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Tangenten- und Kriimmungskreis-Konstruktionen bei ebenen Kurven
auf Grund ihrer vektoriellen Gleichung.')

Von Dr. W. MICHAEL,

In der Elektrotechnik wird bekanntlich die Gleichung
der sogenannten ,Ortskurven* oft in der vektoriellen Form
V=Fuw) . . .. (1)
gegeben?), worin V den die Kurve beschrelbendcn Vektor
bedeutet, der eine komplexe Funktion 7 des reellen Para-
meters v ist. » kann alle Werte von — bis -+
annehmen. Eine solche Gleichung kann far jede algebraische
oder transzendente Kurve aufgestellt werden. Diese Art
der Darstellung einer Kurve hat bis jetzt bei den Mathe-
matikern noch wenig Beachtung gefunden, obwohl sie auch
als Sonderfall einer konformen Abbildung aufgefasst
werden kann. Im folgenden soll gezeigt werden, wie man
mit Hilfe der Gleichung (1) das Problem der Tangente
und der Kriimmung einer Kurve behandeln kann. Einige
Beispiele, die zu einfachen Lésungen fithren, sollen die
Brauchbarkeit der Methode illustrieren.

1. In Abbildung 1 sei C eine Kurve, die durch (1)
gegeben ist. Wir betrachten zwei Punkte 2, und 2, mit
den zugehérigen Vektoren /7 und V,. Die Sekante
Py Py = AV ist gleich der Dzﬂmem der Vektoren, denn,
wie die Abbildung 1 zeigt, ist:

AV =V,+(—W")=V,—V,.
Lassen wir £, immer nZher gegen P, riicken, so geht die
Sekante AV in das Bogenelement & tiber, dessen Richtung
mit derjenigen der Tangente in /7, ubereinstimmt. Wir
finden nun V7 durch Differentiation der Gleichung (1)

=D gy va . ... (2

Den Differentialvektor dV konnen wir nicht kon-
struieren; uns interessiert jedoch nur seine Richtung.
Diese ist gegeben durch den Vektor V'= dV//dv, der im
allgemeinen einen endlichen Betrag hat und parallel zu
dV ist, weil dv eine reelle Grosse ist, die daher auf die
Richtung keinen Einfluss hat. Wir haben somit den Satz:

o
Ay
/ Abb. 1 o Abb. 2
Die erste Ableitung des Kurvenvektors nach dem Para-
meter lieferl einen wneuen Vektor, der die Richtung der

Tangente hat. (Tangentenvektor). . . o e o ()
Damit ist die Aufgabe der vektorlellen Bestlmmung der
Tangente in einem Punkte einer Kurve allgemein geldst.
2. Betrachten wir in Abbildung 2 zwei Punkte der
Kurve C, P, und P,, die sehr nahe gedacht sein sollen.
Wir denken uns ferner die ,Tangentenvektoren“ 7" und
Vy in P, und P, bestimmt, ferner die Normalen in letzteren
) Wenn wir diesem, in der Mathemat. Vereinigung Bern gehaltenen,
an der Grenze unseres Arbeitsgebietes liegenden Vortrag Aufnahme ge-
withten, so geschieht es, weil er gleichsam eine Weiterentwicklung der
Arbeit unseres zu friih verstorbenen Kollegen Otto Bloch iiber Bestimmung
der Ortskurven darstellt, einer Arbeit, deren Erscheinen in der <S.B. Z.»> im
November 1916 berechtigtes Aufsehen der Fachkreise erregt hatte. Red.
2) Vergleiche zum Beispiel: Dr. O. Bloch, Die Ortskurven der
graphischen Wechselstromtechnik, Verlag von Rascher & Cie. in Ziirich, 1917.

techn. Experte, Bern.

Diese schneiden sich im Grenzfalle im Kriim-
mungsmittelpunkt X, und die Strecke P} K = ¢ ist gleich
dem Kriimmungsradius; de ist der Kontingenzwinkel. Wir
bezeichnen ferner mit |d/7| den absoluten Wert oder den

Betrag von 47/, analog die Betrige der anderen Vektoren.

