich.
(Mit Tafeln 1 bis 4.)

Das Charakteristikum der Bauaufgabe eines ,Kirch-
gemeindehauses“ ist ihre Vieldeutigkeit, und die Unklarheit
selbst der Bauherrschaft dariiber, was eigentlich alles in einem
solchen Hause vorsichgehen soll, nach welcher Seite sich
der Betrieb entwickeln wird. Besonders der grosse Saal
ist ein nur negativ zu definierendes Lokal: er ist als Saal
einer Kirch-Gemeinde natirlich nicht bloss ein beliebiges
Vergniigungslokal, er wird also eine gewisse Wiirde be-
sitzen missen, andererseits ist er aber auch kein Betsaal.
Eine neutrale, ruhig-unaufdringliche Haltung ist also wohl
das Gegebene, und von Fall zu Fall kénnen dann die ent-
scheidenden Akzente nach irgend einer Richtung durch
abnehmbare Dekorationen u. dergl. gegeben werden. Ferner
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