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Höhe. — Konkurrenzen: Reconstruction de la Mo=quee d'Amrou au Caire. — Literatur.
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Zur Festigkeitsberechnung von Hochdruck-Kesseltrommeln.
Von Prof. Dr. E. MEISSNER, Zollikon bei Zürich.

In jüngster Zeit werden durch die Firma Krupp u. a.

nahtlos geschmiedete Hochdruck-Kesseltrommeln aus Flusseisen

und Nickelstahl ausgeführt, die beträchtlichen
Innendrucken (bis 120 kg/cm) und Temperaturen bis über 4000 C.

ausgesetzt sind. Sie bestehen aus einem zylindrischen Teil,
der an beiden Enden durch Halbkugelschalen abgeschlossen
ist. Für ihre Berechnung fehlt es einstweilen an einer
sichern Grundlage 1). Der nachstehende Aufsatz sucht dazu
einen Beitrag zu liefern. Er behandelt die elastische
Aufgabe zunächst unter Annahme konstanter Wandstärke,
konstanter Temperatur und undurchlochter Halbkugeln. Dabei
zeigt es sich, dass zwar grundsätzlich die von mir entwik-
kelte2) Theorie der elastischen Kugelschale herangezogen
werden muss, dass sich aber eine durch sie kontrollierbare
Näherungslösung verhältnismässig einfach angeben lässt,
die auch für noch recht dicke Schalen genau genug ist.
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1. Die Annalunen der Scltalcnlheorie über die Spanuungs-
verteilung.

Eine Schale von der Form einer Rotationsfläche mit
rotationssymmetrischer Belastung sei gegeben. Ihre
konstante Wandstärke sei H=7.Ii. In Abbildung 1 sei Pein
Punkt im Abstand OP e von der Schalenmittelfläche
(2 positiv nach innen gemessen), nzl bezw. azi seien die
Normalspannungen auf ein Element, das normal zum Meridian

bezw. Breitenkreis liegt, e»i und ezi seien die
zugehörigen Dehnungen. Für die Normalspannung wird lineare
Verteilung über die Schalendicke vorausgesetzt

0*1 ffoi 4- X, s on o0« +''is • • (0
Es bestehen im Normalschnitt zum Meridian auch

Schubspannungen r in der s-Richtung.
Wir fassen zweckmässig die Spannungen, die auf ein

Stück der Länge 1 längs eines Breitenkreises bezw. Meridians
wirken, zu resultierenden Kräften und Momenten zusammen.
Es ergeben sich die resultierenden Normalkräfte (Abb. 2)

+ *
Ti J^i ¦ i • ds -= nllt ¦ ah T Ont ,1:

und die Biegungsmomente pro Längeneinheit
-M

Gi \Ozx r e • 1 • de Xt 2'_ G8 h
3*8

3
— h

sowie eine resultierende Schubkiaft Nx im Normalschnitt
zum Meridian; für den Nonnalschnitt zum Breitenkreis ist
sie aus Symmetriegründen null. Umgekehrt ist die mittlere
Normalspannung

7; T7
"01 =^7r- °M= 21,

¦ ¦

die Biegungspannung der äussersten Faser
1 F, 3 F.

OH, -- lh, Oht- JjjT ¦

und somit die extremale Normalspannung
'J\ 4. 3d, ,,„_... j_ iG,
2/1 —

" th*
bezw. ±— 2 li2

(a)

(3)

(4)

') Ich verdanke den Hinweis auf das Problem dein Obcringcnicur
des Schweizer. Verein« von DampfkesaclbcsiUcrn, Herrn E. Höhn.

*) Physikalisehe Zeitschrift 14. Jahrgang, 1913, Seile 343 bis 34g.

2. Die Formeln für die Zylinderschale.
Wir werden es im folgenden vor allem mit einer

Zylinderschale zu tun haben. Sie habe den Halbmesser a.
Es sei x die Koordinate gemessen längs einer Erzeugenden.
Die Ableitungen nach x werden durch Akzente bezeichnet.

