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Tangenten- und Krümmungskreis-Konstruktionen bei ebenen Kurven
auf Grund ihrer vektoriellen Gleichung.1)

i'on Dr. W. MICHAEL, techn. Experte, Bern.

In der Elektrotechnik wird bekanntlich die Gleichung
der sogenannten „Ortskurven" oft in der vektoriellen Form

V=F{v) (1)
gegeben2), worin V den die Kurve beschreibenden Vektor
bedeutet, der eine komplexe Funktion F des reellen
Parameters v ist. v kann alle Werte von — bis -f- 00
annehmen. Eine solche Gleichung kann für jede algebraische
oder transzendente Kurve aufgestellt werden. Diese Art
der Darstellung einer Kurve hat bis jetzt bei den
Mathematikern noch wenig Beachtung gefunden, obwohl sie auch
als Sonderfall einer konformen Abbildung aufgefasst
werden kann. Im folgenden soll gezeigt werden, wie man
mit Hilfe der Gleichung (1) das Problem der Tangente
und der Krümmung einer Kurve behandeln kann. Einige
Beispiele, die zu einfachen Lösungen führen, sollen die
Brauchbarkeit der Methode illustrieren.

1. In Abbildung 1 sei C eine Kurve, die durch (i)
gegeben ist. Wir betrachten zwei Punkte Px und P2 mit
den zugehörigen Vektoren Vx und V2. Die Sekante
P\ A âV ist gleich der Differenz der Vektoren, denn,
wie die Abbildung 1 zeigt, ist:

Ar=v% + (— vx) v%-vx.
Lassen wir P„ immer näher gegen Px rücken, so geht die
Sekante AV in das Bogenelement dV über, dessen Richtung
mit derjenigen der Tangente in Px übereinstimmt. Wir
finden nun dV durch Differentiation der Gleichung (1):

dV ai^- dv Vdv (2)

gezogen. Diese schneiden sich im Grenzfalle im
Krümmungsmittelpunkt K, und die Strecke P.K q ist gleich
dem Krümmungsradius; ds ist der Kontingenzwinkel. Wir
bezeichnen ferner mit \dV\ den absoluten Wert oder den
Betrag von dV, analog die Beträge der anderen Vektoren.
Aus Abb. 2 folgt : '<tv\

e= * (3)

Um de zu bestimmen, denken wir uns in Abbildung 3
die Vektoren Vx und V.J von einem Ursprung O' aus
aufgezeichnet ; sie bilden wiederum den Winkel de mit¬

einander. Wir denken uns ferner ihr
Differential gezeichnet:

dv vi - v;
den wir aus der Gleichung:

*H y" d'(-HvX]
dv dv-

berechnen können. Die Projektion von
dV auf die Normale zu V2' sei mit dV,,'
bezeichnet. Sie ist auch gleich der Proauf

die Normale zu Vz', die wir mit Vn"
bezeichnen, multipliziert mit dv, das heisst also:

dV,; V„" dv (4)
Im Grenzfalle geht 1~2' in Vx über und wir können

setzen: V.,' V{ V. Aus Abbildung 3 folgt nun ferner:
yvy

Abb.3

jektion von V

ds

und somit auch

Den Differentialvektor dV können wir nicht
konstruieren; uns interessiert jedoch nur seine Richtung.
Diese ist gegeben durch den Vektor V'= dV/dv, der im
allgemeinen einen endlichen Betrag hat und parallel zu

dV ist, weil dv eine reelle Grösse ist, die daher auf die
Richtung keinen Einfluss hat. Wir haben somit den Satz:

\V'\

\dV\
dVn'\ \v (5)

<J(r

ay
4L.

Hr\
Abb.1 Abb. 2 Abb.4

Die erste Ableitung des Kurvenvektors nach dem Parameter

liefert einen neuen Vektor, der die Richtung der
Tangente hat. (Tangentenvektor) (I)

Damit ist die Aufgabe der vektoriellen Bestimmung der
Tangente in einem Punkte einer Kurve allgemein gelöst.

