Zeitschrift: Schweizerische Bauzeitung

Herausgeber: Verlags-AG der akademischen technischen Vereine

Band: 87/88 (1926)

Heft: 26

Artikel: Mechano-statische Untersuchungen hochgradig statisch unbestimmter

Tragsysteme

Autor: Hofacker, Karl

DOI: https://doi.org/10.5169/seals-40908

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 01.12.2025

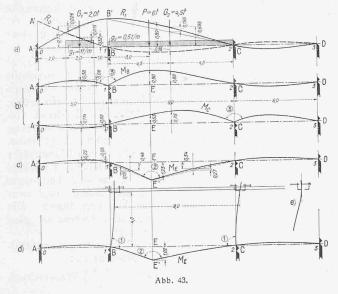
ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

INHALT: Mechano statische Untersuchungen hochgradig statisch unbestimmter Legierter Aluminiumdraht "Drahtlegierung 3" als Ersatz für Reinaluminium- und Stahlaluminium-Freileitungen. — Zweiter Bahnhof-Wettbewerb Genf-Cornavin. — Von der Rhätischen Bahn. — Miscellanea: Das Verhältnis zwischen Strassen- und Eisenbahnverkehr. Die Verbreitung der Automobile in der Schweiz. Schweizerische Naturforschende Gesellschaft. Résultats d's essais effectués sur les Nekrologie: Ulrich Jenne. groupes électrogènes de l'usine de Chancy-Pougny. Joh. Barbieri. - Konkurrenzen. - Literatur. - S. T. S.

Dieser Nummer ist das Inhalts-Verzeichnis des Bandes 87 beigelegt.

Nachdruck von Text oder Abbildungen ist nur mit Zustimmung der Redaktion und nur mit genauer Quellenangabe gestattet. Band 87.

Nr. 26


Mechano-statische Untersuchungen hochgradig statisch unbestimmter Tragsysteme. Von Ing. KARL HOFACKER, Luzern.

(Schluss von Seite 212)

IV. Das Verfahren von Ing. Otto Gottschalk.

Als neueste bekannt gewordene Methode zur mechanischen Berechnung statisch unbestimmter Tragwerke ist die von Ing. Otto Gottschalk in Buenos Aires zu nennen. Mit Hilfe der Apparatur "Continostat Gottschalk" lässt sich das zu untersuchende Tragwerk nachbilden und hiernach deformieren. Der grundsätzliche Unterschied dieser Methode gegenüber der letztgenannten Methode Rieckhof ist der, dass hier das Tragwerk so deformiert wird, dass für die zu bestimmende Grösse die Einflusslinie erscheint. Die in der Baustatik grundlegenden Sätze von Maxwell und von Betty:

 $\Sigma P_m d_{mn'} = \Sigma P_n d_{nm'}$ worin $d_{mn'} = \Sigma P_n d_{mn}$ die Verschiebung des Angriffspunktes m der Kraft P_m in ihrer Richtung m' infolge aller Lasten P_n und $d_{nm'} = P_m d_{nm}$ die Verschiebung des Angriffspunktes n der Kraft P_n in ihrer Richtung n' infolge aller Lasten Pm bedeuten, bilden die Grundlage zur Auswertung der durch die Modellversuche gewonnenen Ergebnisse. An Hand von vielen Beispielen illustriert Ing. Gottschalk sein Verfahren in Nr. 8 der "Zeitschrift des Vereins deutscher Ingenieure" vom 20. Februar 1926. Betreffend Photographien der Apparatur möge auf jene Zeitschrift verwiesen werden. Eine kurze Beschreibung davon genügt für die folgenden Erläuterungen an Hand von Beispielen.

