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Nr.9

Beitrag zur Theorie der Torsionsfestigkeit zylindrischer Hohlwellen mit variabler Wandstérke.
Von Dipl.-Ing. W JANICKI, Ziirich-Baden, gew. Assistent fiir technische Mechamk an der E. T H.

Abb.1

Die vorliegende Arbeit beschaftigt sich in erster An-
niherung mit der Aufgabe der Torsionsbeanspruchung einer
zylindrischen Hohlwelle von einseitig ellipsenringformigem
Querschnitt (Mittelpunkte der beiden Grenzellipsen exzen-
trisch gelegen, Abbildung 1), nach dem Verfahren des hydro-
dynamischen Analogons von Thomson und Tait!) unter
Beniitzung des Stokeschen Satzes in der Fassung, wie sie
von Bredt?) zum ersten Male aufgestellt worden ist. Es
handelt sich dempnach um das Problem, eine zwischen den
beiden Grenzkurven des Querschnittes verlaufende zwei-
dimensionale Flassigkeitstrémung zu ermitteln, deren Wirbel-
stirke (Zirkulation) in jedem Fliachenelement anndhernd
konstant ist, was sich bei Uebertragung auf das Torsions-
problem durch die Bedingung

frds =26 ¢S w o < o« (X)
ausdriickt. Dabei bedeutet frds das leemntegral der
Schubspannung 7 lings einer beliebig herausgegriffenen,
vollstandig in sich selbst geschlossenen Kurve, die im
Innern des ins Auge gefassten Querschnittes verlauft, in
dem die Schubspannung v wirkt, S den Flicheninbalt des
von der Kurve begrenzten Teiles des Querschnittes, G den
Schubmodul des Materials und  den Torsionswinkel, be-
zogen auf die Lingeneinheit der verdrehten Welle.

Unsere Entwicklungen stiitzen sich auf vier Annabmen:

1. Alle Stromungslinien seien angendihert Ellipsen,
was fir die beiden Grenzkurven genau zutrifft (sieche Ab-
bildung 1, Zwischenellipse a).

2. Das Axenverhiltnis 1 = g : /& einer beliebigen
Zwischenellipse verandere sich derart /inear, in Abbiangig-
keit eines willkiirlichen Parameters a, dass sich fir die
beiden Umfangsellipsen, wie erforderlich, die Werte 1, =
a,: b, und Az = a,: by ergeben, was sich durch den An-
satz ausdriickt:

A= lg -+ na [e=4—12; 0<a<1] . . (2)

3. Die Exzentrizitit # der Zwischenellipse « variiere
beim Uebergang von einer Stromlinie zur benachbarten
proportional mit dem urspriinglichen Mittelpunktsabstand e,
genfige also der Beziehung

#"=ca [e<aL1] . . . (3

4. Um die Gestalt der Zwischenellipse cmr/e-ultg fest-
zulegen, sei vorausgesetzt, dass die jeweilige Exzentrizitiat u
und die Breite w an der engsten Stelle (siche Abbildung 1)

') //wm.mn und 7Zait: Handbuch der theoretischen Physik, deutsch
von Helmholtz und Wertheim, Braunschweig 1874, 1. Band, 2. Teil, Seite 228"

%) K. Bredt: Kritische Bemerkungen zur
LZV.D. LY Jahrgang 1896, Seite 785
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Abb 2

in einem konstanten Verhiltnis zueinander stehen, das
durch den Wert dieses Verhiltnisses fiir die Ausgangs-
grossen /[= 0, — by —¢] und e (Abbildung 1) bestimmt
ist; es sei also der Ansatz gemacht:

w:u=1:¢, also

<a<i]y. . . . (4)

