Zeitschrift: Schweizerische Bauzeitung

Herausgeber: Verlags-AG der akademischen technischen Vereine

Band: 85/86 (1925)

Heft: 23

Artikel: Die technische Bedeutung der Dämpfungsfähigkeit eines Baustoffes

Autor: Föppl, Otto

DOI: https://doi.org/10.5169/seals-40232

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 28.10.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

INHALT; Die technische Bedeutung der Dämpfungsfähigkeit eines Baustoffes. Das Kraftwerk Amsteg der Schweizerischen Bundesbannen. - Zum "Mes-ehaus". Wettbewerb in Hamburg. - M scellanea Fahrbare Maschine für Zement-Hinterpressungen. Bund Schweizerischer Gartengestalter. Syndicat Suisse pour l'Etude de la Voie navigable du Rhône au Rhin. Die Wasserstands-Verhältnisse in der Schweiz. Herausgabe eines Werkes von Funktionstafeln. Schweizer Mustermesse 1926. Erweiterungsbau des Zürcher Kunsthauses. - Preisausschreiben zur Erlangung eines Spannungs- und Schwingungsmessers. - Literatur. - Eidgen Materialprüfungsanstalt an der E. T. H. -Vereinsnachrichten: Schweizer, Ing.- u. Arch. Verein. Sektion Bern des S.I.A. Basler Ing.- und Arch-Verein. Zürcher Ing.- u. Arch-Verein. S. T. S.

Band 86.

Nachdruck von Text oder Abbildungen ist nur mit Zustimmung der Redaktion und nur mit genauer Quellenangabe gestattet.

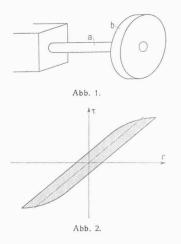
Nr. 23

Die technische Bedeutung der Dämpfungsfähigkeit eines Baustoffes.

Von Prof. Dr. Ing. OTTO FÖPPL, Braunschweig.

Die nachfolgenden Ueberlegungen fussen auf Versuchen, die über das Verhalten von Baustoffen bei oft wiederholten Beanspruchungen (Schwingungsbeanspruchung) angestellt worden sind, und über die im Werkstoff Ausschuss des Vereins deutscher Eisenhüttenleute unter Nr. 36 und 60, ferner in der "Schweizer. Bauzeitung" vom 1. November 1924 und in der Zeitschrift "Maschinenbau" 1925, Heft II berichtet worden ist. Hier sei nur so viel nachgetragen, dass bei diesen Versuchen ein zylindrischer

Probestab a, der an einem Ende festgehalten ist und am andern Ende die Schwungmasse b trägt (Abbildung 1) durch Verdrehungsschwingungen, d. h. durch Schubspannungen zwischen den Grenzen $+ \tau_0$ und $- \tau_0$ in millionenfachem Wechsel beansprucht worden ist und dass man einerseits die grösste Beanspruchung το am Umfang des Stabes und anderseits die mit dem Spannungswechsel verbundene Erwärmung gemessen hat. Die Erwärmung des Stabes ist eine Folge davon, dass die Formände-



rungen bei grössern Verformungen nicht von rein elastischer Art sind, und dass ein — wenn auch geringer — Bruchteil der Gesamtverformung in plastischer Weise vor sich geht. Das Spannungs-Verformungsdiagramm, das bei einer rein elastischen Schwingung durch eine Gerade wiedergegeben wird, ist bei grösseren Verformungen eine Hysteresis-Schleise von der in Abbildung 2 dargestellten Art. Der Inhalt der Hysteresis-Schleise ist der auf eine Schwingung in Wärme umgesetzte Arbeitsbetrag oder die Dämpfung des Baustoffes.

Festlegung der Dämpfungsgrössen.

Die Dämpfung kann aus der Temperaturerhöhung bestimmt werden, die der schwingende Stab im Beharrungszustand erfährt. Im Beharrungszustand ist die auf jede Schwingung durch Dämpfung erzeugte Wärme gleich der an die Umgebung abgegebenen Wärme. Diese letzte lässt sich durch einen Auslaufversuch in Abhängigkeit von der Temperatur des Probestabes ermitteln. In den bisherigen Veröffentlichungen haben wir die Dämpfung auf 1 kg des Probestabes bezogen und mit y cm kg/kg Schwingung bezeichnet. Sobald man in die Betrachtungen auch Baustoffe mit sehr verschiedenem spezifischem Gewicht (z. B. einerseits Stahl, anderseits Leichtmetalle) hineinbezieht, ist es zweckmässiger, die Dämpfung nicht für 1 kg, sondern für 1 cm3 aufzustellen. Wir wollen diese Grösse mit ϑ (Dimension cm kg/cm³ Schwingung) bezeichnen und im nachfolgenden weiter verwenden.

Bei der Verdrehung des Stabes sind die äussern Fasern am stärksten verformt; nach der Mitte zu nimmt die Verformung linear ab. Infolgedessen wird die grösste Dämpfung aussen erzeugt werden. Der Stab hat aber an jeder Stelle seines Querschnittes etwa gleiche Temperatur und aus der Temperatur bestimmen wir die Grösse der Dämpfung. Wir beziehen deshalb die Dämpfung ϑ auf den gesamten Querschnitt (mittlere Dämpfung). Die zu einer

bestimmten Dämpfung ϑ gehörige Verformung ε (ausgedrückt durch den infolge der Schubspannung auftretenden Gleitwinkel) messen wir aber am Umfang des Stabes (ε0), da wir uns für irgend eine bestimmte Stelle entscheiden mussen. Solange wir uns im Gebiete des Hooke'schen Gesetzes befinden ist $\varepsilon_0 = \tau_0/G$, wobei G der Gleitmodul und τ_0 die Schubspannung am Stabumfang ist. Die $\vartheta \, \varepsilon_0$ Kurve baut auf zwei nicht zusammengehörigen Begriffen auf mittlere Dämpfung und grösste Verformung. - Dieser Misstand kann leicht beseitigt werden, wenn man aus den unmittelbar gemessenen & Werten die Werte do ermittelt, die sich auf ein am Umfang — also dort, wo die Verformung ε_0 bestimmt wird — gelegenes Volumelement beziehen, was im folgenden geschehen soll:

Wir betrachten zwei benachbarte Punkte ε₀ und ε₀ + $\Delta \, \varepsilon_0$ der $\, \varepsilon_0 \, \vartheta \, \mathrm{Kurve} \,$ mit den zugehörigen mittlern Dämpfungen ϑ und $\vartheta + \varDelta \vartheta$. Die Verformungen ε innerhalb eines Querschnittes sind proportional dem Abstande des Elements von der Mittellinie oder dem Halbmesser r. Bezeichnen wir mit r_0 den äussern Halbmesser des Stabes, dann ist: $\varepsilon=\varepsilon_0\,rac{r}{r_0}\,.$ Den Uebergang vom Werte ε_0 zum Werte ε_0 + $\Delta \varepsilon_0$ kann man sich theoretisch auch so durchgeführt denken, dass der Halbmesser des Probestabes bei *gleichem Verdrehungswinkel* $\Delta \varphi$ von r_0 auf $r_0 \frac{\varepsilon_0 + \Delta \varepsilon_0}{\varepsilon_0}$ angewachsen ist. Dann ist die innere Seele des neuen Stabes bis zum Halbmesser r_0 ebenso beansprucht und verformt wie vorher, und die Zunahme $\Delta\vartheta$ der Dämpfung rührt nur von der äussern Schicht her, die r_0 $\Delta \varepsilon_0/\varepsilon_0$ Wandstärke hat. Beachtet man ferner noch, dass sich & auf 1 cm3 des Stabes bezieht, und dass das Volumen des Stabes bei der Verstärkung vom Halbmesser r_0 auf r_0+r_0 $\Delta \varepsilon_0/\varepsilon_0$ im Verhältnis der Quadrate der Halbmesser, also im Verhältnis

$$rac{{{r_0}^2}}{{{\left({{r_0} + {r_0}rac{{Aert {arepsilon _0}}}{{{arepsilon _0}}}}
ight)^2}} = \sim rac{1}{{1 + 2rac{{Aert {arepsilon _0}}}{{{arepsilon _0}}}}$$

 $\frac{r_0^2}{\left(r_0+r_0\frac{A\,\varepsilon_0}{\varepsilon_0}\right)^2}=\sim\frac{1}{1+2\,\frac{A\,\varepsilon_0}{\varepsilon_0}}$ vergrössert worden ist, so folgt für die auf 1 cm³ Baustoff bezogene Dämpfung ϑ_0 der äussern Schicht:

$$r_0^2 \left(\mathbf{I} + \frac{\Delta \epsilon_0}{\epsilon_0} \right)^2 (\partial + \Delta \theta) = r_0^2 \partial + \left[r_0^2 \left(\mathbf{I} + \frac{\Delta \epsilon_0}{\epsilon_0} \right)^2 - r_0^2 \right] \vartheta_0 \right]$$

$$\left(\mathbf{I} + 2 \frac{\Delta \epsilon_0}{\epsilon_0} \right) (\partial + \Delta \theta) = \sim \vartheta + 2 \frac{\Delta \epsilon_0}{\epsilon_0} \vartheta_0;$$

$$\left(\mathbf{I} + 2 \frac{\Delta \epsilon_0}{\epsilon_0} \right) (\partial + \Delta \theta) = \sim \vartheta + 2 \frac{\Delta \epsilon_0}{\epsilon_0} \vartheta_0;$$

und daraus unter Vernachlässigung des von der nächsten Ordnung kleinen Gliedes $2\frac{\mathcal{L} \varepsilon_0}{\varepsilon_0} \Delta \vartheta$: $\vartheta_0 = \frac{2\frac{\mathcal{L} \varepsilon_0}{\varepsilon_0} \vartheta + \Delta \vartheta}{2\frac{\mathcal{L} \varepsilon_0}{\varepsilon_0}} = \vartheta + \frac{\varepsilon_0}{2}\frac{\mathcal{L} \vartheta}{\mathcal{L} \varepsilon_0}$

$$\vartheta_0 = \frac{2\frac{A \epsilon_0}{\epsilon_0} \vartheta + \Delta \vartheta}{2\frac{A \epsilon_0}{2} = \vartheta + \frac{\epsilon_0}{2} \frac{\Delta \vartheta}{\Delta \epsilon_0}} \tag{2}$$

Dabei ist mit Ad der Unterschied der mittlern Dämpfung bei Randversormungen ε_0 und $\varepsilon_0 + \Delta \varepsilon_0$ und mit ϑ_0 die zur Versormung ε_0 gehörige Dämpsung der Baustossgebiete am Stabumsang bezeichnet. Wir nehmen an, dass sich $\vartheta = f(\varepsilon_0)$ durch eine Exponentialfunktion von der Art $\vartheta = C \, \varepsilon_0^{\, imes} \, \mathrm{dar}$

$$\theta_0 = \theta + \frac{\varepsilon_0}{2} C \times \varepsilon_0^{\varkappa - 1} = \theta + \frac{\varkappa}{2} \theta = \frac{\varkappa + 2}{2} \theta \tag{3}$$

$$\varkappa = \frac{d \vartheta}{d \varepsilon_0} \frac{\mathbf{I}}{C \varepsilon_0 \varkappa - \mathbf{I}} = \frac{d \vartheta}{d \varepsilon_0} \frac{\varepsilon_0}{\vartheta}, \tag{4}$$

durch eine Exponentialfunktion von der Art $\vartheta = C \varepsilon_0^{\alpha}$ darstellen lässt. Dann ist $\frac{d \vartheta}{d \varepsilon_0} = C \varkappa \varepsilon_0^{\varkappa - \tau}$ und deshalb $\vartheta_0 = \vartheta + \frac{\varepsilon_0}{2} C \varkappa \varepsilon_0^{\varkappa - \tau} = \vartheta + \frac{\varkappa}{2} \vartheta = \frac{\varkappa + 2}{2} \vartheta$ (3) Den Wert \varkappa erhält man aber in bekannter Weise durch $\varkappa = \frac{d \vartheta}{d \varepsilon_0} \frac{1}{C \varepsilon_0^{\varkappa - \tau}} = \frac{d \vartheta}{d \varepsilon_0} \frac{\varepsilon_0}{\vartheta}$, (4) d. h. als das Verhältnis der Kurventangente $\frac{d \vartheta}{d \varepsilon_0}$ zur Poltangente $\frac{\theta}{\epsilon^0}$.