2. Betrachten wir in Abbildung 2 zwei Punkte der
Kurve C, Pt und P2, die sehr nahe gedacht sein sollen.
Wir denken uns ferner die „Tangentenvektoren" Vx und
V2 in Px und P% bestimmt, ferner die Normalen in letzteren

J) Wenn wir diesem, in der Mathemat. Vereinigung Bern gehaltenen,
an der Grenze unseres Arbeitsgebietes liegenden Vortrag Aufnahme ge-
wähien, so geschieht es, weil er gleichsam eine Weiterentwicklung der

Arbeit unseres zu früh verstorbenen Kollegen Otto Bloch über Bestimmung
der Ortskurven darstellt, einer Arbeit, deren Erscheinen in der sS. B. Z.» im
November 1916 berechtigtes Aufsehen der Fachkreise erregt hatte. Red.

2) Vergleiche zum Beispiel : Dr. 0. Bloch, Die Ortskurven der

graphischen Wechselstromteclmik, Verlag von Rascher & Cie. in Zürich, 1917.

Setzt man aus (2) den Wert für j dV und aus (4)
den für dV,'t ein, so findet man schliesslich :

!> w~ (6)

Die Brauchbarkeit dieser Formel beruht darauf, dass
man sowohl V als V" aus der Gl. (1) leicht bestimmen kann;

man hat dazu nur (1) zweimal zu
differenzieren. Vy ist dann geometrisch
ohne weiteres bestimmbar.

Aus Gl. (6) lässt sich ablesen :

Der Betrag des Tangentenvektors V
ist gleich der mittleren Proportionalen
aus dem Krümmungsradius o und der
Strecke V„" (II)

Dieser Satz führt zu folgender Regel
für die Konstruktion von 0 in einem
Punkte P der Kurve C (Abb. 4):

Man bestimmt aus Gleichung (1) V" und V" ; zieht
die Normale in P zu V und zeichnet V," ; macht die
Strecke PO auf der Normale in P gleich — V„"; verbindet
Q mit R und errichtet die Senkrechte in R zu QR ; sie
schneidet die Normale im Punkte K, dem gesuchten
Krümmungsmittelpunkt a) (III)

l) Die Sätze (1) und (II) führen sofort auf zwei bekannte kinematische

Sätze, wenn man den Parameter v als Zeit auffasst. Die Gleichung
(1) ist dann der analytische Ausdruck für eine bestimmte Bewegung eines
Punktes in der Ebene. V ist die Geschwindigkeit, V" die totale, Vn" die
normale Beschleunigung des Punktes.

Bekanntlich stützt sich die Toricelli-Roberval'sche Methode der
Tangentenbestimmung auf der nunmehr auch aus Satz (I) folgenden
Tatsache, dass die Geschwindigkeit mit der Tangente gleichgerichtet ist. Die
genannte Methode findet gewissermassen im Satz (1) ihre natürliche, das

heisst rein geometrische Begründung, während die aus Satz (II) abgeleitete
Regel (III) gleichsam als ihre ,,Erweiterung" angesehen werden könnte.
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Anwendungen.
Es ist klar, dass man bei der Anwendung der

Methode auf eine bestimmte Kurve nicht von deren

„allgemeinen" vektoriellen Gleichung, sondern von einer

möglichst einfachen ausgehen wird. Ist eine solche Gleichung
für die Kurve nicht schon anderweitig abgeleitet, so

besteht der erste Schritt bei der Lösung unserer Aufgabe
in der Aufstellung einer möglichst einfachen vektoriellen
Gleichung der Kurve.

a) Hyperbel: Die vektorielle Gleichung einer Hyperbel,
deren Mittelpunkt im Ursprung liegt, kann wie bekannt1)

in der Form geschrieben werden:

V=Av +± (7)

worin A und B zwei gegebene Vektoren sind, die, wie

man leicht sieht, die Lage der Asymptoten bestimmen. In

Abbildung 5 ist die Kurve konstruiert worden, indem für
v — 1, 2, 3 die entsprechenden Punkte bestimmt wurden.
Zur Bestimmung von Tangente und Krümmungsradius
müssen wir die Gleichung (7) zweimal ableiten und finden:

v a —£-JL(a,—f) (8)

v *-i (9)