Aus Abb. 2 folgt: av
us 2 alg o="" N )

Um de zu bestimmen, denken wir uns in Abbildung 3

gezogen.

die Vektoren V" und V,” von einem Ursprung O’ aus
aufgezeichnet; sie bilden wiederum den Winkel de mit-
einander. Wir denken uns ferner ihr Dif-
ferential gezeichnet:
av'=vy, —r/
den wir aus der Glelchung
LRSS G
av av=

berechnen koénnen. Die Projektion von

dV' auf die Normale zu V' sei mit 4V,

bezeichnet. Sie ist auch gleich der Pro-

jektion von V” auf die Normale zu V', die wir mit 7" be-
zeichnen, multipliziert mit v, das heisst also:

[(I[/,,, = ‘/n” dv a . < (4)

Im Grenzfalle geht /7, in V}" tiber und wir koénnen

Abb.3

setzen: I7,) = I"}'=7V". Aus Abbildung 3 folgt nun ferner:
:zﬂ’;,’
="
und somit auch:
av| i
e = Taz | 4 (5)
Setzt man aus (2) den Wert fir |@/| und aus (4)
den fiir AV,'| ein, so findet man schliesslich:
‘I,r’li’_‘
0= {5 T T (6)

Die Brauchbarkeit dieser Formel beruht darauf, dass
man sowohl 7’ als /" aus der Gl. (1) leicht bestimmen kann;
man hat dazu nur (1) zweimal zu diffe-
A rentiieren. 77,” ist dann geometrisch
' ohne weiteres bestimmbar.

Aus GI. (6) lasst sich ablesen:

Der Betrag des Tangentenvektors V'
ist gleich der mittleren Proportionalen
aus dem Krzfimmzmgsmdius o und der
Strecke V" | .. (1)

Dieser Satz fihrt zu folgender Regel
far die Konstruktion von o in einem
Punkte 7 der Kurve C (Abb. 4):

Man  bestimmt aus Gleichung (1) V' und V", zicht
die Normale tn P zu V' wund szeichnet V) ; macht die
Strecke PO auf der Novmale in P gleich — V) ; verbindet
QO mit R und errichtet die Senkrechte in R su QR sie
schneidet die Normale im Punkte K, dem gesuchten Kriim-
mungsmittelpunkt ) o (111)

1) Die Sitze (I) und (II) fithren sofort auf zwei bekannte kinema-
tische Sidtze, wenn man den Parameter » als Zeit auffasst. Die Gleichung
(1) ist dann der analytische Ausdruck fiir eine bestimmte Bewegung eines
Punktes in der Ebene. /7 ist die Geschwindigkeit, 77’ die totale, V%' die
normale Beschleunigung des Punktes,

Bekanntlich stiitzt sich die Toricelli-Robervai’sche Methode der
Tangentenbestimmung auf der nunmehr auch aus Satz (I) folgenden Tat-
sache, dass die Geschwindigkeit mit der Tangente gleichgerichtet ist. Die
genannte Methode findet gewissermassen im Satz (1) ibre patiirliche, das
heisst rein geometrische Begriindung, wihrend die aus Satz (II) abgeleitete
Regel (III) gleichsam als ihre ,Erweiterung* angesehen werden kénnte.
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Anwendungen. b) Ellipse. Die einfachste Form, auf die die vektorielle
Es ist klar, dass man bei der Anwendung der Gleichung einer Ellipse gebracht werden kann, lautet:

Methode auf eine bestimmte Kurve nicht von deren ,all-
gemeinen® vektoriellen Gleichung, sondern von einer
moglichst einfachen ausgehen wird. Ist eine solche Gleichung
fiir die Kurve nicht schon anderweitig abgeleitet, so
besteht der erste Schritt bei der Losung unserer Aufgabe
in der Aufstellung einer moglichst einfachen vektoriellen
Gleichung der Kurve.

a) Hyperbel : Die vektorielle Gleichung einer Hyperbel,
deren Mittelpunkt im Ursprung liegt, kann wie bekannt’)
in der Form geschrieben werden:

V = Av -+

worin 4 und B zwei gegebene Vektoren sind, die, wie
man leicht sieht, die Lage der Asymptoten bestimmen. In
Abbildung 5 ist die Kurve konstruiert worden, indem fir
v =1, 2,3 .. die entsprechenden Punkte bestimmt wurden.
Zur Bestimmung von Tangente und Kriimmungsradius
missen wir die Gleichung (7) zweimal ableiten und finden:

Ved—t="(a—2) . . . ®
V' = (9)

2

Aus Gleichung (8) folgt: der Tangentenvektor V' hat
die Richtung desjenigen Vektors, der die Differens der zu
einem Punkte der Hyperbel gehdrenden Vektorkompo-
nenten Av und B/ov bildet; wir zeichnen das entsprechende
Parallelogramm; in Abbildung 5 ist dies z. B. far den
Punkt » — 1 durchgefihrt; ferner wollen wir die Vektor-
Summe (Av - B/v) die erste, die Vektor-Differens (Av— Bjv)
die sweile Diagonale des Parallelogramms nennen. Man
kann dann den Satz aussprechen:

Die Tangente in einem Punkte der Hyperbel ist
parallel der sweiten Diagonalen des zu dem Punkte gehi-
renden Asymptoten-Parallelogramms.

Dieser Satz fithrt auf die bekannte Konstruktion der
Tangente und bietet somit nichts wesentlich neues. Nun
bestimmen wir o. Nach Gleichung (6) ist:

24 Av — B Av — £
| v T

/)‘.,....(7)

v
7

ke

SR

“/".‘
0= = /2B |

v, X

(Z2).]

Wir interpretieren die Gleichung geometrisch und
finden: Im Zahler steht das Quadrat des Betrages eines
Vektors, der gleich der zweiten Diagonale des aus Av und
B/v gebildeten Parallelogramms ist, im Nenner steht die
Projektion des mit 2 multiplizierten Vektors B/v auf die
Normale. Wir denken uns die Konstruktion fir den Punkt 1
ausgefiihrt und ersehen aus Abbildung 5 ohne weiteres:

Die Strecke | 4o — B/v ist gleich dem Stiick der
Tangente zwischen Bertihrungspunkt und Schnittpunkt mit
einer Asymptote, fir Punkt 1 also gleich 1.

Die Strecke |2 B/v| ist gleich dem Stiick der Asymp-
tote vom Mittelpunkt O bis zum Schnittpunkt » der Tan-
gente. Fillen wir die Senkrechte von O auf die Normale;
diese werde in ¢ getroffen, so ist die Strecke von ¢ bis
zum Beriihrungspunkt 1 gleich der Projektion (2 5/v),/.

Die Konstruktion des Kriimmungsmittelpunktes gestaltet
sich somit Ausserst einfach nach folgender Rege/:

Man zieht die Tangente bis zum Schnitt q mit einer
Asymptote, errichtet im Beriihrungspunkt (1) die Normale,
fallt auf sie vom Mittelpunkt O aus das Lot Or, verbindet
r mit q und errichtet die Senkrechte in g su qr. Sie schneidet
die Normale im Krimmungsmitlelpunkt K.2)

1) Vergl. z. B. die Dissertation des Verfassers: Zur Geometrie der
Ortskurven der graphischen Wechselstromtheorie, Ziirich 1919.

1) Es ist hier zu bemerken, _dass diese Konstruktion nicht eine
unmittelbare Anwendung der Regel (1II) darstellt, denn wegen der vor-
genommenen Kiirzung in der Formel fiir o werden nichit die Vektoren
7' und — ¥, selber aufgetragen, sondern die reduzierten Vektoren 7'/
und — 7,"[v?; um dieser Abweichung Rechnung zu tragen, haben wir in
Abb, 5 die Buchstaben » und ¢ statt ® und Q wie in Abb. 4 eingefiihrt.

Eine unmittelbare Anwendung der Regel (III) findet statt, wenn
man von einer anderen, weniger bekannten Gleichung fiir die Hyperbel
ausgeht. Darauf soll bei der Ellipse noch hingewiesen werden.

v 0|

V=rddrtreir . . . (10)
worin 7, und 7, Konstanten, ¢ der Parameter (an Stelle
von ) und i = | —1, die imaginire Einheit, bedeuten.
(10) ist die Gleichung eciner Ellipse mit dem Mittelpunkt
im Ursprung und den Axen in den Koordinatenaxen.!)

