Zeitschrift: Schweizerische Bauzeitung

Herausgeber: Verlags-AG der akademischen technischen Vereine

Band: 87/88 (1926)

Heft: 13

Inhaltsverzeichnis

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 01.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

INHALT: Tangenten- und Krümmungskreis-Konstruktionen bei ebenen Kurven auf Grund ihrer vektoriellen Gleichung. — Das Kraftwerk Amsteg der S. B. B.; II. Hochbaulicher Teil. — Mechano-statische Untersuchungen hochgradig statisch unbestimmter Tragsysteme. — Miscellanea: Automatische Entsandungs-Anlage der Kraftwerkes Liroinferiore. Eine neue Eisenbahnbrücke über den Rhein bei Duisburg-Hochfeld. Unterdruckmessungen an Staumauern. Das Luftverkehrsnetz 1926. — Nekrologie: Anton von Rieppel. — Literatur. — Vereinsnachrichten: Basler Ingenieur und Architekten-Verein. Sektion Bern des S. I. A. Zürcher Ingenieur- und Architekten-Verein. S.T. S.

Band 87. Nachdruck von Text oder Abbildungen ist nur mit Zustimmung der Redaktion und nur mit genauer Quellenangabe gestattet.

Nr. 13

Tangenten- und Krümmungskreis-Konstruktionen bei ebenen Kurven auf Grund ihrer vektoriellen Gleichung.¹)

Von Dr. W. MICHAEL, techn. Experte, Bern.

In der Elektrotechnik wird bekanntlich die Gleichung der sogenannten "Ortskurven" oft in der vektoriellen Form $V{=}F(v) \qquad . \qquad (1)$ gegeben²), worin V den die Kurve beschreibenden Vektor bedeutet, der eine komplexe Funktion F des reellen Parameters v ist. v kann alle Werte von — ∞ bis + ∞ annehmen. Eine solche Gleichung kann für jede algebraische oder transzendente Kurve aufgestellt werden. Diese Art der Darstellung einer Kurve hat bis jetzt bei den Mathematikern noch wenig Beachtung gefunden, obwohl sie auch als Sonderfall einer konformen Abbildung aufgefasst werden kann. Im folgenden soll gezeigt werden, wie man mit Hilfe der Gleichung (1) das Problem der Tangente und der Krümmung einer Kurve behandeln kann. Einige Beispiele, die zu einfachen Lösungen führen, sollen die

ı. In Abbildung ı sei $\mathcal C$ eine Kurve, die durch (ı) gegeben ist. Wir betrachten zwei Punkte P_1 und P_2 mit den zugehörigen Vektoren V_1 und V_2 . Die Sekante $P_1P_2=\mathcal AV$ ist gleich der Differenz der Vektoren, denn, wie die Abbildung ı zeigt, ist:

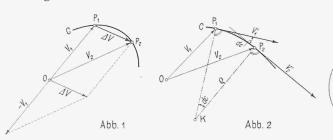
Brauchbarkeit der Methode illustrieren.

 $\Delta V = V_2 + (-V_1) = V_2 - V_1.$

Lassen wir P_2 immer näher gegen P_1 rücken, so geht die Sekante $\varDelta V$ in das Bogenelement dV über, dessen Richtung mit derjenigen der Tangente in P_1 übereinstimmt. Wir finden nun dV durch Differentiation der Gleichung (1):

$$dV = \frac{d(F(v))}{dv} dv \equiv V' dv \dots (2)$$

Den Differentialvektor dV können wir nicht konstruieren; uns interessiert jedoch nur seine Richtung. Diese ist gegeben durch den Vektor V'=dV/dv, der im allgemeinen einen endlichen Betrag hat und parallel zu dV ist, weil dv eine reelle Grösse ist, die daher auf die Richtung keinen Einfluss hat. Wir haben somit den Satz:



Die erste Ableitung des Kurvenvektors nach dem Parameter liefert einen neuen Vektor, der die Richtung der Tangente hat. (Tangentenvektor). (I)

Damit ist die Aufgabe der vektoriellen Bestimmung der Tangente in einem Punkte einer Kurve allgemein gelöst. 2. Betrachten wir in Abbildung 2 zwei Punkte der Kurve C, P_1 und P_2 , die sehr nahe gedacht sein sollen. Wir denken uns ferner die "Tangentenvektoren" V_1 ' und V_2 ' in P_1 und P_2 bestimmt, ferner die Normalen in letzteren