Aus Gleichung (8) folgt: der Tangentenvektor V" hat
die Richtung desjenigen Vektors, der die Differenz der zu

einem Punkte der Hyperbel gehörenden Vektorkomponenten

Av und B'v bildet; wir zeichnen das entsprechende
Parallelogramm; in Abbildung 5 ist dies z. B. für den

Punkt v 1 durchgeführt; ferner wollen wir die Vektor-
Sitmnic (Av-\-B/v) die erste, dieVektor-Differenz (Av — Bjv)
die zweite Diagonale des Parallelogramms nennen. Man

kann dann den Satz aussprechen:
Die Tangente in einem Punkte der Hyperbel ist

parallel der zweiten Diagonalen des zu dem Punkte
gehörenden Asymptoten-Parallelogramms.

Dieser Satz führt auf die bekannte Konstruktion der

Tangente und bietet somit nichts wesentlich neues. Nun
bestimmen wir o. Nach Gleichung (6) ist :

1 I B\1 B -•

J^_ —\Av--\ Av ¦

Wir interpretieren die Gleichung geometrisch und
finden: Im Zähler steht das Quadrat des Betrages eines

Vektors, der gleich der zweiten Diagonale des aus Av und

Bjv gebildeten Parallelogramms ist, im Nenner steht die

Projektion des mit 2 multiplizierten Vektors Bjv auf die
Normale. Wir denken uns die Konstruktion für den Punkt 1

ausgeführt und ersehen aus Abbildung 5 ohne weiteres:
Die Strecke Av — B/v ist gleich dem Stück der

Tangente zwischen Berührungspunkt und Schnittpunkt mit
einer Asymptote, für Punkt 1 also gleich Tr.

Die Strecke \-zBjv ist gleich dem Stück der Asymptote

vom Mittelpunkt O bis zum Schnittpunkt r der
Tangente. Fällen wir die Senkrechte von O auf die Normale;
diese werde in q getroffen, so ist die Strecke von q bis

zum Berührungspunkt 1 gleich der Projektion (2 Bjv),,.
Die Konstruktion des Krümmungsmittelpunktes gestaltet

sich somit äusserst einfach nach folgender Regel:
Man zieht die Taugeute bis zum Schnitt q mit einer

Asymptote, errichtet im Berührungspunkt (1) die Normale,

fällt auf sie vom Mittelpunkt O aus das Lot Or, verbindet

r mit q und errichtet die Senkrechte in q zu qr. Sie schneidet

die Normale im Krümmungsmittelpunkt K.2)

') Vergl. z. B. die Dissertation des Verfassers: Zur Geometrie der

Ortskurven der graphischen Wechselstromtheorie, Zürich 1919.

') Es ist hier zu bemerken, dass diese Konstruktion nicht eine

unmittelbare Anwendung der Regel (111) darstellt, deDn wegen der

vorgenommenen Kürzung in der Formel für n werden nicht die Vektoren

V und — I'„ ' selber aufgetragen, sondern die reduzierten Vektoren Vlv
und — V„"lv-; um dieser Abweichung Rechnung zu tragen, haben wir in

Abb. 5 die Buchstaben r und q statt R und Q wie in Abb. 4 eingeführt.
Eine unmittelbare Anwendung der Regel (III) findet statt, wenn

man von einer anderen, weniger bekannten Gleichung für die Hyperbel

ausgeht. Darauf soll bei der Ellipse noch hingewiesen werden.

b) Ellipse. Die einfachste Form, auf die die vektorielle
Gleichung einer Ellipse gebracht werden kann, lautet:

V r, c"i -f- r2 e- "1 (10)
worin r, und r„ Konstanten, q der Parameter (an Stelle

von v) und i— | —>., die imaginäre Einheit, bedeuten.
(10) ist die Gleichung einer Ellipse mit dem Mittelpunkt
im Ursprung und den Axen in den Koordinatenaxen.1)

Man kann V in Formel (10) auffassen als die
Resultierende zweier Vektoren, die gleicbmässig, aber in
entgegengesetztem Sinne zu einander rotieren. In Abbildung 6
sind die Kreise angedeutet, die die Endpunkte der Vektoren
?-] e"i undr., e~"> beschreiben; die erzeugte Ellipse ist stark
ausgezogen. Zu einem Punkte P
Parallelogramm gezeichnet.