Man kann 7 in Formel (10) auffassen als die Resul-
tierende zweier Vektoren, die gleichmissig, aber in ent-
gegengesetztem Sinne zu einander rotieren. In Abbildung 6
sind die Kreise angedeutet, die die Endpunkte der Vektoren
7, € und 7, e~ beschreiben; die erzeugte Ellipse ist stark
ausgezogen. Zu einem Punkte P ist das entsprechende
Parallelogramm gezeichnet.

Wir bilden nun aus (1o0) die erste und zweite
Ableitung und erhalten:

V' =i (rév—ry,e-) . . {(11)

V'= —(reértreir)=—0 . (12)

Wir bemerken, dass in der Klammer auf der rechten
Seite von (11) wie bei der Hyperbel die Differenz der
Vektorkomponenten von /7 steht, das heisst, die zweite
Diagonale im Parallelogramm OXPY. Der Faktor 7 bedeutet,
dass der Tangentenvektor /7" auf der zweiten Diagonale
des Parallelogramms senkrecht steht (bei der Hyperbel
hatte man Parallelitit). Wir konstruieren F’, indem wir
durch P eine Senkrechte zu XY ziehen und PR gleich XY
machen., Um o zu finden, haben wir |V,'| zu bestimmen
und Regel (IIl) anzuwenden. Da V/"| = |V/| ist, bekommen
wir |V, , indem wir das Lot OS auf die Verlingerung
von PR fillen. Wir ziehen die Parallele SO zu OP; dann
ist 0S = PQ= |V,”|. Schliesslich haben wir noch O mit
R zu verbinden und die Senkrechte in R auf OR =zu
ziehen. Ihr Schnittpunkt A mit der Normalen ist der
gesuchte Krimmungsmittelpunkt.

Die Bestimmung von K ist hier ebenso einfach wie
bei der Hyperbel, wenn man von der durch (ro) gege-
benen vektoriellen Konstruktion der Ellipse ausgeht. Man
kann jedoch die Konstruktion des Krimmungskreises auch
unabhingig von der beschriebenen vektoriellen Erzeugung
ausfithren, unter Beniitzung konjugierter Durchmesser, wenn
man folgende Relationen aus Abbildung 6 ableitet.?)

Wendet man den Cosinussatz auf die Diagonal-Dreiecke
OMX und OMY an, so findet man:

% (0P - X¥"—2 OF XY%cosd) =r? . (@)
% ([0P* XY® 42 0P XY%cos0) =2 . (B)
(a)-+(p): ; (6?2 - W:) = r2+r,2 (d)

(@)—(B): OP XY"cos & =r2—r.2 (f)

Die Gleichung (¢') driickt eine besondere Eigenschaft
aus, die zwischen den zwei Diagonalen des Parallelo-
gramms des Ellipsenpunktes besteht.

Tragt man die zweite Diagonale XY in 7 senkrecht
zur ersten Diagonale OP auf, so erhidlt man ein recht-
winkliges Dreieck, dessen Hypotenuse konstant ist fir alle
Punkte der Ellipse. Man kann leicht ersehen, dass diese
Hypotenuse der Radius des (nicht gezeichneten) Kreises
ist, der durch die Ecken des der Ellipse umschriebenen
Rechteckes geht.

Die Gleichung (f') konnen wir folgendermassen inter-
pretieren: es ist OP cos 0 = 0S= PO;
ferner ist XY — PR
und 72— 1,2 = (ry - 1,) (i, — 1) = ab
wo a die grosse, b die kleine Halbaxe der Ellipse
bedeuten. Es folgt somit:

OPXYcos 6=PRPQO=ab . . . . ()

Diese Produkte sind nichts anderes als die doppelten
Inhalte der Dreiecke QPR beziehungsweise POR.

Wir haben somit den Satz:

Das aus dem Ellipsenvektor und dem Tangentenvektor
gebildete Dreieck hat den konstanten Inhalt 1/, a b.