Die Gleichungen (3) und (4) ermöglichen es in einfacher Weise, aus der θεο Kurve, die der Versuch liefert, die $\vartheta_0 \; \epsilon_0$ Kurve zu ermitteln, die die Beziehung zwischen Dämpfung und Verformung am Volumelement angibt. Vorausgesetzt ist dabei allerdings, dass sich die Abhängigkeit zwischen ϑ und ε_0 durch eine Exponentialfunktion darstellen lässt. Angenähert kann das aber immer zum mindesten für das letzte Stück geschehen. Im allgemeinen Falle wird man allerdings den Exponenten z selbst als Funktion der Spannung ε_0 angeben müssen.

Für viele Zwecke ist es empfehlenswerter, nicht mit der Dämpfung ϑ_0 selbst, sondern mit der spezifischen Dämpfung ψ_0 zu arbeiten. Unter ψ_0 verstehen wir dabei das Verhältnis der Dämpfung ϑ_0 zur Formänderungsarbeit, die bei der zugehörigen Schwingung in den äussersten Lagen in der Volumeinheit des Baustoffes aufgespeichert ist und die nach einem bekannten Satze der Festigkeitslehre gleich $\frac{{\epsilon_0}^2\,G}{2}$ beträgt, sofern man Proportionalität zwischen Verformung ε_0 und Spannung τ_0 voraussetzen kann. G ist die Verhältniszahl, die Schubelastizitätsmodul genannt $\psi_0 = \frac{\theta_0}{\varepsilon_0^2} \frac{\mathbf{2}}{G} \,.$ wird. Es ist also:

Da ϑ_0 von der Dimension cm kg/cm³ (also einer Spannung) ist, ist ψ_0 eine dimensionslose Grösse. ψ_0 ist bei der von aussen nicht gestörten Schwingung das Verhältnis der Energieabnahme auf eine Schwingung zur gesamten Schwingungsenergie oder (da die Energie proportional dem Quadrate des Schwingungsausschlages ist) gleich dem doppelten Verhältnis der Abnahme Aa des Schwingungsausschlages auf eine Schwingung zum Schwingungsausschlag a, wobei natürlich vorausgesetzt ist, dass die Dämpfung der Schwingung allein durch die innere Baustoffdämpfung bewirkt wird. Im Gegensatz zu ψ , das die mittlere spezifische Dämpfung angibt, bezeichnen wir wieder mit ψo die spezifische Dämpfung, die für die am höchsten beanspruchten Randteile (mit Verformung ε_0) gilt.

Die Ermittlung der grössten Schubspannung am Umfang des Stabes.

Wir haben bisher stillschweigend vorausgesetzt, dass die Schubspannung linear nach aussen zu anwächst, was bei kleinen Verformungen, für die das Hooke'sche Gesetz gilt, zutrifft. Die Dämpfung des Baustoffes hat aber gerade für grosse Verformungen besondere Bedeutung, und dafür kann die Annahme einer linearen Verteilung nicht mehr aufrecht erhalten werden. Wir werden deshalb versuchen, aus den statischen Eichergebnissen die wahre Schubspannung am Rande zu ermitteln. Bei der Eichung wird die Abhängigkeit des Momentes M vom Verdrehungswinkel \$\Delta\varphi\$ des Stabes bei unveränderlichem Stabhalbmesser r_0 festgestellt. Aus der Kurve $M = f(\Delta \varphi)$ kann eine neue Kurve $M_1 = f(r_{01})$ für einen bestimmten Verdrehungswinkel A \varphi_1 und f\vec{u}r ver\vec{anderlichen} Stabhalbmesser r_{01} gewonnen werden. Es entsprechen sich jeweils die Punkte der $M \Delta \varphi$ und der $M r_{01}$ Kurve, für die gleiche Beanspruchung der äussersten Stabfasern und folglich auch gleiche Verformung vorhanden ist, da die Verformung und die Schubspannung in beiden Querschnitten nach dem gleichen Gesetz mit der Entfernung von der Stabaxe zunimmt. Die Grösse der Momente bei ähnlichen Verformungen zweier Querschnitte von den Halbmessern r_0 und r_{01} ist aber verhältnisgleich der dritten Potenz der Halbmesser: $M: M_1 = r_0^3: r_{01}^3$

Die Gleichung gilt für entsprechende Querschnitte, für die $\epsilon_0 = r_0 \frac{\Delta \varphi}{l} = r_{01} \frac{\Delta \varphi_1}{l_1}$ gleichen Wert hat. Setzt man noch voraus, dass die Länge / der beiden Stäbe, auf die sich die $M \Delta \varphi$ und die $M_1 r_{01}$ Kurve beziehen, gleich sind, so lautet die Bedingung dafür, dass Gleichung (6) gilt:

 $r_0 \Delta \varphi = r_{01} \Delta \varphi_1; \quad r_0 d \Delta \varphi = \Delta \varphi_1 d r_{01}$ Veränderlich sind in dieser Gleichung r_{01} und $\Delta \varphi$ Durch Einsetzen von Gleichung (7) in Gleichung (6) folgt: $M: M_1 = \Delta \varphi_1^3: \Delta \varphi_3$

Für den zweiten Fall (veränderlicher r_{01} bei unveränderlichem Verdrehungswinkel $\Delta \varphi_1$) kann angesetzt werden:

$$M_1 = \int_0^{r_{01}} \tau \, 2 \, \pi \, r \, dr \, r \, ; \quad \frac{d \, M_1}{d \, r_{01}} = \tau_0 \, 2 \, \pi \, r_{01}^2 \tag{9}$$