Ein kräftiger und glatter Metallstab dient als Gleitschiene für Schieber, die neben der Gleitmöglichkeit im Längssinne des Stabes auch eine solche senkrecht dazu besitzen. An den Spitzen dieser Schieber sind Klauen zur Fixierung von Stahlbändern angebracht, welch letztere in verschiedener Länge und Dicke die Steifigkeitsverhältnisse des zu untersuchenden Tragwerkes nachzubilden gestatten. Es ist auch möglich, mit Hilfe von kürzern Stahlband-Stückchen variable Trägheitsmomente zu erzeugen. Weitere, mit Klemmen versehene Gleitstäbe gestatten eine beinahe reibungslose, gesicherte relative Bewegung einzelner Modellteile, wie z. B. in Rahmenkonstruktionen die Verschiebung der Riegel gegenüber den Ständerfüssen. Zur Nachbildung gebrochener Stabzüge wie auch zur gegenseitigen Befesti-

gung der Stäbe bei Darstellung der Einflusslinien für Biegungsmomente dienen Winkelklammern in vier verschiedenen Ausführungen als Klammern 1 für rechtwinklige Verbindung, Klammern 2 für Biegungsmomente im Felde, Klammern 3 für halbe Biegungsmomente über den Stützen von geradlinigen, durchlaufenden Balken, und Klammern 4 für halbe Eckmomente unter rechtem Winkel sich schneidender Stäbe.

Beispiel 1. Der in Abbildung 43 dargestellte, durchlaufende Balken mit konstantem Trägheitsmoment über drei Oeffnungen von 5 m, 9 m und 6 m Stützweiten sei belastet durch die Streckenlast $g_1 = 1$ t/m im ersten Felde auf eine Länge von 2 m, durch die totale, gleichmässig verteilte Last $g_2 = 0.5$ t/m und durch die Einzellast P im zweiten Felde. Gesucht sind: a) die Auflagerdrücke der beiden ersten Stützen R_0 und R_1 , b) die Momente der Mittelstützen B und C, und c) das Feldmoment unter der Einzellast.

Zu a). In einem geeigneten Masstabe wird das Trägernetz gezeichnet und darüber das Gerät so zusammengestellt, dass in jeder Auflagerlinie die Axe eines Schiebers zu liegen kommt. Durch die Klauen der Schieber steckt man das Stahlband, das den durchlaufenden Balken darstellt. Wird nun der Schieber A um ein beliebiges Mass (etwa 1/5 bis 1/6 der Stützweite) hinauf oder hinunter geschraubt, so stellt das Stahlband die Einflusslinie des ersten Stützdruckes Ro (gestrichelte Linie) dar. Bekanntlich ist die Ordinate dieser Einflusslinie unter A gleich der Einheit, weshalb alle Ordinaten durch die frei gewählte Strecke A A' zu dividieren sind. Mit den in Abbildung 43 a eingeschriebenen Ordinaten beträgt:

$$R_0 = 2\left(0.32 - \frac{2 \cdot 0.015}{3}\right) - 4.5 - \frac{2 \cdot 0.18}{3} - 6 \cdot 0.18 = 1 \text{ t}$$

Das soeben Gesagte gilt in analoger Weise für die Berechnung des Stützdruckes R_1 in B. Der Schieber B um ein beliebiges Mass verschoben, ergibt die ausgezogene Einflusslinie für R1 und daraus den Wert:

$$R_1 = G_1 \left(0.73 - \frac{0.026}{3} \right) + G_2 \left(0.695 - \frac{0.195}{3} \right) + P \cdot 0.89$$

Elimius limit A_1 und daraus den wete. $R_1 = G_1\left(0.73 - \frac{0.026}{3}\right) + G_2\left(0.695 - \frac{0.195}{3}\right) + P \cdot 0.89$ $R_B = 2 \cdot 0.72 + 4.5 \cdot 0.63 + 6 \cdot 0.89 = 9.62 \text{ t.}$ Zu b) (Abbildung 43 b). Zwei gleiche Stahlbänder werden durch eine Klammer 3 (halbes Stützenmoment) verbunden und mit Hilfe des Schiebers in B in Höhe der Balkenaxe geschoben; es entsteht die Einflusslinie für das halbe Stützenmoment, sodass die Ordinaten, die im Massstabe der Zeichnung abgelesen werden, mit 2 zu multiplizieren sind. Analog wird die Einflusslinie für das Stützmoment in C erhalten. In allen diesen Rechnungen werden bei verteilten Lasten die entsprechend zu belastenden Teile der Einflussflächen aufgefasst als Trapeze und Parabel-