Wir bilden nun aus (10)
Ableitung und erhalten :

V i (r, e''> — 1

ist das entsprechende

die erste und zweite

- "' — VV" — (r, e"' -f r,, $-"> — V (12)
Wir bemerken, dass in der Klammer auf der rechten

Seite von (11) wie bei der Hyperbel die Differenz der
Vektorkomponenten von V steht, das heisst, die zweite
Diagonale im Parallelogramm OXPY. Der Faktor i bedeutet,
dass der Tangentenvektor V auf der zweiten Diagonale
des Parallelogramms senkrecht steht (bei der Hyperbel
hatte man Parallelität). Wir konstruieren V, indem wir
durch P eine Senkrechte zu XY ziehen und PR gleich XY
machen. Um o zu finden, haben wir \V,"\ zu bestimmen
und Regel (III) anzuwenden. Da V"\ \V\ ist, bekommen
wir | V„" indem wir das Lot OS auf die Verlängerung
von PR fällen. Wir ziehen die Parallele SO zu OP; dann
ist OS — PQ= ' V„" Schliesslich haben wir noch Q mit
R zu verbinden und die Senkrechte in R auf QR zu
ziehen. Ihr Schnittpunkt K mit der Normalen ist der
gesuchte Krümmungsmittelpunkt.

Die Bestimmung von K ist hier ebenso einfach wie
bei der Hyperbel, wenn man von der durch (10)
gegebenen vektoriellen Konstruktion der Ellipse ausgeht. Man
kann jedoch die Konstruktion des Krümmungskreises auch
unabhängig von der beschriebenen vektoriellen Erzeugung
ausführen, unter Benützung konjugierter Durchmesser, wenn
man folgende Relationen aus Abbildung 6 ableitet.2)

Wendet man den Cosinussatz auf die Diagonal-Dreiecke
OMX und OMY an, so findet man:

\{pP2 +~X?*—z OP XY'cos rx

Y(0~P2 H- ÄY2 -4- 2 ÖP XY2 cos ô) r,-

(a)

(ß)

(a)-j-OS): - (OP2

(a)-(l-i):

XY'
OP XY* cos Ô =?y-

-r?(a)

Die Gleichung (o') drückt eine besondere Eigenschalt
aus, die zwischen den zwei Diagonalen des Parallelogramms

des Ellipsenpunktes besteht.
Trägt man die zweite Diagonale XY in P senkrecht

zur ersten Diagonale OP auf, so erhält man ein
rechtwinkliges Dreieck, dessen Hypotenuse konstant ist für alle
Punkte der Ellipse. Man kann leicht ersehen, dass diese

Hypotenuse der Radius des (nicht gezeichneten) Kreises
ist, der durch die Ecken des der Ellipse umschriebenen
Rechteckes geht.

Die Gleichung (//) können wir folgendermassen
interpretieren : es ist OP cos <5 OS PQ ;

ferner ist XY= PR
und rf1 — rx (i\ -\~ r.,) (rx — r.,) ab

wo a die grosse, b die kleine Halbaxe der Ellipse
bedeuten. Es folgt somit:

OPXYcos Ô PRPQ= ab (y)
Diese Produkte sind nichts anderes als die doppelten

Inhalte der Dreiecke QPR beziehungsweise POR.
Wir haben somit den Satz:
Das aus dem Ellipsenvektor und dem Tangentenvektor

gebildete Dreieck hat den konstanten Inhalt 1'2 a b.