Seien u{x), w(x) dieVerschiebungen eines Punktes O(x)
der Mittelfläche (Abbildung i) in der Richtung der
Erzeugenden und normal zur Fläche in der -f- s-Richtung bei
der Deformation. Alsdann gibt das Hooke'sche Gesetz in
Verbindung mit der Annahme, dass Flächennormalen
gerade und normal bleiben '), die folgenden Beziehungen
zwischen den Spannungen und den Verschiebungen:

T^mA->AYT>=m(-^+A\.
C, - D zv" ¦ D w"

(5)

-«

t t t t t t 1 t t

1,0
*-

-< Miiiim »-

Abb 3
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Hierbei ist E der Zugmodul,
)¦ die reziproke Poisson'sche
Zahl, und D, die sogenannte
Schalensteifigkeit, ist
gegeben durch

2 FI13D= (6)
3 (l — V»)

Beschränken wir uns auf den Fall, dass die Belastung
aus einem konstanten Innendruck p besteht, so ergeben
die Gleichgewichts-Bedingungcn für ein Schalenelement

7y konst =7~10; Nj Gi — Dzv'";-

Man findet daraus
¦¦

-f- 4 X* w

Ni'—p o (7)

w -("?--')--- 3(« -*2>
IJ \ a ' 1 4'! "

oder indem man £ Xx einführt und Ableitungen nach

mit Punkten bezeichnet:
2,1-

(8)

4 zv Fit (m->)
Diese Gleichung hat die spezielle Lösung

(m-p)2 Fit

(8')

(9)

+ (10)

(10')

und ihre allgemeine Lösung lautet
zv w2 -\- ax «* cos | -\- fla e' sin

-f- ae f - cos ;4-<7( r~- sin £

oder anders geschrieben
w wz 4- 6, ch (|) cos £ \ bi sh (|) sin f 4-

-f- bs ch (f) sin £ + bt sh (£) cos J

Die Lösung wt gehört zu dem in Abbildung 3
skizzierten Belastungsfall: Innendruck p und Axialzug 7"10 an

den sonst freien Rändern. Das Glied '-—- gibt die Aus-
2 Eh

weitung des Zylindeihalbmessers durch den Druck und
berechnet sich auch leicht aus der sogenannten Kcsselfor-

mcl. Das Glied —~r- stellt die radiale Kontraktion dar,
2 Eh

die sich wegen des Axialzuges 7"10 einstellt. Der Zylinder
bleibt bei dieser Deformation Kreiszylinder. Nur der Radius
geht von <7 nach a zv..

Im allgemeinen werden an den Zylinderrändern
andere Bedingungen als diese herrschen. Zu wz treten dann
die in (10) gegebenen veränderlichen Glieder. Die Zylinder-
Erzcugcndc geht über in eine Kurve, die nach (10) die
Form einer gedämpften Schwingungskurve hat. Die Berg-

Love.
') Die Theorie"dcr elastischen Schalen ist entwickelt von A E H.
Klasticity (1906).
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bezw. Talbreite einer Schwingung ist dabei, dem Wert
f » entsprechend, gegeben durch

*=W'=«V4*y-Tö^ • •(ii)
In den mir vorliegenden Fällen ausgeführter Trommeln

variiert — von J/16 bis \/49, y - also von J/4 bis >/7. Nimmt

man etwa v 0,3, so folgt, dass L/a zwischen 0,5 und
0,85 liegt. Die Wellenlänge L ist also für normale Schalen
nur ein Bruchteil des Zylinderhalbmessers, und zwar ein
umso kleinerer, je dünner die Schale ist. Nach (10) klingt
w vom Schalenrand nach Innen rasch ab. Eine Wellenlänge

L vom Rand entfernt ist z. B. das Glied e~ *
cos £

vom Wert 1 schon auf den Wert e~" — 0,043 gesunken.
Analoges gilt für it.

Die am Rand angreifenden Kräfte haben also auf die
Zylinderteile, die um mehr als den Halbmesser von ihm
entfernt liegen, praktisch keinen Einfluss mehr. Ein schmales
Gebiet längs des Randes nimmt die Randkräfte auf; es ist
umso schmäler, je dünner die Schale ist.

Bei den erwähnten ausgeführten Trommeln ist die
Zylinderlänge stets ein Vielfaches des Halbmessers. Man
kann sich daher die Rechnungen abkürzen, indem man
bei der Untersuchung der von den Randkräften herrührenden

zusätzlichen Spannungen, den Zylinder nach der
einen Seite unendlich lang annimmt, da er ja ohnehin
weiter innen überhaupt nicht beansprucht wird. Verlegt
man den Schalenrand nach £ x o, so hat man dann
in (10) <?i ss a2 o zu setzen.