Mit diesen Annahmen folgt aus der Abbildung 1 far
die Halbaxen g und % der Zwischenellipse (a)
h=1by +u—+4w==0b,+(+1a
g=xh =1 [by + (e + 1) a]} : (5)
und fir jene der unendlich benachbarten Zwischenellipse
(a -+~ da) (sieche Abbildung 2):
W =h-+du-+dw=h-+ (¢4 1) da 6.
gE == A—4dl)=[n + (e + t)y da] (A + u ({u)} )
Um nun die Kontinuitdtsgleichung der w1rbellreien,
viskositdtslosen, inkompressiblen Fliissigkeit aufstellen zu
kdnnen, derer wir fir die Durchfibrung des bhydro-dyna-
mischen Analogons unseres Torsionsproblems bediirfen,
missen wir die Weite dg des in Abbildung 2 dargestellten
Stromfadens an einer beliebigen Stelle (¢) bestimmen. Nach
den bekannten Methoden der analytischen Geometrie findet
man dafiir unter Vernachldssigung unendlich kleiner Grossen
zweiter und hoherer Ordmmg den Ausdruck:
(fq _ [e(v — cos ¢) - (]/ 4 e sin sin? p 5 . - (7)

sin q‘\/l 4 Afcigt o
Die an der Stelle ¢ = o, also im engsten Querschnitt

des Stromfadens iibertragene muittlere Schubspannung sei
mit 7,, die an einer beliebigen Stelle ¢ auftretende mit
bezeichnet. Dann lautet die Kontinuititsgleichung:

1, dw = tdg . (8)
und hieraus ergibt sich das Lmlenlntcgral J der Schub-
spannung 7 lings der Stromlinie (a):

w=""t—=1tla [o
[ 4

% Ks sei noch hervorgehoben, dass unter Verzicht auf die Uelcr-
einstimmung der drei Proportionalititsfaktoren o in den Formeln (2), (3),
(4) und die lineare Abhingigkeit der Gréssen 4, #, w von diesen Para-
matern sich allgemeinere Ansiitze fiir die Veriinderlichkeit dieser drei Grossen
in Fuonktion dreier willkiirlicher Parameter aufstellen lassen, die dann zu
ciner belichig weit getriebenen Steigerung der Genauigkeit des hier ver-
wendeten Naherungsverfahrens beniitzt werden kionnen. Eine andere Mog-
lichkeit zur Aufstellung brauchbarer Niherungsformeln liefert das bekannte
Ritzsche Verfahren, Wenn man die Rechenarbeit nicht scheut, kann man
fiie die sogenannte Airysche Spannungsfunktion / einen moglichat einfachen
Ansatz mit cinigen verfligharen Freiwerten aufstellen, der nur den Grensz-
bedingungen an beiden Rindern zu geniigen hat, hierauf die Forminde-
rungsarbeit berechnen und dann die disponiblen Konstanten aus der Be-
dingung bestimmen, dass die Deformationsarbeit ein Minimum sein muss
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e T sin? @ (1 4 22 ctp? )
J==2 :!1 ds = 2 h /To“ = nosprpl ) AC; ‘“I’_’ e dp =
SPRR..L.. 1. S {[(c — diyVor—1 —
w ?.| 4 (1 {2 ;

(¢ — do)Vur — |]/1/1 — (A2 — l)/'./"/.l(l 4—2%)} - (9)

wobel ¢, d, u, v, A folgende Abkirzungen bedeuten:

c=A(2—t)(e+0)+22uh
d=17(2— )¢
Ad=(e—+2uh)? -+ yuhit
— e+ V4 —de—Vd
H—=—— =
2w h 2 uh ( 0)
1 / == A Na = !

\/1:‘3 — 1= Toi I (\/l —Ae) — gy urh?

T 1 W < 2 - )
\/z"‘ — 1= 2k I (\/\l —+ Ae)t — g 2 he

- Iy —
V2 — 1) (@2 — 1) = i ] [ +27

Den Wert dieses Linienintegrales setzt man in die
Formel (1) cin, in der in unserem Falle S den Flichen-
inhalt der Zwischellipse bedeutet, also durch den Ausdruck
S =nagh=Jlah® gegeben ist. Alsdann ergibt sich fiir 7,

unter Beracksichtigung dass ds — / sin ¢ \/1 -+ 2% ctg? ¢ dp
der Ausdruck:

witie | d (142 5)06
wh l(( — du) Vue—_l — (¢ — dv) '\/u'—’ = l] =
(T —1) l’/J(( +2%)

Hiermit ist 7, als eine irrationale algebraische Funk-
tion der Variablen / oder auch « bestimmt, in der alle vor-
kommenden Grossen als gegeben anzusehen sind, mit Aus-
nahme des noch einstweilen unbekannten spezifischen Ver-
drehungswinkels #. Mit 7, kennt man jetzt auch nach Glei-
chung (8) die an jeder anderen Stelle des Querschnittes
auftretende Schubspannung 7, womit die gesamte Span-
nungsverteilung als bekannt anzusehen ist.