') Siehe meine Dissertation.
2) Auf diese Möglichkeit machte mich zuerst Ing. M. Besso aufmerksam.
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Abb.5

t<s

-&

Abb 6 Abb 7

Nun hat bekanntlich auch das aus zwei konjugierten
Halbmessern der Ellipse gebildete Dreieck den konstanten
Inhalt lj.,ab. Betrachten wir daher den zu OP konjugierten
Halbmesser OE. Dieser ist zur Tangente parallel. Somit gilt:

OE i OS, <$ EOP <) + \ <$ OPR,

OP OE sin («3 + 7)= OP OE cos <5 a b (ô)

Vergleicht man (d) mit (y) so kommt:
OE XY.

Das heisst: Der Betrag der zweiten Diagonale im
Parallelogramm des Punktes P ist gleich dem Betrag des zum
Halbmesser OP konjugierten Halbmessers. Dieser steht auf
der zweiten Diagonale senkrecht.

[Nach Dr. J. Sauter kann man diesen Zusammenhang
durch eine „vektorielle Ueberlegung" viel einfacher
beweisen: Wenn man nämlich in (10) an Stelle von <p den
Wert rp ~f- rijo. setzt, so erhält man den Ellipsenvektor :

V oiV Vv+.-ri2 rle,y *i-\-rze—'v » i=t\r1e"'— r2e "^
das heisst V ist gleich einem Halbmesser der Ellipse, und
weil parallel der Tangente im Endpunkte des Halbmessers
Vv, ist V der zu Vv konjugierte Halbmesser.]

Die Konstruktion des Krümmungsmittelpunktes K zu
P kann jetzt folgendermassen angegeben werden:

Man trage auf der Tangente eine Strecke PR gleich
dem konjugierten Halbmesser ab, ferner auf der Normalen
eine Strecke PQ gleich dem Abstand der Tangente vom
Mittelpunkt. Man errichte die Senkrechte in R zu OR.
Ihr Schnittpunkt zu der Normalen ist der Krümmungs-
mittelpunkt K.

Wir bemerken noch, dass der aus Gleichung (a)
gefundene aber nicht gezeichnete Kreis zur Bestimmung
des Betrages des konjugierten Halbmessers in vorteilhafter
Weise benutzt werden kann. Hierdurch ist die Konstruktion
des Krümmungsmittelpunktes, wie bei der Hyperbel, auf
Elemente zurückgeführt, die unabhängig von der speziellen
Konstruktion der Kurve sind.

Die gefundenen Konstruktionen für Tangente und
Krümmungskreis bei Hyperbel und Ellipse lassen bereits
eine Dualitätsverwandschaft erkennen, die noch klarer
zu Tage tritt, wenn man die Gleichung (7) der Hyperbel
anders schreibt. Führen wir nämlich die Substitution ein :

v — 0>'

beziehungweise r~ w
0 V

so erhalten wir die neue Hyperbelgleichung:
V =AcV + Be-v (7')

für die Ellipse können wir statt (10) schreiben:
V Ae+ir> -y Be-"' (10')1)

(10') geht aus (7') hervor, wenn man t/> durch iq, ersetzt.
Aus (7') folgt:

V ='A ev — B e~y
V"= Aev -\- B e-v =-V.

Hieraus ergibt sich die in Abbildung 5 veranschaulichte

Konstruktion in unmittelbarem Anschluss an die
Abbildung 4 beziehungsweise an Regel (III). An Stelle

') Siehe meine Dissertation.

von r und q dürfen wir jetzt, ebenso wie bei der Ellipse,
0 und R setzen. Gleichung (7') steht der Gleichung (10')
dual gegenüber und erweist sich als die einfachste für die
Lösung unserer Aufgabe.

Die Parabel kann analog behandelt werden. Es

ergeben sich hierbei ebenso einfache Konstruktionen wie
bei den anderen Kegelschnitten. Der Leser kann sich
davon selber leicht überzeugen.

c) Zum Schlüsse möge noch eine Anwendung aui eine
Kurve höherer Ordnung stattfinden. Wir wählen hierfür,
im Anschluss an das Vorige, die Fusspunktkurve der Ellipse
mit dem Zentrum der Ellipse als Pol.