Ein besonderes Beispiel, das nachher gebraucht wird,
soll näher ausgeführt werden.

J. Die am Rand durch Radialkräftc beanspruchte
Zylinderschale.

Der Zylinderrand sei frei und werde durch nach
aussen gerichtete, gleichförmig über den Umfang verteilte
Schubkräfte Nl0 kg/cm beansprucht (Abbildung 4). Wir

Abb 4

fl-.Tä'D

Abb.6

können hier von Innendruck und Axialzug absehen, dl
wir diesen Fall durch Uebcrlagern der Teillösungen nach
träglich leicht behandeln können. Nach (10) ist

w a3 e~s cos £ -|- aA e~* sin £

w =Xw Xe—E [(— a3 + at) cos £ — (a3 4" at) s'n f]
zv" X*w 2 X1 e~ s [ aA cos £ -)- «8 sin I]

v/"=aXPw-z=2k*e-*[(at 4-fl4)co8|4-(—ffB4-«*)sinf]
Für | o ist

(C,)o — D{w")a m, O (M)o - Mo D(*'")<,
Das liefen N

a4 o ff3 ^hTF" • • • ('2')

(12)

2/n3
mithin

w - ¦"»¦¦e-t
2 DX»

IV
COs£;«/ 4- '",,«~f (cos £ 4 sin £);

d — ^e-feiat; A, /Vl0* *(cosf-
:>3)

Für die Biegungspannungen an der Innenseite der Schale
ergibt sich wegen (3)

Jüa-e-ftine bezw. 0«, co»,"Al 2/(8 2*A«
JT /.Sie erreichen, da, wo Nt — o ist, also für £ — x -
4 4

ein Extrcmum, nämlich

—— r bezw. —e (14I
2 V 2 A *» 2\/2;j'

In Abbildung 5 findet man diese Resultate graphisch dai-
gestellt.

\\ \ s,\ :

N,0
X

4-n,
1*10

OF- T

Abb. 5

Die Durchbiegung am Zylinderende wird
KT

Mo —m- fis)
und die Neigung t0 der Meridiantangente ist dort gegeben
durch

*tb=(«Os—^ (16)

./. Z?W Trommel.
Wir betrachten jetzt das Gebilde, das entsteht, wenn

wir die Zylinderschale durch eine Halbkugelschale ab-
schliessen. Wie erwähnt, darf auch hier der Zylinder nach
dereinen Seite unendlich lang genommen werden. (Uebrigens
ist diese Annahme nicht nötig, nur rechnungskürzend).

Wie für die Zylinderschale die einfache Lösung w.
besteht, so gibt es auch für die Kugelschale mit Innendruck
eine elementare Grundlösung Wt, die allseitig symmetrische.
Man hat dabei gleichförmig über die Schalendicke verteilte
Zugspannungen o0, die sich analog zur Kesselformel aus
den Gleichgewichts-Bedingungen für eine Schalenhälfte
ermitteln lassen (Abbildung 6). Der resultierende Innendruck
auf eine Halbkugel ist gleich pa-n, die Resultierende der
Spannungen am Rand gleich n0 ¦ 2 h ¦ 2 na. Durch Gleich-

P°-

\h
setzen folgt na

wird nach (2)

und die Zugspannungsresultierende

Ferner ist die

7V

spez.

• • • C7)

Dehnung in Richtung eines

Grosskreises gleich ° — v~y entsprechend dem in seiner

Richtung wirkenden Zug und der vom Ouerztig herrührenden

Kontraktion Aber wenn Wk die wieder nach innen
positiv gerechnete Normalverschiebung eines Punktes der
Mittelfläche bedeutet, so ist diese Dehnung auch gleich

2 jt (a — wk) — 2 7t a w/,

2.tö a

Hieraus folgt

„,= "*(¦-"> =_ '* '-» (l8)I: Eh 4
Das negative Zeichen sagt aus, dass einem Innendruck
eine Verschiebung nach aussen entspricht.

Nunmehr sollen Kugel- und Zylinderlösung zur Lösung
für die Trommel zusammengesetzt werden.