Speziell interessant ist es, die maximale Schubspan-
NUNE Tma, zU berechnen, die, wie man leicht nachweisen
kann, in dem einen Scheitel der kleinen Axe der &us-
sern Umrissellipse auftritt und aus der Formel (11) un-
mittelbar hervorgeht, wennman a = 1, h = b, + ¢+t = b,
und 1 = /; setzt.

Um den Verdrehungswinkel ©J pro Lingenecinheit der
Welle zu ermitteln, steht uns noch die statische Gleich-
gewichtsbedingung zur Verfigung, die aussagt, dass das
Moment der Schubspannung fiir jeden Momentenpol gleich
dem vorgeschriebenen, verdrehenden Kriftepaar M sein
muss. Die mathematische Formulierung dieser Tatsache
liefert fiir das Drehmoment den Ausdruck:

1

s w2
M = 2.’1//1:’)(;\/5 v da

- . (11)

Ty =

worin o

Z =l + pal® b, - (t'ﬂ—/)lt]"’(l—FQ ;)l (12)
und
N = pulby+4 (¢ + 1) a [u: — du) \/1'2 —1 — (¢ — dv) X

\/ltz—ll——- (A2~ palt (b + pa)® -~ 1] ‘/(l - 2%)‘1

Wie man sich durch Einsetzen der expliziten Aus-
driicke fir ¢, d, u, v, A in die Gleichung (12) leicht iber-
zeugt, treten im Integranden von M Quadratwurzeln aus
ganzen rationalen Funktionen vierten Grades von 2, bezw.
a auf, womit sich das Integral als elliptisches erweist. Nach
der allgemeinen Theorie der elliptischen Integrale lasst es

sich auf die Summe von rationalen Integralen und ellip-

tischen Normalintegralen erster, zweiter und dritter Gattung
zurlickfiihren, wobei dann die letztgenannten durch ellip-
tische Funktionen ausgedriickt werden konnen, fir deren
numerische Berechnung Tabellen vorliegen. Da aber das
Ergebnis sehr verwickelt und undbersichtlich wiirde und

in keinem Verhiltnis zum Rechenaufwande stiinde, ver-
zichten wir auf die Auswertung und explizite Darstellung
des Ausdruckes fiir ¢ im allgemeinen Falle und beschranken
uns im nachfolgenden darauf, die Ergebnisse der Integra-
tion fiir einige interessante Spezialfalle anzufithren.

Vorher sei aber noch mit einigen Worten bei der
allgemeinen Losung unseres Problems verweilt, die durch
die Formeln (r1) und (12) gegeben ist. Falls der Mittel-
punktsabstand e der beiden den Querschnitt begrenzenden
Ellipsen nicht zu gross ist, wird man die Lésung auch als
hinldanglich genau fir die praktische Anwendung betrachten
darfen. Das erhaltene Resultat geniigt jedoch keineswegs
der Bedingung der ,strengen“ Theorie, dass die Wirbel-
starke berall denselben Wert haben soll, was man {ibrigens
billigerweise von ihm auch nicht verlangen kann, da die
Losung in diesem Falle im wmathematischen Sinn sogar
streng richtig wire. Wenn man die verschiedenen Strom-
faden miteinander vergleicht, so ist zwar der durchschnitt-
liche Wert der Wirbelstarke fir alle gleich, da diese Be-
dingung schon der Ableitung der Formel (1) zugrunde
liegt1). Aber innerhalb des einzelnen Stromfadens wird die
Wirbelstarke umso kleiner, je mehr die Weite des Strom-
fadens zunimmt, weil mit wachsender Stromfadenweite die
Durchflussgeschwindigkeit sich vermindert und somit auch
die davon abhangige Wirbelstarke sich verkleinert. Sobald
daher die Exzentrizitit ¢ ziemlich gross wird gegeniiber
der kleinsten Weite ¢ (f = b; — by — ¢), darf man den auf-
gestellten Formeln nicht mebr allzuviel Vertrauen entgegen-
bringen. Wie weit man darin gehen darf, hangt zunachst
von den Anforderungen ab, die man an die Genauigkeit
der Losung stellt, ausserdem zber auch von dem Ergeb-
nisse eines Vergleiches der Formeln entweder mit Ver-
suchsresultaten, oder auch mit einer besser begriindeten
Formel, falls man dber eine solche verfigt. (Siehe Fuss-
note 3 auf Seite 103.)