Wir haben τ_0 geschrieben, da sich $\frac{d M_1}{d \tau_{01}}$ auf den Zuwachs des Momentes mit steigendem r_{01} bezieht. τ_0 ist also die Beanspruchung der äussersten Faser. Aus Gleichung (9) erhält man unter Benützung von (7) und (8):

chung (9) erhalt man unter Benutzung von (7) und (8):
$$\tau_0 = \frac{d M_1}{d \tau_{01}} \frac{1}{2\pi \tau_{01}^2} = \frac{1}{2\pi \tau_{01}^2} \frac{d}{d \tau_{01}} \left[M \left(\frac{J \varphi}{J \varphi_1} \right)^3 \right]$$

$$= \frac{1}{2\pi \tau_{01}^2} \left(\frac{J \varphi^3}{J \varphi_1^3} \frac{d M}{d J \varphi_1} + 3 M \frac{J \varphi^2}{J \varphi_1^3} \frac{J \varphi_1}{\tau_0} \right) \quad (10)$$

$$\tau_0 = \frac{1}{2\pi} \cdot \frac{1}{r_0^2} \left(\frac{J \varphi_1}{J \varphi} \right)^2 \left[\frac{d M}{d J \varphi} \left(\frac{J \varphi}{J \varphi_1} \right)^3 \frac{J \varphi_1}{\tau_0} + 3 M \left(\frac{J \varphi}{J \varphi_1} \right)^2 \frac{1}{\tau_0} \right]$$

$$= \frac{1}{2\pi \tau_0^3} \left(\frac{d M}{d J \varphi} J \varphi + 3 M \right) \quad (11)$$
Diese Clairbung expressiont as any deviation of the Kunya

Diese Gleichung ermöglicht es, aus der $M\Delta\varphi$ Kurve, die die statische Eichung liefert, die wahre Schubspannung 70 am Rand zu ermitteln, wenn das Gebiet des Hooke'schen Gesetzes überschritten ist. Als Grenzfall muss die Gleichung (11) natürlich noch gelten, wenn Spannung und Verformung in linearer Beziehung zu einander stehen, wie es das Hooke'sche Gesetz vorschreibt. Dann ist

$$\tau_{0} = \frac{M}{1} r_{0} = \frac{2 M}{\pi r_{0}^{3}}; \quad \Delta \varphi = \frac{\epsilon_{0} l}{r_{0}} = \frac{\tau_{0}}{G} \frac{l}{r_{0}} = \frac{2 M}{G \pi r_{0}^{4}} l;$$

$$\frac{d M}{d \Delta \varphi} = \frac{G \pi r_{0}^{4}}{2 l} = \frac{M}{\Delta \varphi}$$
(12)

Die Gleichung (11) geht für diesen Fall über in die

$$\tau_0 = \frac{1}{2\pi r_0^3} (M + 3 M) = \frac{2 M}{\pi r_0^3}$$
 (13)

schon aus Gleichung (12) bekannte Form: $\tau_0 = \frac{1}{2\pi r_0^3} (M + 3 M) = \frac{2 M}{\pi r_0^3} \qquad (13)$ Ein zweiter Grenzfall liegt dann vor, wenn der Stab so stark verdreht ist, dass das Verdrehungsmoment auch bei weiterer Verdrehung nicht mehr zunimmt (rein plastische Verformung). Dann ist an jeder Stelle die gleiche Schubspannung 70 vorhanden, und es kann gesetzt werden

$$M = \int_{0}^{\infty} \tau_0 \, r \, dF = 2 \, \pi \, \tau_0 \, \frac{r_0^{\,s}}{3}; \quad \tau_0 = \frac{3 \, M}{2 \, \pi \, r_0^{\,3}} \quad (14)$$

Das gleiche Ergebnis hätte man aber auch aus Gleichung (II) erhalten, wenn man $\frac{d\,M}{d\,J\,q}=$ o gesetzt hätte. Wenn die Beanspruchung des Stabes über die Pro-

portionalitätsgrenze hinaus geht, aber doch nicht rein plastisch erfolgt, dann ermöglicht Gleichung (11) den tatsächlichen Weit für die Schubspannung 70 am Rande aus der Eichkurve zu ermitteln.

In Abbildung 3 ist die Schubspannung 70 am Rande in Abhängigkeit von der Verformung $\varDelta \varphi$ oder dem auf den Umfang bezogenen Wert ε₀ wiedergegeben. Die Kurve 1 ist aufgenommen worden, bevor der Stab durch Drehschwingungen beansprucht worden ist. Die Schubspannung 71 ist aus dem Momente M unter Annahme linearer Spannungsverteilung berechnet worden. Wie man sieht, ist die Abweichung von der Geraden nur gering, sodass es sich nicht lohnt, eine Berichtigung mit Hisfe von Gleichung (11) vorzunehmen. Nachdem der Stab mehrere Millionen Schwingungen mit einem grössten Verformungswinkel $\varepsilon_0 = 0,02$ ausgeführt hat, ist eine neue Eichung vorgenommen worden. Die neuen Ergebnisse sind in Abbildung 3 als Kurve m 2 unter der Annahme, die Schubspannung Tm2 am Umfang sei proportional der Dehnung, aufgetragen worden. Mit Hilfe von Gleichung (12) kann der Masstab ermittelt werden, der es ermöglicht, die Beziehung zwischen ε_0 und τ_{m_2} aus den Eichergebnissen $\Delta \varphi$ und Mabzuleiten. Gleichung (11) gestattet es, die Kurve 02 zu berechnen, die die Abhängigkeit zwischen der wahren Schubspannung To2 am Rande und der Verformung E0 am Rande angibt. Man sieht, dass in diesem Falle eine erhebliche Abweichung zwischen der Kurve Tm2 und To2 vorliegt, die darauf zurückzuführen ist, dass bei diesem Baustoff neben der elastischen Verformung auch schon ein erheblicher plastischer Verformungsanteil auftritt. Die Abbil-

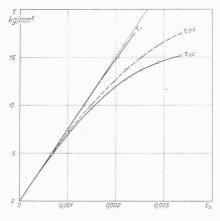


Abb. 3. Spannungs-Verformungsdiagramm für einen Probestab aus Schmiedeisen.