An der Uebcrgangstelle müssen übereinstimmen
n) die Spannungsresultierenden F,, A,, G,
ß) die Radien der deformierten Schalen
y) die Neigungen der deformierten Meridiantangenten.
Wir setzen a) entsprechend in der Zylinderlösung w„ für
7~i0 den der Kugcllösung entsprechenden Wert —
dann wird

P"* ' / »\
Eh t1'--t) ' • •

Jetzt zeigt der Vergleich mit (18), dass die Ausweitung
des Zylinders bei dieser Lösung grösser ist, als die der
Kugel im Verhältnis

1 / v \ 1 — v 2 — v[l : rsj 2,42 \ 2 4 1 — r ^

Wären beide gleich, so läge die Lösung für die Trommel
bereits vor, da die andern Bedingungen a), ;•) erfüllt wären.
Weil dies nicht der Fall ist, so werden die zwei Schalen

Als-

(•9)
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an ihrem gemeinsamen Rand nicht nur Zug-, sondern auch
Schubkräfte A,0 und Biegungsmomente G10 aufeinander
übertragen, und A10 und G10 müssen solche Werte haben,
dass unter ihrer Wirkung der Kugelrand noch weiter nach

aussen, der deformierte Zylinderrand nachträglich wieder
etwas nach innen gebogen wird, bis die Schalenränder
zusammenkommen und mit stetiger Tangente ineinander
übergehen.

Die Bestimmung dieser zusätzlichen Randkräfte macht
die Schwierigkeit des Problems aus. Denn sie ist offenbar
nur dann genau auszuführen, wenn die von Nl0 und G,0

herrührende Deformation auch für die Halbkugelschale
berechnet werden kann.

j. Die Näheruugslösung für die Trommel.

Man kann diese Schwierigkeit umgehen, wenn es

sich um nicht allzudicke Schalen handelt. Wir wissen, dass
sich dann für den Zylinder die Wirkung von N10 und G,0
auf einen schmalen Randsaum beschränkt. Es wird daher

gar nicht darauf ankommen, welche Form und Steifigkeit
die Schale ausserhalb dieses Randsaums besitzt. Man kann
sich vorstellen, dass, statt zylindrisch zu verlaufen, sie
sich ausserhalb des Randsaums halbkugelförmig zusammen-
schliesst, und man gelangt so zu der Auffassung, dass auch
für die Halbkugelschale die Wirkung der Randkräfte auf
ein schmales Randgebiet beschränkt sein wird. Dieses
seinerseits kann wieder ersetzt gedacht werden durch eine

Zylinderschale gleichen Halbmessers, deren Theorie man
beherrscht, und die Kugelschale kann so eliminiert werden.

Indessen ist klar, dass diese Schlüsse ziemlich kühn
sind. Für ganz dünne Schalen werden sie sicher nicht
weit von der Wahrheit abweichen. Aber schon die
angestellten Ueberschlagsrechnungen zeigen, dass die praktisch
vorkommenden Schalendicken derart sind, dass diese Näherung

nicht ohne Kontrolle verwendet werden darf. Sie
wird weiter unten (unter 6) besprochen, und die genauen
Resultate werden angegeben. Sie zeigen, dass die Näherung
viel besser ist, als zu erwarten war und für gewöhnliche
Fälle genügen dürfte. Unter den besprochenen
Voraussetzungen ist jetzt folgende Aufgabe zu lösen:

Zwei zylindrische Scha-

^s len I und II sind gegeben.
U" Die den Kugelrandsaum
j-1 repräsentierende Schale I

hat den Halbmesser r a
— Wk, die Schale II, die
ursprüngliche Zylinderschale,
hat den Radius r a— W,.
Die Schubkraft £= — A10>)
und das Biegungsmoment
GJ0 (Abbildung 7) sind so
zu bestimmen, dass die
Zylinderränder mit stetiger
Tangente aneinander an-
schliessen. Der Sinn der

Schubkraft und des Momentes ist noch unbekannt; jedenfalls

aber ist er nach dem Gesetz der Wechselwirkung für
die beiden Zylinder entgegengesetzt.