Spezialfille.

1. Konzentrischer, symmetrisch-ellipsenringformiger Querschnitt
(¢ = o, A variabel).

a) Zp sehr gross (Fall einerVollwelle, deren Querschnitt
durch feinen Riss oder langgestreckten Hohleinschluss
(Cunker) infolge fehlerhbaften Gusses geschwicht ist). In
diesem Falle findet man:

5 t—¢ ' 1.
X =0 =X € O

s e M, ( by \[ ° (13)

Tmax ™ ThT— 1 63— 0% ('S = 4 )J

Bezeichnet man den im Falle eines ellipsenringfdrmigen
Vollquerschnittes auftretenden spezifischen Verdrehungs-
winkel mit #* und die maximale Schubspannung mit 7.,
fir welche Grossen Formeln aus der Literatur bekannt
sind ?), so entstehen zwischen den beiden Fillen die Be-

)~

PR

ziehungen:
¢ 5 A8 G . 5 }~|2 *
)~ 3 (’W 0%} Tmax v 4 Ir 1 Tmax ('4)

Anhand einiger Zahlenbeispiele lasst sich der Einfluss
eines feinen Risses auf den Querschnitt sehr leicht und
iiberzeugend nachweisen. Fir 1, = 1,001, also einen fast
kreisformigen Querschnitt, erbdlt man fir die maximale
Beanspruchung 7,.. angendhert den 626-fachen Betrag der
entsprechenden Torsionsbeanspruchung 7,..% beim Voll-
querschnitt; fir 4, = 1,0001 steigt dieser Wert bereits auf
den 6251-fachen Betrag und fiir den genauen kreisformigen
Querschnitt [4, = 1] ergibe die Formel (14) fr 7. sogar
den Wert unendlich, was natiirlich physikalisch eine Un-
moglichkeit bedeutet. Es wird eben schon lange vor dem
Auftreten dieser ausserordentlich hohen Beanspruchung
die Welle so stark deformiert, dass die Giltigkeit des
Hookeschen Gesetzes und somit auch die Giiltigkeit der
darauf beruhenden, von uns abgeleiteten Gleichungen auf-
hort. Immerhin weisen diese Ueberschlagsrechnungen darauf
hin, dass beim Vorhandensein eines Materialfehlers in Form

Vi)i\'crgrl z.B. A, u. L. Féoppl, Drang und Zwang, Bd. II, S.92 u.(f.
2, Vergl. z. B. A,u. L. Féppl, Drang und Zwaog, Bd. I, S. 65u 66.




29. August 1925,

SCHWEIZERISCHE BAUZEITUNG

107

eines feinen Risses die Torsionsbeanspruchungen ausser-
ordentlich schnell und stark anwachsen, sodass das Auf-
treten eines feinen Risses geniigt, um die Zerstérung der
Welle in kirzester Frist herbeizufithren. Fiar Wellen mit
ausgesprochen ellipsenférmigem Querschnitt (4; sehr ver-
schieden von 1) ist die Bruchgefahr infolge cines feinen,
in der grossen Axe der Ellipse gelegenen Spaltes nicht
so gross wie bei einer nahezu kreisformigen Welle. So
erhalt man z. B. fir 1, =2 den Wert 7, = 5/3 Tmax", fiir
4y = 10 den Wert 7,4 = 1,26 7,,,", woraus ersichtlich ist,
dass das Material in diesen Fillen keine besonders hohe
Mehrbeanspruchung erleidet. Dagegen ergibt sich aus der
zweiten Formel (13) fiir einen feinen Spalt in der kleinen
Axe (0 = 1) eine unzuldssig hohe Torsionsbeanspruchung,
sodass in diesem Falle auch sehr schnell ein Bruch der
Welle eintreten wird 1).