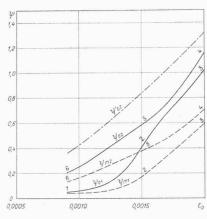


Abb. 5. Spezifische Dämpfung in Abhängigkeit von der Randverformung. Gleicher Stab wie Abb. 3.

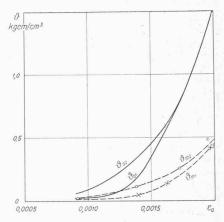


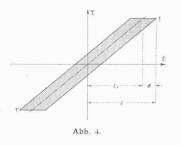
Abb. 6. Dämpfung in Abhängigkeit von der Randverformung. Gleicher Stab wie in Abb. 3.

dung 3 bezieht sich ebenso wie die Abbildungen 5 und 6 auf einen Schmiedeisenstab, geliefert von der Deutsch-Lux. Bergw. A.-G., mit 28,0 kg/mm² Fliessgrenze auf Zug, 49,2 km/mm² Festigkeit, 24,5 $^{0}/_{0}$ Bruchdehnung und 53,7 $^{0}/_{0}$ Kontraktion. Der Stab hat über 40 Millionen Schwingungen mit erheblichem plastischen Verformungsanteil überstanden, sodass insgesamt auf 1 kg Probestück 91 PSh Energie in Wärme umgesetzt worden sind ($\nu = 91$,0 PSh/kg).

Die praktische Bedeutung der Dämpfung.

Die Dämpfung rührt davon her, dass der Baustoff bei höheren Beanspruchungen nicht nur elastische, sondern daneben auch plastische Formänderungen ausführt. Die Verformung ist wegen des plastischen Verformungsanteils nicht mehr proportional der Spannung, oder die Elastizitätsziffer $G'=\tau/\varepsilon$ (wobei ε das Mass der Verformung ist) fällt mit zunehmender Spannung ab. Infolgedessen steigt bei örtlichen Ungleichheiten (Oberflächenbeschädigungen, Fehlstellen usw.) die Spannung nicht in dem Masse an, wie es bei unveränderlicher Elastizitätsziffer G der Fall wäre, oder es findet ein teilweiser Spannungsausgleich im Baustoff statt. Die praktische Wichtigkeit der Dämpfung liegt darin, dass der Baustoff den plastischen Anteil an der Gesamtverformung in millionenfachem Wechsel überstehen kann. Wenn von einem Baustoff verlangt wird, dass er "dauernd" halten soll, so muss das Wort "dauernd"

durch eine Zahl ausgedrückt werden, die angibt, wieviel Belastungswechsel S mit der Höchstbeanspruchung überstanden werden müssen. Das S mag 10 5 , 10 7 oder auch 10 9 betragen. Diesen Zahlen sind Werte ψ_0 für einen bestimmten Baustoff zugeordnet. So hat z. B. der Baustahl, auf den sich die Abbildungen 3,



5 und 6 beziehen, bei einer Beanspruchung $\tau_0=12\,\mathrm{kg/mm^2}, 4\cdot 10^7$ Belastungswechsel mit einer spezifischen Dämpfung $\psi_0=1,16$ überstanden. Aus dem Wert ψ_0 kann der plastische Anteil an der Gesamtverformung mit Hılfe von Abbildung I berechnet werden. Zu diesem Zwecke ersetzen wir die Hysteresisschleife angenähert durch ein Parallelogramm (Abb. 4). An der Stelle I setzt sich die Gesamtverformung ε aus dem elastischen Anteil ε_1 und dem plastischen Anteil ε_2 zusammen. Wir setzen voraus, dass ε_3 klein sei gegen ε_4 . Die in der Volumeinheit aufgespeicherte Formänderungs-Arbeit ist gleich $\tau \varepsilon/2$ und das Verhältnis ψ_0 des Inhalts der Hysteresisschleife zur aufgespeicherten Formänderungsarbeit gleich $\frac{4\varepsilon}{1/2}$ ε_1 τ = 8 $\frac{\varepsilon}{\varepsilon_1}$. Wir bezeichnen das Verhältnis der plastischen zur elastischen Verformung mit ε_4 ; unter den vereinfachten Annahmen der Abbildung 4 ist dann

 $\lambda'=a/\varepsilon_1=$ 0,125 ψ_0 . Wenn wir statt des Parallelogramms (Abb. 4) die tatsächliche Hysteresisschleife (Abb. 2) zugrunde legen, ist das Verhältnis etwas höher, vielleicht

 $\lambda = 0.16 \,\psi_0 \tag{15}$

Die vorhin genannte Dämpfung $\psi_0=1,16$, die der bestimmte Baustahl in millionenfachem Wechsel überstanden hat, bedeutet also einen plastischen Anteil λ von etwa 18 bis 20 % der Gesamtverformung. Wir nennen einen solchen Stahl einen zähen im Gegensatz zu einem spröden, der bei wechselnder, entsprechend hoher Beanspruchung ohne wesentliche Dämpfung, d. h. ohne wesentlichen plastischen Verformungsanteil zu Bruch geht. Der spröde Stahl mag bei einmaliger Beanspruchung grössere Festigkeit haben als der zähe, da die örtlichen Spannungserhöhungen in der Umgebung kleiner Fehlstellen durch einmalige plastische Dehnung ausgeglichen werden können. Der Ausgleich kann aber nicht in häufigem Wechsel ausgehalten werden, und deshalb ist der spröde Stahl bei der oft wiederholten Belastung trotz höherer Zerreissfestigkeit dem zähen Stahl in vielen Fällen unterlegen.

Hiermit ist der Begriff der Zähigkeit durch das dynamische Verhalten des Baustoffes ohne Bezugnahme auf die Bruchdehnung festgelegt, die bei den in der Praxis auftretenden Schwingungsbrüchen vergeblich gesucht wird.

Feststellung der Dämpfung durch den statischen Verformungsversuch und Vergleich mit den Ergebnissen des Drehschwingungsversuches.