Wir müssen zunächst die Kurve vektoriell darstellen.
Wir gehen von der Gleichung der Ellipse aus, wobei

wir jetzt aber V, statt V schreiben :

Vc— r, e''' ¦ '- r.j e~'x
Man erhält nun einen Punkt F der Fusspunktkurve,

indem man in Abbildung 7 vom Zentrum o auf die Ellipsen-
Tangente in P das Lot fällt. Die Kurve ist bekanntlich
vierter Ordnung. Wir denken uns das zu Ve gehörige
Parallelogramm gezeichnet und bezeichnen die zweite
Diagonale XY mit D.

Es ist dann der Vektor V OF parallel zu D. Es
erweist sich als zweckmässig, für den Vektor einen
Richtungsvektor einzuführen, den wir definieren als einen
Vektor vom Betrage 1 und von der selben Richtung wie D.

Wir wählen für den Richtungsvektor ein neues
Symbol, nämlich das Vektorsymbol zwischen zwei horizontalen

Strichen : D.1) Für den absoluten Betrag von D
wollen wir d schreiben. Definitionsgemäss soll also sein :

d=\D
D Djd.

Wir berechnen nun an Hand der Abbildung 7 den
Richtungsvektor D; ferner den Betrag von V. Es ist

dann: V= V D= V\
D
d

Aus Abbildungen 6 und 7 folgt:
a) D r, e'>~ra—.'>

ferner ist:

v 2

b) d2
c) y\

-d2—z r
d" — 2 ;¦

1

r,
>--, cos r,
d cos tfA
d cos \p2 —

- 2 rx 7'2 cos 2 cp

r2 cos 7/.2

2

hieraus:

somit :

COS !/',

\.V\

V

r^ + d--
7.rxd

COS !/>.,
¦d- ¦

2 r, d

(>\ e"' ') (13)

Das ist die gesuchte vektorielle Gleichung unserer
Fusspunktskurve; darin ist d2 die in Gleichung (b) gegebene
Funktion von 7-. Wir differentiieren nun Gleichung (13)
nach cf :

i d- (r, e' 'I -\- r2 er- ' <p) — 2 d d< (r, à q> — r% c— ' <r)

V (ra* 12 ' ä*

In den Klammern des Zählers stehen die Vektoren
Ve und D, ferner folgt durch Differentiation der Gleichung(b):

2 d d' 4 Tj r„ sin 2 c

') Im Gegensatz zu den vertikalen Strichen für die Bezeichnung
des absoluten Betrages des Vektors.
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Abb. 73. Uebersichtsplan von Maschinenbaus, Schalthaus

und Dicnstwohnhäusern des Kraftwerks Amsteg.— Masstab 1 :30C0.

Wir können daher schreiben :

V' riS -~ V' [; y 4 »•] >~2 sin 2^ ^ZJJ

rf-' \ ' d d

Nun ist r, r2 sin 2 99 gleich dem Inhalt des Parallelogramms

OPXY (Abbildung 6). Betrachten wir D als dessen

(M)

Grundlinie, so ist seine Höhe gleich

man noch h PF so ist also :

2 Tj r2 sin 2fj h d;

rr zu setzen. Setzt

dieser Wert und Für

ergibt :

V =¦

das Symbol D in (14) eingesetzt

(* V.— ith-D-) (15)

Für die Konstruktion der Tangente interessiert uns
nur die Richtung von V. Für diese ist in Gleichung
(15) nur der Klammerausdruck massgebend, denn der
davor stehende Faktor ist eine reelle Grösse. Es erweist
sich ferner als bequem, zunächst die Richtung der Normalen,
statt der Tangente anzugeben. Wir betrachten daher den

zu V senkrecht stehenden Vektor N, den wir aus Gleichung

(15) durch Multiplikation mit — i und Weglassen des
reellen Faktors erhalten :