b) 4, wvon der gleichen Grissenordnung wie 7,. In
diesen Fillen findet man fiir die beiden charakteristischen
Grossen ¥ und 74, folgende Ausdriicke:

q __ ! o A 2 5

D= 2n(d, —4)GJ Me. Tax = Lt—1 22(—0)J H: 15)

wobel

=2 sy +A+Bla Tt _cin AL (g
5¢ Ay — 1 by + 1

und 4, B, C, folgende Abkurzungen bedeuten:

4 — WCE[R 60y (4 430)] —3ud, B4 88) 432434+ 1)

pt

2

ut byt — ot { 413 by — 0t [6 by — ot (4 by — o1)] }

(r7)

w®

wh byt — ot { 4uB by — 2 [6 1 by* — ot (4 12 by — 1)) }

¢ "o
wobei t=b — by p=1I —2y, 6=1Jy — 1, 0=1Iy+ I

2. Einseitig ellipsenvingfirmiger Querschnitt mit konstantem
Axenverhiltnis und variabler Wandstdrke.
(A, = A3 = A =konst,, also 4, — 1, = p=0; e+ o).
In diesem Falle findet man:
2(1 4-) R -
ooy M d=
wobei » = ¢/t und
K (ARt ?y)_(n ) —1) Vit a2 (18]
v\t 4 2»

Zum Schluss sei noch hervorgehoben, dass fiir 1 =1
die Formeln (18) in jene fiir den einseitig kreisring formigen
Querschnitt ibergehen, die schon aus der Literatur bekannt
sind ?). Es ergibt sich somit eine indirekte Bestatigung der
von uns abgeleiteten Gleichungen; auf eine eingehende
Diskussion der erhaltenen Resultate muss aus Raumriick-
sichten verzichtet werden.

2 (1 +9) K
aa® b2 (1 — é‘) (r

My (18)

Tmax —

Lange oder kurze Schwellen ?
Von Prof. Dr -Ing. e. h. ALFRED BIRK, Techn. Hochschule, Prag.%)

1. Die wichtigsten der in der Literatur niedergelegten
A Anschauungen.

Seitdem Dr. H. Zimmermann in seinem 1888 erschie-
nenen Werke wber die Berechnung des Eisenbahnoberbaues
das Verhalten kurzer und langer Schwellen (240 bis 270 cm)
unter den Einwirkungen des Betriebes eingehend unter-
sucht hat, ist diesc wirtschaftlich wichtige Frage nicht mehr
zur Ruhe gekommen.

Zimmermann vergleicht Schwellen von 240, 255 und
270 cm Liange bei nachgiebiger und fester Bettung und
bei gleichmissiger Unterstopfung auf dic ganze Linge hin-
sichtlich der Druckverteilung und der Senkungen und findet
(§ 26), dass die Schwellenenden gegeniiber der Schwellen-
mitte umso friher und um so stirker sich senken, je kiirzer
die Schwelle ist. Wird nun nicht baufig und gut nach-
gestopft, so kdnnen bleibende Verbiegungen der Schwellen
und mithin auch Spurerweiterungen eintreten. Um diesem
Uebel bei kirzern Schwellen abzuhelfen, unterstopft man
die Schwellen in der Mitte weniger fest als an den Enden.
Dadurch wird, wie Zimmermann rechnerisch nachweist,
das Ueberwiegen der Senkung und des Druckes unter den
dussern Teilen der Schwelle zwar beseitigt, aber der Druck
auf die vorher weniger belasteten Teile gesteigert und nament-
lich der Grosstwert der Driicke bedeutend erhoht. Da {iber-
dies die ungleichmissige Unterstopfung das seitliche Aus-
weichen der stark gedriickten Bettungsteile nach der weniger
belasteten Mitte hin fordert und dadurch die dauernde Er-
haltung der richtigen Hohenlage erschwert, hilt Zimmer-
mann dieses Verfahren nur fiir einen Notbehelf und empfiehlt,
den Schwellen die Linge von 270 em zu geben.