Man muss zuerst die Frage beantworten, ob die statische Verformung durch Normalkräfte (Zerreissversuch) oder durch Scheerkräfte (Verdrehungsversuch) bewirkt werden soll. Wir haben uns in Anlehnung an die Drehschwingungsversuche für diese letzte Art entschieden. Es ist ungewiss, wie weit die dabei gewonnenen Ergebnisse auf den Zerreissversuch übertragen werden können.

Da die Geschwindigkeit des Belastungswechsels auf die Dämpfung nach angestellten Versuchen nur von geringem Einfluss ist, muss es auch möglich sein, die Dämpfung ψ_0 bezw. das Verhältnis λ aus dem statischen Verformungsversuch zu ermitteln. Feststellungen, die wir in dieser Richtung traßen, schlugen ursprünglich in vielen Fällen fehl, da wir den statischen Verformungsversuch vor dem Schwingungsversuch anstellten. Wir hatten nicht beachtet, dass viele Baustoffe infolge der Schwingungsbeanspruchung ihre Struktur vollständig ändern, sodass die Dämpfungskurven $\psi_0 = f(\varepsilon_0)$ mit der Zeit andere Form annehmen.

In Abbildung 5 ist die ψ ε_0 Kurve 1, 2, 3 für den schon mehrfach genannten Baustahl mit steigender Belastung aufgenommen worden. Dann hat der Stahl mehrere Millionen Schwingungen mit der Höchstlast $\tau_0 = 12 \text{ kg/mm}^2$ überstanden, und endlich ist eine neue ψ_m ε_0 Kurve 4, 5, 6 aufgenommen worden. Aus den ψ_m ε Kurven sind die auf den Rand bezogenen Dämpfungen, die wir im vorausgehenden durch Anhängen des Index o gekennzeichnet

haben, berechnet worden. Die Kurve $\psi_{01} \ \varepsilon_0$ bezieht sich wieder auf den Baustoff im Anlieferungszustand, während ψ02 ε0 für den Baustoff nach Ausführung der obengenannten Schwingungen gilt. Die beiden Kurven weichen erheblich von einander ab. Der noch nicht beanspruchte Baustahl zeigt z.B. nach Abbildung 3 bei $\tau_1 = 7.5 \text{ kg/mm}^2$ eine Verformung $\varepsilon_0 = 0,0010$ und dazu gehört nach Abbildung 5 eine spezifische Dämpfung $\psi_{01} = 0,06$ während der gleiche Stahl nach Ueberstehen der obengenannten Wechselbeanspruchung zur gleichen Spannung $\tau_{02} = 7.5 \text{kg/mm}^2$ nach Abbildung 3 eine Verformung $\varepsilon_0 = 0,0011$ und nach Abbildung 5 eine spezifische Dämpfung $\psi_{02}=$ 0,31 (also

einen fünffach so hohen Wert) aufzuweisen hat. Für beide Fälle haben wir auch durch einfache statische Eichung Spannungs-Verformungskurven aufgenommen, die in Abbildung 3 wiedergegeben sind. Der Wert ti ist vor Ueberstehen der Wechselbeanspruchung, der Wert To2 danach aufgenommen worden. Wie man sieht, haben sich die statischen Eigenschaften des Baustoffes durch die Wechselbeanspruchung in gleichem Sinne geändert wie die Dämp-

fungseigenschaften.

Es muss noch darauf hingewiesen werden, dass die Kurvenäste 1, 2, 3 und 4, 5, 6 (Abbildung 5) in ihrem oberen Stück ineinander übergehen müssen, da die hohe Schwingungsbeanspruchung gerade den Uebergang von einem zum andern Kurvenast bewirkt. Wenn in Abbildung 5 die beiden Kurvenstücke nicht zusammenlaufen, so rührt das davon her, dass zur Konstruktion der Kurve 1, 2, 3 die τ_1 Kurve aus Abbildung 3 und zur Konstruktion der Kurve 4, 5, 6 die 702 Kurve verwendet worden sind, aus denen die in der Endlage aufgespeicherte Formänderungsarbeit ermittelt worden ist. Bei der Aufnahme der Dämpfungskurve galt aber schon für die oberen Werte die T1 Kurve nicht mehr streng, da der Baustoff infolge der Schwingungen seine Struktur schon geändert hatte, und deshalb kann die ψ₀₁ ε Kurve für die obern Werte nicht einwandfrei wiedergegeben werden.

Gleichung (15) gibt die Beziehung an, die zwischen den Abbildungen 3 und 5 besteht. Wir haben den plastischen Anteil à an der Gesamtverformung aus Abbildung 3 entnommen und die der statischen Eichung entsprechende verhältnismässige Dämpfung mit Hilfe von Gleichung (15) berechnet. Das Ergebnis ist als ψ_{02} in Abbildung 5 eingetragen worden. Wenn die Ueberlegungen und Berechnungen streng zutreffen würden, müssten die ψ_{02} und die ψ_{02} Kurve in Abbildung 5 zusammenfallen. Tatsächlich bestehen aber noch erhebliche Abweichungen zwischen beiden Kurven, die z. T. auf die Unvollkommenheiten der Messungen zurückzuführen sind. Die Abweichung zwischen $\psi_{02} \varepsilon$ und $\psi_{09}' \varepsilon$ Kurve sind für kleine Werte ε am grössten. Das rührt davon her, dass bei kleinen ε Werten die verhältnismässige plastische Verformung λ mit unsern bisherigen Mess-Methoden nur sehr ungenau bestimmt werden konnte. Es sollen in dieser Richtung neue Versuche mit geeigneteren Mitteln angestellt werden.