Wir fügen die Bemerkung hier ein, dass in allen
Fällen, wo nicht gerade ihre Differenz in Frage kommt,
die beiden Zylindcrhalbmesser als gleich und gleich a

angenommen werden dürfen, da ja zvk und ivz neben a

verschwindend klein sind.
Der Unterschied der Radien beträgt

Pa%
1 ->

wk — w, — ' (20)
4 11 n

Nun wird aber Zylinder I durch die Schubkräfte Q

am Rand ebensoviel nach aussen deformiert, wie II nach

innen, und die Schiefstellung der Meridiantangente ist die
gleiche, da ja bei beiden der Unterschied nur in der Richtung

von Q besteht. Dagegen würde ein Biegungsmoment
G10 die Tangenten in verschiedenem Sinne drehen. Da
der totale Verdrehungswinkel für I und II gleich sein soll,

') Wir riehen vor, die Schubkraft ihrem wahren Sinn nach ciniufüliren.

._?£:,

Abb 7

so folgt hieraus G10 o. Die Schalenränder übertragen
kein Biegungsmoment aufeinander.

Nunmehr bleibt nur Q so zu bestimmen, dass jeder
Schalenrand um

1 Pa*'/. SEh

durchgebogen wird
pq> Q

8 Eh' ' 2 ZU»

{l»k

Man hat nach (15) mit Q — — N10

mithin Q pa* Dl? pi (21)
4 Eh

'

8A

Jetzt erhält man nach den Gleichungen (13), (19),
21) für die Deformation des Zylinders

—) 4- —p-
2 )^ 16 zu«

rir- -
zv ¦

2 Eh
P-a* I
lTA\

7- e- "* cos £

cos £2Bh V 2 ; l* 4-2,. " -w-*j • (22)

und nach (2), (3), (4) für die grössten Normalspannungen

Oftl

C>ll2

P"
4A

P«
2h

3 g,
2 h*

P»
4* [ ~r 3

1 4 ay(i_„»)3

^ —~ 1 + 0,908 e~* sin

1 sin 1

+ 3"C7,
2/j2

P"
~ 2h

P"
2/7 m 3»' "fsin £

(23)

4V3 (1—*«)
1 ~P 0,136 e—f sin £

Das obere Zeichen gilt für die innere, das untere für die
Aussenseite der Zylinderschale.

Die grössten Spannungen treten da auf, wo die

Schubkraft Nx null wird, nämlich in £ —d. h. .v —
4 4

und zwar an der Aussenseite. Mit v 0,3 betragen sie

"Al
pa°-323^~ Oh. 0,522

pa

Die nach der Kcsselformel berechneten Ringspannungen

0,5^7— werden also nur um etwa 4 °/0 überschritten, dagegen

treten normal dazu Biegungspaiiuungen o/n auf, die die
meridionalen Zugspannungen o0i um etwa jo°/ü überschreiten.
Der Umstand, dass trotzdem die Ringspannungen beträchtlich

grösser sind, vermindert die Bedeutung dieses letzten
Resultates. Die Durchbiegung am Zylinderrand beträgt
nach (15), (21) P*

0 &£h
Der Vergleich mit (19) zeigt, dass sie etwa das oj-facitc
der Radialvcrscliiebuug in der Mitte beträgt.

Eigentlich wären jetzt noch die Spannungen in der
Kugelschale zu berechnen. Aber die durch den Innendruck

erzeugte gleichmässige Spannung ist nur halb so gross,
4 *

wie die entsprechende Ringspannung im Zylinder, und
die zusätzlichen Spannungen sind in beiden Fällen ähnlich.
Für die, die Festigkeit bestimmenden Spannungen wird
also nur der Zylinder in Frage kommen. Die Kugelschale
ist eben beträchtlich steifer.

6. Zur genauen Theorie.

Um die Näherungstheorie zu kontrollieren und um
genauere Formeln für dicke Schalen zu erhalten, wurde
die Theorie der Kugelschale2) zugezogen.

Die Berechnung scheint zunächst praktisch kaum
durchführbar, da dort schlecht konvergierende hypergeo-
metrischc Reihen vorkommen. Indessen zeigt sich der
glückliche Umstand, dass zur Bestimmung der am Rand
übertragenen Schubkraft QQ und des (jetzt nicht mehr
verschwindenden) Biegungsmomentes G10 nur die Werte der
hypcrgcomctrischcn Funktion für das Argument 1 nötig
sind. Diese aber kann man nach Gauss durch Gamraa-
funktionen ausdrücken, und letztere lassen sich durch die

sogenannte S/irliug'sche Formel mühelos berechnen, da
ihr Argument gross ist. So kommt man auf einem nicht
ganz kurzen Weg zu einem einfachen, praktisch gut
anwendbaren Resultat.