Absentitie:

$$-M_B = 2 \left(0.38 - \frac{0.08}{3}\right) + 4.5 \cdot 2/3 \cdot 0.89 + 6 \cdot 0.9 = 8.78 \text{ mt}$$

$$-M_C = -2 \left(0.114 - \frac{0.02}{3}\right) + 4.5 \cdot 2/3 \cdot 0.75 + 6 \cdot 0.53 = 5.24 \text{ mt}$$

zwei gleiche Stahlbänder, die durch die Auflagerpunkte geschoben werden, bis der Scheitel der Klammer unter die Last P zu liegen kommt. Das so deformierte Stahlband gibt die Einflusslinie des Feldmomentes M_E wieder, deren

Ordinaten im Längenmasstabe der Zeichnung zu messen

sind. Soll das Feldmoment in einem andern Querschnitt bestimmt werden, so ist bloss der Scheitel der Klammer seitlich bis unter den fraglichen Querschnitt zuverschieben.

Beispiel 2 (Abbildung 43d). Der in Beispiel 1 betrachtete kontinuierliche Balken

werde in einen Rahmen überführt dadurch, dass in B und C 4 m hohe Mittelstützen angebracht werden. Klammern 1 stellen die verlangten Einspannungen der die Ständer darstellenden, kürzern Stahlbänder an das Stahlband des Riegels dar. Die Gleitregel hält mittels zweier Aufsätze die Ständerenden im verlangten Abstand von 9 m voneinander. Durch die Einschaltung der Rahmenständer wird das Feldmoment in E von 1,23 auf 1,02 mt reduziert. Wenn die Ständer unten eingespannt sind, werden im Modell mit Hilfe der Schrauben der Aufsätze die Stahlbänder der Ständer zurückgebogen, bis die Tangenten an der Einspannstelle die Richtungen erhalten, die den Stabaxen im undeformierten Zustande entsprechen (Abbildung 43 e).

Beispiel 3. Es soll in einfacher Weise ermittelt werden, wie weit die negativen Momente eines kontinuierlichen Trägers über drei Oeffnungen von 2,50 + 11,00 + 6,00 m, ins Mittelfeld des gleichmässig verteilt belasteten Trägers reichen.

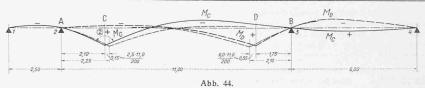
Zwei durch eine Klammer 2 verbundene Stahlbänder werden eingesetzt und der Scheitel der Klammer so verschoben, dass die positive Momentenfläche ungefähr gleich ist wie die negative. Diese Grenzlagen seien C und D in Abbildung 44. Eine geringe Verschiebung der Scheitel der Klammern nach innen bringt die negativen Momentenflächen im Mittelfeld rasch zum Verschwinden, während die positiven Teile stark zunehmen. Zwischen C und D überwiegen somit die positiven Momente.

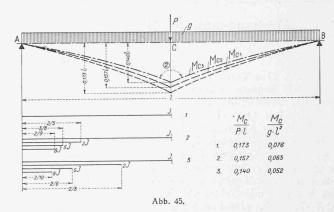
Beispiel 4. Es soll untersucht werden, in welchem Masse das Moment in Feldmitte einer mittlern Oeffnung eines kontinuierlichen Balkens mit konstantem Trägheitsmoment durch voutenartige Verstärkungen des Balkens über den Stützen vermindert werden können.

Die Abbildung 45 gibt eine Gegenüberstellung der gewonnenen Ergebnisse für drei verschiedene Fälle der Verstärkung an. Die Vergrösserung der Trägheitsmomente stellt Ing. Gottschalk durch Aufbringen kürzerer Stahlstäbe her. Für die gewählten Verhältnisse ergeben sich Reduktionen des Feldmomentes auf 4/5 bei Einzellasten und auf ⁷/₁₀ bei verteilter Last.

Beispiel 5. Zur Untersuchung des Einflusses feldweise verschiedener Trägheitsmomente auf die Grösse der Biegungsmomente sollen in Abbildung 46 zwei benachbarte Mittelfelder von 4,5 m und 10 m Stützweite eines durchlaufenden Trägers betrachtet werden. Die gestrichelte Einflusslinie ist die für das Stützenmoment M_2 des Balkens mit konstantem Trägheitsmoment, während die voll ausgezogene Linie die entsprechende Einflusslinie M_2 für den Fall eines neunmal so grossen Trägheitsmomentes für Feld 2 bis 3 als Feld 1 bis 2 darstellt.