1) Siehe meine Dissertation.
2) Auf diese Méglichkeit machte mich zuerst Ing. M. Besso aufmerksam.



27. Marz 1926.

SCHWEIZERISCHE BAUZEITUNG

Nun hat bekanntlich auch das aus zwei konjugierten
Halbmessern der Ellipse gebildete Dreieck den konstanten
Inhalt !/, ab. Betrachten wir daher den zu OP konjugierten
Halbmesser OE. Dieser ist zur Tangente parallel. Somit gilt:

OE | 0S, <X EOP =0+~ =< OPR,

OP OF sin (0 + %) — OPOEcosd—ab . ()

Vergleicht man (0) mit (y) so kommt:

OF = XY,
Das heisst: Der Betrag der zweiten Diagonale im Paral-
lelogramm des Punktes 2 ist gleich dem Betrag des zum
Halbmesser OP konjugierten Halbmessers. Dieser steht auf
der zweiten Diagonale senkrecht.

[Nach Dr. J. Sauter kann man diesen Zusammenhang
durch eine ,vektorielle Ueberlegung® viel einfacher be-
weisen: Wenn man némlich in (10) an Stelle von ¢ den
Wert ¢ - 7/2 setzt, so erhilt man den Ellipsenvektor:

Pt =ty ei('r ' ?>+ vy e~ '("’ 7) =i{r, e r—rye—iv}=V"
das heisst 7’ ist gleich einem Halbmesser der Ellipse, und
weil parallel der Tangente im Endpunkte des Halbmessers
V,, ist V' der zu V, konjugierte Halbmesser.]

Die Konstruktion des Kriimmungsmittelpunktes X zu
P kann jetzt folgendermassen angegeben werden:

Man trage auf der Tangente eine Strecke PR gleich
dem konjugierten Halbmesser ab, ferner auf der Normalen
eine Strecke PQ gleich dem Abstand der Tangente vom
Mittelpunkt. Man errichte die Senkrechte in R su OR.
Ihy  Schnittpunkt zsu der Normalen ist der Kriimmungs-
mittelpunkt K.

Wir bemerken noch, dass der aus Gleichung (a)
gefundene aber nicht gezeichnete Kreis zur Bestimmung
des Betrages des konjugierten Halbmessers in vorteilhafter
Weise benutzt werden kann. Hierdurch ist die Konstruktion
des Kriimmungsmittelpunktes, wie bei der Hyperbel, auf
Elemente zuriickgefiihrt, die unabhingig von der speziellen
Konstruktion der Kurve sind.

Die gefundenen Konstruktionen fir Tangente und
Kriimmungskreis bei Hyperbel und Ellipse lassen bereits
eine Dualititsverwandschaft erkennen, die noch klarer
zu Tage tritt, wenn man die Gleichung (7) der Hyperbel
anders schreibt. Fithren wir ndmlich die Substitution ein:

U= ¥ ’

beziehungweise ; —e ¥,
so erhalten wir die neue Hyperbelgleichung:

V=A¢ +Be v . . . . (7')
far die Ellipse kdonnen wir statt (1o) schreiben:

V=Aetiv + Bei? (ro')l)
(10) geht aus (7') hervor, wenn man y durch 7¢ ersetzt.
Aus (7) folgt:

V'=Adevt — Be ¥,

V'=A4e¥ +Bev=T.

Hieraus ergibt sich die in Abbildung 5 veranschau-
lichte Konstruktion in unmittelbarem Anschluss an die
Abbildung 4 beziehungsweise an Regel (II[). An Stelle

1) Siehe meine Dissertation.

Abb.7

von » und ¢ dirfen wir jetzt, ebenso wie bei der Ellipse,
O-und R setzen. Gleichung (7') steht der Gleichung (10’)
dual gegeniiber und erweist sich als die einfachste far die
Losung unserer Aufgabe.

Die Parabel kann analog behandelt werden. Es
ergeben sich hierbei ebenso einfache Konstruktionen wie
bei den anderen Kegelschnitten. Der Leser kann sich
davon selber leicht berzeugen.