N"=V,-\-'iüh ü (16)
N ergibt sich aus (16) als die Summe des Ellipsenvektors

Vt und eines Vektors vom Betrage 2 h 2.PF, der
zu D senkrecht steht, also die Richtung der Ellipsentangente
in P besitzt. Zur Konstruktion von vV hat man somit
folgendes zu tun :

Auf der Tangente in P trägt man die Strecke PF von
F aus nach aussen ab und erhält den Punkt U. Der Vektor
OU ist dann gleich dem Vektor N, der die Richtung der
Normalen im Punkte F der Fusspunktkurve hat. Die gesuchte

Tangente in F ist dann die zu OU senkrecht gezogene
Gerade FT.

Es ist ersichtlich, dass auch diese Tangenten-Konstruktion

an Einfachheit nichts zu wünschen übrig lässt.

Hingegen hat sich für den Krümmungsmittelpunkt keine
einfache Konstruktion ergeben, weshalb hier darauf nicht
näher eingetreten wird.

Die gegebenen Beispiele dürften genügen, um das

Wesen und die Brauchbarkeit der neuen Methode darzulegen.

Es sei noch bemerkt, dass sie sich auch bei
transzendenten Kurven mit Erfolg verwenden lässt. Besonders
einfach lassen sich die Zykloiden und die Spiralen
behandeln.
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Abb. 74. Das Schalthaus aus SW, rechts das Schaltstand-Gebäudc.

Das Kraftwerk Amsteg der S. B. B.
II. Hochbaulicher Teil.1)

Von Arch. TH. NAGER, S. B. B., Bern.

Die Zentrale des Kraftwerkes Amsteg liegt am
südlichen Ende der untersten Talstufe des urnerischen Reuss-

Tales, unmittelbar vor dem Aufstieg der Gotthardstrasse
gegen Gurtnellen (vergl. Situationsplan Abbildung 73). Der
hier zur Verfügung stehende Platz war relativ eng begrenzt
durch den Zug der Bristenlawine und den Felsenrücken
seitlich des Kärstelenbaches einerseits, den steilen Berghang

und der Gotthardstrasse andererseits. Da zudem noch
Raum für spätere Erweiterungsbauten, eventuell auch für
eine Freiluftstation vorzusehen war und die Anordnung
des Unterwasserkanals, der den vorhandenen Wiesengrund
durchschnitt, gegeben war, wurde durch eine Gruppierung
von verschiedenen einzelnen Baukörpern eine möglichst
weitgehende Platzausnützung erstrebt. Für die Wirkung
der Neubauten musste die Nachbarschaft des recht
charakteristischen Dorfes von Amsteg mit seiner dominierenden
Kirche berücksichtigt werden, welches Bild durch die
bedeutenden Baumassen des neuen Kraftwerkes nicht erdrückt
werden durfte (vergl. Abbildung 74, S. 171). Ferner war
mit dem Umstand zu rechnen, dass die Baugruppe ausser
von der seitlich vorbeiführenden Landstrasse hauptsächlich
von der in einem Bogen hoch über die Baustelle
herumfahrenden Bahn aus gesehen wird (vergl. die Abbildungen
75 und 76, Seite 171/172). Diese Erwägung führte zu
einer Massengruppierung, die die verschiedenen Bauteile :

Maschinenhaus, 15 kV-Schaltgebäude und Transformatoren-
Gebäude annähernd parallel zur Gotthardstrasse mit einem

eingeschobenen Hofe stellte, diese beiden letzten
Längsbauten mit dem quergestellten Schaltstandgebäude verband
und das südliche Ende des 15 kV - Schaltgebäude mit den
Bureaux und Verwaltungsräumen als Kern der Baumassen

um zwei Geschosse höher führte. Auf diese Weise kommt
jeder einzelne Bauteil entsprechend seiner Zweckbestimmung

nach aussen klar zur Geltung, leichte Zugänglichkeit,
gute Belichtung und Belüftung wird erreicht; die unter-

>) Vergl. I. Wasserbaulicher Teil, von Ing. Hans Studer, in Bd. 86.
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