Wir skizzieren im folgenden den Rechnungsgang, um
dem Kundigen die Möglichkeit der Uebcrprüfung zu geben.

') Siehe Fuaanotc 2, Seite 1.
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7. Der Gang der Rechnung.

Der von zwei Halbkugelschalen abgeschlossene
Zylinder wird von endlicher Länge / vorausgesetzt; es zeigt
sich später freilich, dass diese Länge praktisch keine
Bedeutung hat, sobald sie wesentlich grösser ist, als der
Halbmesser. Der Symmetrie des Problems entsprechend
wird der Anfangspunkt .v 0 in die Mitte des Zylinders
verlegt. Man hat jetzt für die Normalverschiebung

iv =tf,-f b, ch (£) cos (£) -+- b2 sh (£) sin (£) (24)
da die Lösung eine gerade Funktion von £ sein muss.

Für die Kugelschale wird zu als Funktion des Winkels
a (Abbildung 7) aufgefasst. Es sei

A2_. 3(i—«¦)«• 3(i->'2)«2
h' h*

lV )/5^4ik IV
ft — w

4 ' "

_

4

Man bilde die komplexe hypergeometrische Funktion
sin a F(at, ß,, 2, sin2 a)

sin a 1
«,,3, sin2 a

«1 ßi («1 + ') ißt 4 O

2! 3!
sin* a

+ «1,3,(al + .)(;i, + .)(a, + 2)(,a, + 2)
siQg a + »^+ .^

3^4! I

Vi und F2 sind reelle Funktionen von a. Die Verschiebung

w wird jetzt
w a* +Ci(~—-+WtgaVi)-\-ci( "u

2 |a)tga FgJ

wobei schon berücksichtigt ist, dass die Schalen undurch-
locht sind.

Die vier Konstanten b,, b2, cu c2 sind aus den
Forderungen a), ß), y) des Anschnitts 4 zu bestimmen, die
folgendermassen lauten :

T, — 7", o G, — G, o Ä, + Ar, o w — w o
1 ^w

; h W O
a 0 a

Es beziehen sich die überstrichenen Grössen auf die
Randwerte der Kugelschale (a rt/a), die unüberstrichenen
auf die Randwerte der Zylinderschaie. Sie liefern folgende
Gleichungen:

Ci Q, 4- c2Oi — 6, Cc — faSs P^
IL Eh

c. (vQ. -FkQ2) + c2{vQ2-kQ,) +
4- 61 • 2 i'2 rt2 S s — b-, ¦ 2 i'2 a- C c o

<r1(-Pt-\-kPt) — ct(kPl f A)4-
4- f5, v a (Sc — Cs) 4- 6j r rt (Sc 4- Cs) o

c, F, 4- c2 P2 4- Ä,
3 (¦-"')S (5c+C. ;/*2

2 V3

3('-"2) (Sc — Cs)ah* o

(25)

W

wobei abkürzend gesetzt ist:

c=ch(yi) s-*(,-i.
P,-V,(i)i.._r,(i)ß=(^.)?ö.i.(^.)f

S= sin

Nach Gauss ist

r<2) r(«/,) V»
/•(2~«,) r(j — ß)

ö] 4-* £?2 'ini 2 cos " ^"

F(2-a,) r(2--ß,) '

2 v *
/>,) /V.)

und die Berechnung dieser Ausdrücke geschieht so: Man
setze

W V5 + 41A p + i q

p 4- I ig p — l ig
z 1- —

4 4
Z, 4-

4 4 '4und beachte im folgenden die für die Gammafunktion
geltenden Relationen :

I'(z-\- i) zl'(z) /'(s)/'(t— z)

Es wird
ro»(7t8,) l'(zt)

p und q sind für dünne Schalen grosse Zahlen, weil dam

•in (jt «)

iP%-

k gross ist. Deshalb kann die Stirh'ng'sche Formel als
asymptotische Entwicklung verwendet werden:

ig/»^o V8)lg*
I

+igV
12 2 360»' I26025

Praktisch wird dabei schon das letzte der angeschriebenen
Glieder nicht mehr von Bedeutung sein.