2) Vergleiche zum Beispiel: Dr. O. Bloch, Die Ortskurven der graphischen Wechselstromtechnik, Verlag von Rascher & Cie. in Zürich, 1917. Um $d\varepsilon$ zu bestimmen, denken wir uns in Abbildung 3 die Vektoren V_1' und V_2' von einem Ursprung O' aus aufgezeichnet; sie bilden wiederum den Winkel $d\varepsilon$ miteinander. Wir denken uns ferner ihr Differential gezeichnet:

Abb.3

 $dV' = V_2' - V_1'$ den wir aus der Gleichung: $\frac{dV'}{dv} = V'' = \frac{d^2(F(v))}{dv^2}$

berechnen können. Die Projektion von dV' auf die Normale zu V_2' sei mit dV_n' bezeichnet. Sie ist auch gleich der Pro-

bezeichnet. Sie ist auch gleich der Projektion von V'' auf die Normale zu V_2 , die wir mit V_n'' bezeichnen, multipliziert mit dv, das heisst also:

$$d\varepsilon = \frac{|dV_n'|}{|V'|}$$

und somit auch:

Abb. 4

$$\varrho = \frac{|aV|}{|dV_n'|} |V'| \qquad . \qquad . \qquad . \qquad . \qquad . \qquad (5)$$

Setzt man aus (2) den Wert für |dV| und aus (4) den für $|dV_n'|$ ein, so findet man schliesslich:

$$\varrho = \frac{|V|^2}{|V_n''|} \quad . \quad . \quad . \quad . \quad . \quad (6)$$

Die Brauchbarkeit dieser Formel beruht darauf, dass man sowohl V' als V'' aus der Gl. (1) leicht bestimmen kann;

man hat dazu nur (1) zweimal zu differentiieren. V_n'' ist dann geometrisch ohne weiteres bestimmbar.

Aus Gl. (6) lässt sich ablesen:

Der Betrag des Tangentenvektors V' ist gleich der mittleren Proportionalen aus dem Krümmungsradius ϱ und der Strecke $|V_n''|$ (II) Dieser Satz führt zu folgender Regel

Dieser Satz führt zu folgender Regel für die Konstruktion von o in einem Punkte P der Kurve C (Abb. 4):

Punkte P der Kurve C (Abb. 4):

Man bestimmt aus Gleichung (1) V' und V''; zieht die Normale in P zu V' und zeichnet V_n'' ; macht die Strecke PQ auf der Normale in P gleich $-V_n''$; verbindet Q mit R und errichtet die Senkrechte in R zu QR; sie schneidet die Normale im Punkte K, dem gesuchten Krümmungsmittelpunkt 1) (III)

1) Die Sätze (I) und (II) führen sofort auf zwei bekannte kinematische Sätze, wenn man den Parameter v als Zeit auffasst. Die Gleichung (I) ist dann der analytische Ausdruck für eine bestimmte Bewegung eines Punktes in der Ebene. V' ist die Geschwindigkeit, V'' die totale, V'' die normale Beschleunigung des Punktes.

Bekanntlich stützt sich die Toricelli-Roberval'sche Methode der Tangentenbestimmung auf der nunmehr auch aus Satz (I) folgenden Tatsache, dass die Geschwindigkeit mit der Tangente gleichgerichtet ist. Die genannte Methode findet gewissermassen im Satz (I) ihre natürliche, das heisst rein geometrische Begründung, während die aus Satz (II) abgeleitete Regel (III) gleichsam als ihre "Erweiterung" angesehen werden könnte.

¹⁾ Wenn wir diesem, in der Mathemat. Vereinigung Bern gehaltenen, an der Grenze unseres Arbeitsgebietes liegenden Vortrag Aufnahme gewähren, so geschieht es, weil er gleichsam eine Weiterentwicklung der Arbeit unseres zu früh verstorbenen Kollegen Otto Bloch über Bestimmung der Ortskurven darstellt, einer Arbeit, deren Erscheinen in der «S. B. Z.» im November 1916 berechtigtes Aufsehen der Fachkreise erregt hatte. Red.