¢) Zum Schlusse mége noch eine Anwendung auf eine
Kurve hoherer Ordnung stattfinden. Wir wéhlen hierfir,
im Anschluss an das Vorige, die Fusspunkthurve der Ellipse
mit dem Zentrum der Ellipse als Pol.

Wir miissen zunichst die Kurve vektoriell darstellen.

Wir gehen von der Gleichung der Ellipse aus, wobei
wir jetzt aber I/, statt J/ schreiben:

Vi—=1,67 -1 r; eT?7.

Man erhilt nun einen Punkt F der Fusspunktkurve,
indem man in Abbildung 7 vom Zentrum o auf die Ellipsen-
Tangente in P das Lot fallt. Die Kurve ist bekanntlich
vierter Ordnung. Wir denken uns das zu V, gehorige
Parallelogramm gezeichnet und bezeichnen die zweite
Diagonale XY mit D.

Es ist dann der Vektor V= OF parallel zu D. Es
erweist sich als zweckmissig, fir den Vektor einen
Richtungsvektor einzufiihren, den wir definieren als einen
Vektor vom Belrage 7 und von der selben Richtung wie D.

Wir waihlen fir den Richtungsvektor ein neues
Symbol, namlich das Vektorsymbol zwischen zwei horizon-
talen Strichen: D.!) Fir den absoluten Betrag von D
wollen wir d schreiben. Definitionsgemiss soll also sein:

d=|D
D= Djd;

Wir berechnen nun an Hand der Abbildung 7 den

Richtungsvektor D; ferner den Betrag von V. Es ist

dann: V= V| D=|V| 2.
Aus Abbildungen 6 und 7 folgt:

a) D = rjei®—rini®i
ferner ist: b) d? = r?+1nr2—2nr1,c052¢
c) |V| = ry cosyp, — 7, cos y,
- 2 G o
7y —1—dn 27 dcosy; = Ty
vyt 4 d? — 271, dcosy, = 1"
: 72l d?—r,? e 792 d? —ry®
hieraus:  cosy, = —"— > ; cos 1/v,,:”—+—‘
27,d 4 27y d
.. o I N .9
somit: v .—7(11 — 7,%)
Tatairy b N
V="l—p(ner—rye ') (13)

Das ist die gesuchte vektorielle Gleichung unserer
Fusspunktskurve; darin ist % die in Gleichung (b) gegebene
Funktion von ¢. Wir differentiieren nun Gleichung (13)
nach ¢: _ ;

v (”1.2 o "22) id?(ry el + 1y e—1%) [”2 dd' (ry e —rge—iq)

In den Klammern des Zihlers stehen die Vektoren
V.und D, ferner folgt durch Differentiation der Gleichung (b):

2dd = 41 7,sin2q.

) Im Gegensatz zu den vertikalen Strichen fir die Bezeichnung
des absoluten Betrages des Vektors.
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Abb. 73. Uebersichtsplan von Maschinenhaus, Schalthaus
und Dienstwohnhiusern des Kraftwerks Amsteg. — Masstab 1 :3000.

Wir kénnen daher schreiben:
s 72—z |- r rpsinz g D
14 :—“,:_—'—{IV, - —4%1"172—[—7 (14)
Nun ist 7, 7, sin 2 ¢ gleich dem Inhalt des Parallelo-
gramms OPXY (Abbildung 6). Betrachten wir D als dessen

. . v ‘ PR
Grundlinie, so ist seine Héhe gleich —- zu setzen. Setzt

man noch /s = PF so ist also:
21 rysine g =hd;

dieser Wert und fir # das Symbol D in (14) eingesetzt
ergibt:

7.

V=122 (iV,—2hD) (15)

Fiir die Konstruktion der Tangente interessiert uns
nur die Richtung von V. Fiir diese ist in Gleichung
(15) nur der Klammerausdruck massgebend, denn der
davor stehende Faktor ist eine reelle Grosse. Es erweist
sich ferner als bequem, zun4chst die Richtung der Normalen,
statt der Tangente anzugeben. Wir betrachten daher den
zu 7' senkrecht stehenden Vektor V, den wir aus Gleich-
ung (t5) durch Multiplikation mit — 7 und Weglassen des
reellen Faktors erhalten:

N=V,+iz2hD . .. (16)