In Abbildung 6 ist die Dämpfung, die im Vorausgehenden mit ϑ bezeichnet ist, für den gleichen Stab in Abhängigkeit von der Randverformung ε_0 aufgetragen. Die beiden Kurven ϑ_{m_1} und ϑ_{m_2} beziehen sich auf die mittlere Dämpfung. Zuerst ist für den ursprünglichen Stab die Kurve ϑ_{mi} aufgenommen worden. Der Stab hat dann mehrere Millionen Schwingungen mit der Randverformung ε₀ = 0,0020 überstanden. Schliesslich wurde die Belastung, d. h. der Schwingungsausschlag wieder erniedrigt, und die neue Kurve $\vartheta_{m_2} \, \varepsilon_0$ festgestellt. Die Kurven ϑ_{m_1} und ϑ_{m_2} entsprechen den Kurven ψ_{m_1} und ψ_{w_2} in Abbildung 5. Aus der mittlern Dämpfung ϑ_m ist mit Hilfe von Gleichung (3) die grösste Dämpfung Bo, die am Rand auftritt,

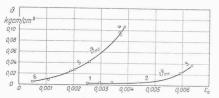
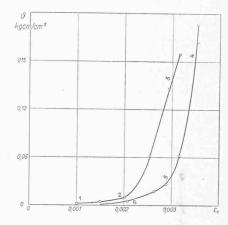


Abb. 7. Dämpfung in Abhängigkeit von der Verformung ε0 für einen Stab aus Duraluminium. ϑ_{m_1} am ursprürglichen Stab festgestellt, ϑ_{m_2} nach 0,5 Mill. Schwingungen mit $\varepsilon_0=$ 0,006.

Ahb. 8 (rechts). Dämpfung in Abhängigkeit von der Verformung für Schraubenmessing mit 0,58 Cu, 0,40 Zn und 0,02 Pb. Der Ast 4.5-6 bezieht sich auf den Zustand, der nach Ueberstehen von 0,5 Mill. Schwingungen mit einer Randverformung $\varepsilon_0 = 0,003$ crreicht wird.



ermittelt und als ϑ_{01} bezw. ϑ_{02} Kurve in Abbildung 6 eingetragen worden. Man sieht, dass der Dämpfungswert ϑ_o infolge der Schwingungsbeanspruchung z. B. bei ε₀ = 0,010 auf ein vielfaches des ursprünglich festgestellten Wertes

angewachsen ist.

Noch weit grössere zeitliche Veränderungen der Dämpfungsfähigkeit erleiden Stäbe aus Schweisseisen. Bei ihnen treten Risse in Richtung der Längsachse infolge der Schwingungsbeanspruchung auf, die schliesslich auch dem blossen Auge sichtbar werden. Der Stab ist dann eigentlich kein einheitliches Gebilde mehr, sondern ein Bündel von einzelnen Sehnen. Die nach innen liegenden Oberflächen der Sehnen reiben sich bei der Beanspruchung aneinander. Dabei wird Wärme erzeugt, die nicht von der durch innere Baustoff-Dämpfung erzeugten Wärme geschieden werden kann. Die zeitliche Veränderung der Dämpfing bei Schweisseisen kann deshalb nicht leicht bestimmt werden.

Bei den härtbaren oder gehärteten Stählen ist die zeitliche Veränderung der Dämpfungsfähigkeit gering im Vergleich zu den in Abbildungen 5 und 6 wiedergegebenen Veränderlichkeiten. Für Stähle mit hoher Fliessgrenze kann sie wohl in der Regel ganz vernachlässigt werden.

Bei Nichteisenmetallen treten oft sehr erhebliche Veränderungen der Dämpfungsfähigkeit infolge der Schwingungsbeanspruchung auf. Die stärkste Veränderung ist bisher an einem Stab aus Duraluminium beobachtet worden (Abbildung 7). Die Kurve 1, 2, 3 ist hier am ursprünglichen Baustoff aufgenommen worden, während sich die Kurve 4, 5, 6 auf den Zustand bezieht, der nach Ueberstehen von 0,5 Mill. Schwingungen mit der Randverformung $\epsilon_0=$ 0.006 erreicht wird. Aus dem ursprünglich wenig dämpfungsfähigen, spröden Baustoff wird infolge der Schwingungsbeanspruchung ein ganz anderes, zähes Material. Ich vermute, dass gerade diese Eigenschaft des Duraluminiums, dass es infolge hoher Wechselbeanspruchungen dämpfungsfähig wird und deshalb örtliche Spannungserhöhungen ausgleichen kann, für die praktische Bewährung besonders wertvoll ist, und dass darin vor allem seine Ueberlegenheit über das gewöhnliche Aluminium begründet ist, das bei bohen Wechselbeanspruchungen mit sprödem Bruch, ohne dämpfung-fähig zu werden, entzwei geht.

Es gibt auch Baustoffe, die infolge der Wechselbeanspruchung weniger dämpfungsfähig, d. h. spröder werden. Hierher gehört vor allem Kupfer und Schraubenmessing. In Abbildung 8 ist die ϑ ε_0 Kurve für ein Schraubenmessing mit 0,58 Kupfer, 0,40 Zink und 0,02 Blei wiedergegeben. Der Kurvenast 1, 2, 3 bezieht sich wieder auf den anfänglichen Zustand, während der Ast 4, 5, 6 den Zustand angibt, der nach 0,5 Mill. Schwingungen mit der Randverformung $\varepsilon_0 = 0,0030$ bis 0.0035 erreicht wird. Bei diesem Baustoff ist die Dämpfungsfahigkeit infolge der Schwingungsbeanspruchung z. B. bei $\varepsilon_0 = 0,0030$ auf ein Viertel seines ursprünglichen Wertes zurückgegangen. Dieses Material wird infolge der Beanspruchung spröde, was man ja auch schon aus andern Erfahrungen weiss. Es ist z. B. allgemein bekannt, dass kupferne Rohre, die lange Zeit Schwingungen ausgeführt haben, schliesslich so spröde werden, dass sie brechen. Um sie wieder in ihren ursprünglichen zähen Zustand zurückzuversetzen, werden sie ausgeglüht. Das ist eine Erfahrung, die nur an Kupfer und Messing, nicht aber an Eisen und Aluminium beobachtet wird, die im Gegenteil dabei zähe werden.