Es empfiehlt sich, alle vorkommenden Grössen nach
Potenzen der kleinen Grösse

1

V
\J2k

zu entwickeln. Ich verzichte darauf, die umständlichen
Ausdrücke für Pv P2 herzusetzen. Aus ihnen ermittelt man
die Q direkt. Denn es ist

(A+»/>.) (0i 4-'öa)
Aber

i\ra
F{2

(i — «,) r(]

^(«1) F(ß.)

(r — a.) 7

/ je W \ 1

/'(2-a,) />,)
woraus

Auch die Auflösung der Gleichungen (25) lässt sich
allgemein durchführen. Setzt man die so erhaltenen
Reihenentwicklungen für bl und bt in (24) ein, verlegt man
hierauf wie früher den Koordinaten-Anfangspunkt £ o nach
dem Rand des Zylinders und ersetzt man, was völlig
zulässig ist, die hyperbolischen Funktionen durch den einen
Exponentialteil (was auf die Annahme eines unendlich
langen Zylinders führt), so erhält man Formeln, die sich
mit den früher erhaltenen, näherungsweise geltenden, ohne
weiteres vergleichen lassen. Da die Theorie der Kugelschale

hier nicht entwickelt worden ist, führen wir nur
die Ergebnisse für die Zylinderschale an.

S. Die Resultate der genauen Theorie.
Man berechne

k l 3 0 und 1f *• ~™ '' +y/AF
Ferner die schnell konvergierenden Reihen:

0=1-1 (•/,

V

(7*4-

V
-)•7' 1

283
5

4
/ 1

160 ^

I •-7« >;2 4- fsA + "
2«3_

l6o n

V* — >•) >]< ¦
283

320
Ä ¦

V 1 — 1

¦2>12--(V: G + V
>il ¦)

Dann ergibt sich die an Stelle der angenäherten Beziehung
(22) tretende Formel für die Normalverschiebung

X
VI

2 Eh

(d2 cos £

f) X
t). sin £) e~

(4 — 2 r) <l> v"2 " ' '

Vernachlässigt man die für dünne Schalen kleine
Grösse ij, so erhält man genau die Formel (22) der
Näherungstheorie. Da die erste Potenz von ?/ in allen Reihen
fehlt und für Schalen normaler Dicke )/ kleiner als 0,1
ist, so folgt, dass der Fehler der Näherungsformel höchstens
von der Grbssenordnung eines Prozentes ist.

Nach (5) wird das Biegungsmoment
G1 — D zv"

Dpa'X'
Eh

1 — —r-r- (>% sin J
V 2 / (4 — 2 v) 0 v - 5j cos

Es wird am Rand nicht mehr genau gleich null, sondern
nimmt dort den immerhin sehr kleinen Wert

CA + ")Q _ V/4-T " h%U10 24(>— »>)P

an. Man ersieht auch hieraus, dass die Näherungsannahmen
den Tatsachen sehr gut gerecht werden.

9. Schltissbcmerkungen.
Für die praktische Festigkoitsbcrechnung der Trommel

sind einige in unserer Theorie nicht beachtete
Umstände zu berücksichtigen. Zunächst ist mindestens eine
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der Halbkugelschalen durchlocht. Die Kugellösung ist
dann allgemeiner, als die oben verwendete. Es treten zwei

neue Integrationskonstanten auf, und weitere Bedingungen
am Lochrand. Die Berechnung ist auch jetzt noch möglich,

wenn sie auch umständlich wird. Ich verweise auf
die Dissertation Bolle'), wo derartige Fälle behandelt sind.

Ferner sind bei Hochdrucktrommeln die Temperaturspannungen

zu berücksichtigen. Für die Zylinderschale
sind die zugehörigen Rechnungen durchgeführt2). Man
kann die Theorie für beliebige rotationssymmetrische Schalen
entwickeln, wenn man beliebige, aber rotationssymmetrische
Verteilung der Temperaturen an der Innenseite und
Aussenseite der Schale und linearen Temperaturabfall über
die (kleine) Schalendicke voraussetzt.