In seinem Berichte iber den Bau der Geleise fiir die
V. Session des Internationalen Eisenbahnkongresses (1895)

) Die hier erhaltenen Ergeboisse tinden im grossen und ganzen
ihre Bestitigung in den Arbeiten von Greenkill (,Fluid motion between
elliptic cylinders and confocal ellipsoids”, Quarterly Journal Vol. 16 (1879),
S.227) und A N. Dinnik (,Dic Analogic von Prandtl, der Einfluss cines
radialen Risses bei Torsion der kreis- und kreisringférmigen Welle", er-
Achienen in russischer Sprache in den ,Mitteilungen des Donschen poly-
technischen Institutes”, Nowo-Tscherkask, 1912, I Bd, II. Teil, S, 309),
die beide auf andern Wegen den Einfluss feiner Risse auf die Torsions-
heanspruchuug von Wellen untersucht haben. Greenhill gelangt z. B, in
dem Sonderfalle eines von zwei konfokalen Ellipsen begrenzten Ringes,
bei dem die innere Randkurve zu einem engen Spalt zwischen den beiden
Brennpunkten der Ausseren Ellipse ausartet, zu dem Ergebnis, dass z B,
fir Ellipsen mit dem Axenverhiltnis A 1,2 die maximale Schubspan-
nung auf den sechsfachen Betrag derjenigen der Vollellipse ansteigt, was
mit dem von uns gefundenen Ergehnis ziemlich gut fibereinstimmt,

ausserte sich Baudirektor Ast tber die Schwellenfrage in
nachstehender Weise: ,Ein geeignetes Mittel, die gegebene
Last auf eine moglichst grosse Zahl von Schwellen und
auf eine moglichst grosse Schotterbettfliche zu verteilen,
besteht in der Verminderung der Schwellenentfernung und
in der Vergrosserung der Schwellenauflagerfliche im
Schotterbette. Diese zwei Massnahmen haben jedoch ihre
Grenze; die erste, weil die Moglichkeit der Unterstopfung
gewahrt bleiben muss; die zweite, weil einerseits die
Schwellenbreite nicht zu gross sein darf, wenn man gut
unterstopfen kdnnen will, und weil anderseits die Lange
von der Spurweite abhingt. Die Verlingerung der Schwelle
kann sich natirlich nur auf die Teile erstrecken, die ausser-
halb der Schienenstrange liegen; wenn diese Verlingerung
cine gewisse Grenze tberschreitet, erzeugen die Schienen-
belastungen, die auf die Strecke innerhalb der Spurweite
einwirken, eine Ueberhdhung der Schwellenenden und die
tberflissig langen Schwellenteile tragen nicht mehr.*

In seiner Abhandlung i{iber die Eisenbahnschwelle
und ihr Auflager (Bulletin de la Commission Internationale
du Congrés des chemins de fer 1895) spricht Ast die An-
schauung aus, das der Bettungsdruck 2 kg/cm? nicht {iber-
schreiten diirfe und dass fir Geleise, die grossern Anfor-
derungen ausgesetzt sind, statische Bettungsdriicke zwischen
1,66 und 1,80 kg/cm?, wie die Schwelle von 22 cm Breite
und 270 cm Linge sie ergibt, noch hoch genannt werden
miissen, weshalb er die 22 cm breite Schwelle beim Geleise-
bau fiir Bahnen mit lebhaftem und beschleunigtem Verkehr
fir wirtschaftlich nicht verwendbar hilt. Als wirksamstes
Mittel zur Verminderung des Bettungsdruckes - und mithin
der Erhaltungs- und Regelungskosten der Geleise erklart
Ast auf Grund seiner Berechnungen und Beobachtungen
die Verwendung langer Querschwellen (270 cm) an Stelle
der kurzen Schwellen (240 cm). Die mittlere Schwelle
von 250 cm Linge ist — sagt Ast — je nach der Breite
verschieden verwendbar. Bei der Breite von 22 cm ent-
stehen Bettungsdriicke, die dem Grenzwerte von 2 kg/cm?
sehr nahe sind und daher von dem Geleise der Haupt-
bahnen auszuschliessen seien; die Schwelle von 26 cm Breite
wird bei Fahrzeugen mit grossen Radstinden und steifer
Geleiseanordnung, die hochstens 4,2 t Schienendruck her-

?) A, und L. Féppl, Drang und Zwang, Band II, Seite 117,
) Das Erscheinen dieser Arbeit hat sich ohne Schuld des Verfassers
unlichsam verzdgert. Red.
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