Die Einflussfläche für Teil I bis 2 ist
$$\frac{M_2}{2} = 1,62 \text{ m}^2,$$
 die für Teil 2 bis 3 beträgt
$$\frac{M_2}{2} = \frac{2}{3} \cdot 0,51 \cdot 10,0 = 3,40 \text{ m}^2$$


$$\frac{M_2}{2} = \frac{2}{3} \cdot 0.51 \cdot 10.0 = 3.40 \text{ m}^2$$


Für variables Trägheitsmoment ergibt somit ein Moment von $M_2 = 2 (1,62 + 3,40) = 10,04 \text{ mt für } q = 1 \text{ t/m}$ Bei konstantem Trägheitsmoment sind die entsprechenden Werte:

$$\frac{M_{2'}}{2}$$
 = 0,63 m² bezw. $^{2}/_{8} \cdot$ 1,10 · 10,0 = 7,33 m² $M_{2'}$ = 2 (0,63 + 7,33) = 15,02 mt für q = 1 t/m

Beispiel 6. a) Wie gross ist der Horizontalschub H_D des in D gelenkig gelagerten, in A fest eingespannten Rahmens Abbildung 47, belastet durch beliebige Kräfte?

Unter Berücksichtigung der Steifigkeitsverhältnisse von Riegel und Ständern wird mittels Klammern 1 das

Modell des Tragwerks nachgebildet. Der Gleitstab dient hier wieder zur Fixierung des Abstandes AD der beiden Ständerfüsse. Wird auf diesem D nach D' um die Strecke s' in einer Richtung verschoben und nachher von der Anfangslage aus in der andern Richtung von D nach D" um die Strecke s", und wird der Einspannung des Ständerfusses in A durch Zurückschrauben des Stahlband-Endes bis zur normalen Tangente Rechnung getragen, so bestimmt sich H_D nach Massgabe der Abbildung 47 zu

$$H_D = \frac{1}{s} \left(P_K y_K - P_E y_E - P_F y_F - P_C y_C + P_L y_L \right)$$

b) Man bestimme das Einspannungsmoment am Fusse des Ständers A für die gleiche Belastung.

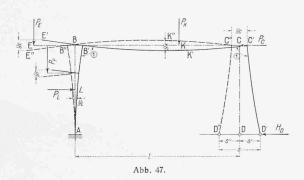
An Stelle der Einspannung, d. h. der normalen Tangente des Ständers wird dieser letzten eine bestimmte Neigung, z. B. 1:3 nach beiden Seiten der Mittellage erteilt, wodurch zwei Einflusslinien erzeugt werden. Der Wert des gesuchten Momentes folgt wie unter a) zu: $M_A = \frac{3}{2} \left(-P_K y_K + P_E y_E + P_F y_F + P_c y_C - P_L y_L \right)$

Beispiel 7. Es stelle Abbildung 48 den Querschnitt eines Wasserbehälters dar, wovon eine der beiden Kammern bis auf eine Höhe von 3 m mit Wasser gefüllt sein möge. Einseitig wirke bis zur gleichen Höhe ein Erddruck von 0,4 $h^2/2$. Man bestimme das Eckmoment M_A . Voraussetzung sei, dass der Gegendruck des Bodens unberücksichtigt bleibe.

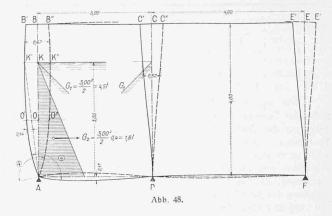
Das Modell wird unter Verwendung von Klammern 1 zusammengestellt. Hierauf wird in A die Klammer i (rechter Winkel) ersetzt durch eine Klammer 4 (halbe Eckmomente unter rechtem Winkel sich schneidender Stäbe), und zwar einmal von aussen und das andere Mal von innen. Die der Rechnung zu Grunde zu legenden Ordinaten sind zwischen den beiden Kurven zu messen.