NV ergibt sich aus (16) als die Summe des Ellipsen-
vektors /., und eines Vektors vom Betrage 2/ = 2 PF, der
zu D senkrecht steht, also die Richtung der Ellipsentangente
in P besitzt. Zur Konstruktion von /V hat man somit fol-
gendes zu tun:

Auf der Tangente in P tragt man die Strecke PF von
F aus nach aussen ab und evhilt den Punkt U. Der Vektor
OU ist dann gleich dem Vektor N, der die Richtung der
Normalen im Punkte F der Fusspunktkurve hat. Die gesuchte
Tangente in F ist dann die zu OU senkrecht gezogene
Gerade FT.

Es ist ersichtlich, dass auch diese Tangenten-Kon-
struktion an Einfachheit nichts zu wiinschen iibrig ldsst.
Hingegen hat sich fir den Kriimmungsmittelpunkt keine
einfache Konstruktion ergeben, weshalb hier darauf nicht
niher eingetreten wird. -

Die gegebenen Beispiele diirften geniigen, um das
Wesen und die Brauchbarkeit der neuen Methode darzu-
legen. Es sei noch bemerkt, dass sie sich auch bei trans-
zendenten Kurven mit Erfolg verwenden lisst. Besonders
einfach lassen sich die Zykloiden und die Spiralen
behandeln. S
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Abb. 74. Das Schalthaus aus SW, rechts das Schaltstand-Gebdude.

Das Kraftwerk Amsteg der S. B. B.
II. Hochbaulicher Teil.?)
Von Arch. TH. NAGER, S.B. B., Bern.

Die Zentrale des Kraftwerkes Amsteg liegt am std-
lichen Ende der untersten Talstufe des urnerischen Reuss-
Tales, unmittelbar vor dem Aufstieg der Gotthardstrasse
gegen Gurtnellen (vergl. Situationsplan Abbildung 73). Der
hier zur Verfiigung stehende Platz war relativ eng begrenzt
durch den Zug der Bristenlawine und den Felsenrtcken
seitlich des Kirstelenbaches einerseits, den steilen Berg-
hang und der Gotthardstrasse andererseits. Da zudem noch
Raum fiir spitere Erweiterungsbauten, eventuell auch fir
eine Freiluftstation vorzusehen war und die Anordnung
des Unterwasserkanals, der den vorhandenen Wiesengrund
durchschnitt, gegeben war, wurde durch eine Gruppierung
von verschiedenen einzelnen Baukdrpern eine moglichst
weitgehende Platzausniitzung erstrebt. Far die Wirkung
der Neubauten musste die Nachbarschaft des recht charak-
teristischen Dorfes von Amsteg mit seiner dominierenden
Kirche beriicksichtigt werden, welches Bild durch die be-
deutenden Baumassen des neuen Kraftwerkes nicht erdriickt
werden durfte (vergl. Abbildung 74, S. 171). Ferner war
mit dem Umstand zu rechnen, dass die Baugruppe ausser
von der seitlich vorbeifiihrenden Landstrasse hauptsichlich
von der in einem Bogen hoch tber die Baustelle herum-
fahrenden Bahn aus gesehen wird (vergl. die Abbildungen
75 und 76, Seite 171/172). Diese Erwigung fihrte zu
einer Massengruppierung, die die verschiedenen Bauteile:
Maschinenhaus, 15kV-Schaltgebaude und Transformatoren-
Gebiude annihernd parallel zur Gotthardstrasse mit einem
eingeschobenen Hofe stellte, diese beiden letzten Léangs-
bauten mit dem quergestellten Schaltstandgebaude verband
und das siidliche Ende des 15 kV - Schaltgebiude mit den
Bureaux und Verwaltungsraumen als Kern der Baumassen
um zwel Geschosse hoher fihrte. Auf diese Weise kommt
jeder einzelne Bauteil entsprechend seiner Zweckbestim-
mung nach aussen klar zur Geltung, leichte Zuganglichkeit,
gute Belichtung und Belaftung wird erreicht; die unter-
- 1) Vergl. 1. Wasserbaulicher Teil, von Ing. Hans Studer, in Bd. 86.
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