Für die praktische Wertung ist es natürlich sehr wichtig, zu erfahren, ob ein Baustoff infolge einer Wechselbeanspruchung spröder oder zäher wird, da davon wesentlich die Gefahr eines Dauerbruches abhängt. Der praktische Betrieb erfordert, dass eine ausgezeichnete Stelle im Baustoff, an der die Spannung besonders hoch ansteigt, bei

oftmaligem Spannungswechsel nicht zu Bruch geht. Durch die Wechselbeanspruchungen ändern aber viele Baustoffe ihre Eigenschaften wesentlich und zwar nur an dieser einen besonders hoch beanspruchten Stelle, die unter Umständen Längenabmessungen von nur einem Bruchteil eines Millimeters haben wird. Für die Haltbarkeit des Stückes ist es wichtig, dass der Baustoff nach der Veränderung an dieser einen Stelle stakt dämpfungsfähig ist, damit die ausgezeichnete Stelle durch einen erheblichen plastischen Anteil an der Gesamtverformung entlastet werden kann. Die Feststellung der Festigkeitseigenschaften des noch keinen Wechselbeanspruchungen ausgesetzten Baustoffes genügt deshalb nicht für die Wertung.

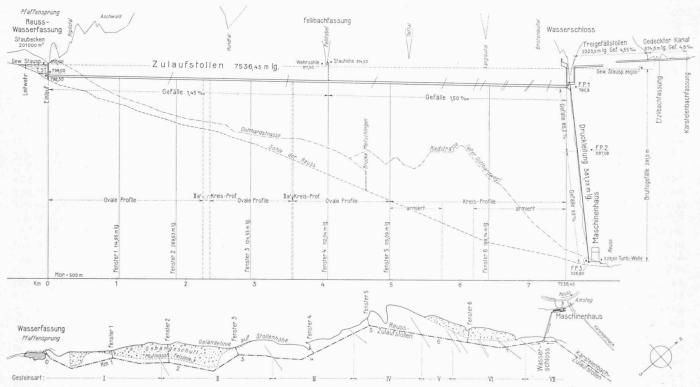


Abb. 29. Längenprofil und Horizontalschnitt des Druckstollens (samt Kärstelenbach-Zuleitung) zum Kraftwerk Amsteg der S. B. B. – Längen 1:50 000, Höhen 1:5000.

Legende der Gesteinsarten: I. und II. Zentraler Aaregranit (I Augengneiss, II Massiger Z. A.). [Bergbaulicher Charakter: Massig, geschlossen, sehr standfest. Wenige Stellen stärker geschiefert und klüftig. Ab Km. 0,050 Bergschläge, besonders stark in der untern Hälfte der Zone.] — III. Biotit-Injektionsgneisse [Massig bis schieferig und feinschichtig, Schieferflächen teils talkig.] — IV. Hornblendeschiefer und Glimmerschiefer. — V. Biotit-Hornfelse und Biotit-Gneisse. [Zone IV und V: Meist sehr massig und geschlossen, lokal stärker geschieferte, weichere und weniger standfeste Partien.] — VI. Serizit-Chloritgneisse und Schiefer mit Einlagerungen von kohligen Tonschiefern (sedimentär) und Quarzporphyren (Ganggesteine), diese zum Teil übergehend in Serizit-Schiefer. [Standfest bis weniger oder (in kurzen Strecken) nicht standfest, entsprechend geringerer, bankiger oder stärkerer Schichtung, bis zu stark blättrigen, gebrächen, fast druckhaften Einlagerungen (schwarze carbonische Schiefer). — VII. Chlorit-Serizit-Gneisse. [Sehr standfest, vereinzelte wasserführende Klüfte.]

Das Kraftwerk Amsteg der Schweizerischen Bundesbahnen.

Von Dipl. Ing. HANS STUDER (Zürich), gew. Bauleiter des Kraftwerkes Amsteg.

Fortsetzung von Seite 261.1)

Der Zulaufstollen.

Von der Wasserfassung in der Pfaffensprungschlucht führt der 7535 m lange Druckstollen durch den rechten Talhang, den Fuss des Bristenstock-Massivs, unter einer Reihe von Lawinentälern hindurch bis dicht oberhalb des, an der Mündung des Kärstelenbaches (Maderanertal) in die Reuss gelegenen Dorfes Amsteg. Grundriss und Höhenlage dieses Stollens zeigt die Abbildung 29 (auch Uebersichtskarte Abbildung 2, Seite 230).

Der Zulaufstollen, der einen lichten Querschnitt von 6,5 m², ein Gefälle von 1,5 0/00 aufweist und bei gefülltem Staubecken eine maximale Wasserführung von rd. 21 m³/sek ermöglicht, ist durch sechs Seitenstollen von 112 bis 270 m (von denen fünf dauernd zugänglich bleiben und gegen den Hauptstollen durch eiserne Drucktore abgeschlossen sind) in sieben Abschnitte von 825 bis 1445 m Länge geteilt.

gewählt, dass sein Verlauf im massiven Felsen bei einer maximalen Felsstärke auf Stollenhöhe von 40 bis 50 m gesichert erschien. Da in den obersten drei Stollen-Kilometern der Felsoberfläche Gehängeschutt bis auf über 200 m Stärke vorgelagert ist, wurden die obersten drei Seitenstollen als Sondierstollen vorgetrieben und auf Grund dieser Aufschlüsse, sowie topographischer Aufnahmen der sichtbaren Felsoberfläche die Tiefenlage des Stollens im Berghang festgelegt. In der Tat ist der Stollen nirgends aus dem anstehenden Felsen herausgetreten.

Die Tiefenlage des Zulaufstollens im Berghang wurde so

Der Stollenscheitel liegt am Einlauf 14,80 m, am Stollenende 25,85 m unter dem normalen Stauspiegel (Krone der Staumauer) von 810,00 m ü. M. Der hydrostatische Druck, den der Stollen bei einem Katastrophen-Hochwasser von etwa 350 m³/sek auszuhalten hat, beträgt, bezogen auf das Stollenzentrum, am Stollenende 30,35 m. Dazu kommt der hydrodynamische Stoss, die sogenannte Amplitude, die für

^{&#}x27;) Auf Seite 257 (Nr. 21), Spalte rechts, 17. Zeile von unten, bitten wir das Wort "weisungsgemäss" zu streichen. Red.