Mit Hilfe der in Abbildung 48 eingetragenen Ordinaten berechnet sich das gesuchte Moment zu:

maten_betechnet such das gestuchte Moment 2u:
$$M_A = 4.5 \left(\frac{0.67}{3} + \frac{1}{2} \cdot \frac{2}{3} \cdot 0.14 \cdot 2 - \frac{0.52}{3} \right) \text{ Wasserdruck}$$


$$+ 1.8 \left(\frac{0.67}{3} + \frac{1}{2} \cdot \frac{2}{3} \cdot 0.14 \right) \text{ Erddruck auf Aussenwand}$$

$$+ 9 \cdot \frac{2}{3} \cdot 0.17 \text{ Wasserdruck auf den Boden}$$


$$= 2.23 \text{ mt.}$$

Schlussbemerkungen.

Mit diesen hier in chronologischer Folge betrachteten vier Methoden zur mechanischen Untersuchung statisch unbestimmter Tragsysteme dürfte die Frage der Modellversuche kaum als eine abgeschlossene erklärt werden; vielmehr ist vorauszusehen, dass die Zukunft auch auf diesem Gebiete eine grosse Zahl von Methoden zeitigen wird, ähnlich wie dies in der graphischen und analytischen Statik der Fall ist. Die sehr interessanten optischen Modellversuche von Prof. A. Mesnager in Paris wurden, als ausserhalb des Begriffes der mechanischen Untersuchung

stehend, nicht wiedergegeben. Das Hilfsmittel des Experimentes wird sicherlich in hohem Masse berufen sein, die durch die weitere Entwicklung unserer neuen Konstruktionen, hauptsächlich auf dem Gebiete des Eisenbetonbaues mit den mannigfachen Ausführungsmöglichkeiten, bedingten schwierigeren statischen Problemen in einfacher und sicherer Weise zu lösen, sei es zum Studium günstiger Verhältnisse

bei Vorentwürfen, sei es zur raschen Erledigung einer Aufgabe, für die eine Behandlung durch Zeichnung oder Rechnung zu zeitraubend wäre.

Trotz der sehr grossen Vorteile aller dieser experimentellen Methoden ist indessen doch nicht daran zu denken, im Studiengange eines Statikers die theoretischen Methoden abzubauen, denn ohne die sichere Grundlage eines eingehenden Baustatik-Studiums mit anschliessender Praxis dürften mechanische Verfahren zur Lösung vielfach statisch-unbestimmter Systeme Gefahren in sich schliessen, die nicht von der Hand zu weisen sind.

Legierter Aluminiumdraht "Drahtlegierung 3" als Ersatz für Reinaluminium und Stahlaluminium Freileitungen.

Mitgeteilt von der Aluminium-Industrie A.-G. Neuhausen (Schweiz).

Im Leitungsbau werden, je nach Art der zur Uebertragung bestimmten Energie, entweder Leiter mit hoher Leitfähigkeit bei geringerer Bruchfestigkeit, oder solche von höherer Bruchfestigkeit verwendet, bei denen eine kleine Einbusse an Leitfähigkeit in Kauf genommen wird. Es ist eine Eigentümlichkeit aller Metalle und Metallegierungen, die bisher als Leitermaterial Verwendung fanden, dass ihre Leitfähigkeit mit zunehmender Bruchfestigkeit abnimmt. Der Leitungsbau findet sich mit dieser Tatsache ab, denn er benötigt oft erhöhte Festigkeit, um sich den Anforderungen des Geländes anpassen zu können. Lange Zeit hat man sich im Leitungsbau fast ausschliesslich mit Kupfer und Kupferlegierungen beholfen. Bei Kupferlegierungen steht aber ihr Gewicht und damit ihr Durchhang in einem ungünstigen Verhältnis zu ihrer Bruchfestigkeit. Dies geht besonders deutlich aus einem Vergleich der Reisslängen hervor, d. h. derjenigen Seillängen, deren Eigengewicht bei einseitiger vertikaler Aufhängung den Bruch des Seiles an der höchstbeanspruchten Stelle herbeiführen würde. Diese Reisslängen sind aus nachstehender Tabelle ersichtlich, die auch die Leitfähigkeiten, die Querschnitte gleicher Leitfähigkeit, die Metergewichte, die Zugfestigkeiten und die absoluten Seilfestigkeiten bei Querschnitten gleicher Leitfähigkeit enthält. Es ist daraus zu ersehen, dass das Kupfer trotz der bedeutend höhern Leitfähigkeit und Festigkeit infolge seines hohen spezifischen Gewichtes eine bedeutend kleinere Reisslänge aufweist als Aluminium und Stahlaluminium. Kupferleitungen erfordern einen grössern Durchhang, was zusammen mit ihrem höhern Gewicht höhere und stärkere und daher teurere Maste bedingt. Aluminiumleitungs-Anlagen stellen sich aus diesem Grunde billiger als Kupferleitungen. Man wird deshalb immer, namentlich auch im Fernleitungsbau, zu Aluminiumleitern greifen, nachdem diese technisch zuverlässig hergestellt werden können

neigestent werden konn	CII.		
Material	Cu	A1 99,3	Stahl-Al 100: 23,31)
Leitfähigkeit m Ohm mm²	57	34	27,6 ²)
Querschnitte gleicher			
Leitfähigkeit mm ²	100	167	207
Metergewicht g	895	450	760
Zugfestigkeit kg/mm ²	42	18	37,3
Absol. Seilfestigkeit kg	4200	3000	7700
Reisslänge m	4700	6660	10 170

 $^{1)}$ Querschnittsverhältnis. $^{2)}$ Leitfähigkeit der Reinaluminiumdrähte bezogen auf den Gesamtquerschnitt Al + Stahl.

Die Weiterentwicklung auf dem Gebiete der Kraftübertragung führte zur Umwandlung der Hochspannungsleitungen in Höchstspannungsleitungen mit grossen Spannweiten. Hier trat der Vorzug des Aluminiums gegenüber dem Kupfer noch deutlicher in Erscheinung, da bei Höchstspannungen zu den Energieverlusten, die durch den Leitungswiderstand bedingt sind, sich noch solche durch Strahlung (Coronaverluste) summieren. Den Strahlungsverlusten wird in erster Linie durch Vergrösserung der Leiterabstände entgegengewirkt, wo eine solche Vergrösserung aber nicht mehr zweckmässig erscheint, muss - um die Strahlungsverluste auf ein Minimum herabzusetzen der Durchmesser des Stromleiters vergrössert werden. Dadurch wirkt man auch günstig auf den induktiven Spannungsabfall ein. Eine Verstärkung der schweren Kupferleiter würde, des grossen Zuges halber, schwere Abspannmaste bedingen. Ein leichteres Leitermaterial ist deshalb von Vorteil. Bei Fernleitungen spielen aber die Gelände-Verhältnisse immer eine grosse Rolle. Bei langen geraden Strecken erfordert die Verwendung von Reinaluminium infolge der geringen Festigkeit und des dadurch bedingten grössern Durchhanges höhere und teurere Maste, wodurch ihre Wirtschaftlichkeit beeinträchtigt wird. Diesen Uebelstand hat man dadurch zu überwinden gesucht, dass man Aluminiumseile mit einer Stahldrahtseele herstellt, wobei die Aluminiumdrähte als leitendes, die Stahlseele als tragendes Element dienen. Der Vorteil höherer Festigkeit wird aber bei solchem Stahl-Aluminium-Seil durch eine Reihe von Nachteilen erkauft. So wird ihr Gewicht erhöht und ihre Leitfähigkeit, auf den Gesamtquerschnitt bezogen, stark erniedrigt. Infolge ihrer Steifheit sind sie schwer zu verlegen und die Verbindung zweier Seilstücke erfordert komplizierte Konstruktionen. Die Gefahr von Korrosionen wird auch durch die übliche Verzinkung der Stahldrähte nicht vollständig behoben. Die grossen Unterschiede in der Wärmeausdehnung von Stahl und Aluminium bedingen ein fortwährendes Arbeiten der Stahl-Aluminium-Seile, wodurch mechanische Defekte auch bei ihnen keineswegs ausgeschlossen sind; überdies sind sie wesentlich teurer als Reinaluminium-Seile von gleicher Leitfähigkeit.

Die Verteilung der Zugspannung auf die Stahlseele und die Reinaluminiumdrähte ist aus umstehender Zusammenstellung ersichtlich. Der Berechnung wurde eine in den letzten Jahren ausgeführte grosse Stahl-Aluminium-Leitung zu Grunde gelegt, bei der ein Seil mit 170 mm² Aluminiumquerschnitt und 40 mm² Stahlquerschnitt verwendet worden war (Querschnittverhältnis also 4,25:1).