Sehr viel schwieriger zu behandeln sind Abweichungen
der abschliessenden Schalen von der Kugelform, und
Veränderungen der Wandstärke. Man wird hier zu einer halb

experimentellen Bestimmung Zuflucht nehmen, indem man
etwa die Dehnungen an der Aussenseite der Schale misst.
Die Festigkeitsaufgabe ist hierauf durch Quadraturen lösbar.

Ueber den Aufbau und Charakter der Kosten
von Eisenbahnbetrieben.

Von Dipl. Ing. ALFRED WALTHER, Zürich.

Unter dem „Charakter der Kosten" versteht man
deren Verhalten bei wechselndem Beschäftigungsgrad. In
den „Grundzügen industrieller Kostenlehre"8) haben wir
versucht, das Problem der Abhängigkeit der Kosten vom
Beschäftigungsgrad näher zu umschreiben und die
grundlegenden Begriffe zu ordnen. Absichtlich sind wir dabei
jeder Spezialuntersuchung aus dem Wege gegangen, denn
es lag uns daran, das verwickelte und noch recht wenig
erforschte Gebiet der industriellen Kostenlehre einmal ganz
allgemein darzustellen, um dadurch weitern Untersuchungen
den Weg zu ebnen. Erfreulicherweise ist unser Versuch —
wenigstens im Ausland — auf viel Verständnis gestossen.
Man hat erkannt, dass die bisherige Behandlung des
Kostenproblems, die über die richtige Verteilung der Produktionskosten

auf die einzelnen Produkte eines Betriebes nicht
hinauskommt, für wichtige Aufgaben, vor allem für die
Preispolitik unzulänglich ist. „Aus der Erkenntnis dieser
Unzulänglichkeit", schreibt Generaldirektor Herbert Peiser*),
„entsteht eine neue Betrachtungsweise, die die Kosten der
Erzeugung in ihrer Abhängigkeit von dem jeweiligen
Beschäftigungsgrad zu erfassen sucht, ausgehend von der
Ueberzeugung, dass nur durch Ergründung dieser
Zusammenhänge eine für das einzelne Unternehmen und für die

Allgemeinheit vorteilhafte Preis- und Geschäftspolitik möglich

ist. Jede nähere Untersuchung zeigt, dass sich mit
dieser Betrachtungsweise neue, ungemein interessante /lus-
blicke eröffnen, die vielleicht geeignet sind, allmählich das

ganze industrielle Kostenproblem in ihren Bann zu zwingen"¦
Wir stehen erst am Anfang dieser Entwicklung und es

bedarf nun vor allem intensiver Spezialuntersuchungen auf
den verschiedensten Gebieten der Industrie, um dem weitern

Ausbau der noch in den Anfängen steckenden
allgemeinen Theorie die nötige Nahrung zu geben.

Peiser hat in seiner vorerwähnten Arbeit4) Aufbau
und Charakter der Kosten einer Dampfkraftanlage analysiert;

in seiner letzten Veröffentlichung r>) greift er das
Problem der Abhängigkeit der Kosten vom Beschäftigungsgrad
auf Grund des Ford'schen Buches von der volkswirtschaftlichen

Seite an.

') L. Bolle, Fcsligkcilsbcrcclinung von Kiigclachcihcn. Dissertation
Zürich 1916. Auch „S. B. Z.", Bd. 66, S. 105 u. 1 11 (28. Aug./4. Sept. 1915)'

*) Vergl. etwa: //. Lorenz, „Techn. Physik", Bd. IV, MUnchen 1913
§ 60, Seite 583.

') „S. B. Z.", Bd. 81, April/Mai 1923. (Auch als Sondcrabdnick
erhältlich.) Red.

*) H. Fciser, Der Einfluss de» Beschäftigungsgrade« auf die industrielle
Kostenentwicklung. Julius Springer, Berlin 1924.

<•) 11. Fciser, Fragen zur Produktionsstcigcrung im Lichte Ford'schcr
Ziffern. „Technik und Wirtschaft", 18. Jahrgang, Heft 2, Februar 1935.

Uns reizt es nun auch, die allgemeine Theorie an
einem Spezialfall — und zwar dem Gebiet der Eisenbahn-
Selbstkosten — zu erproben und, indem wir auf einige
interessante Eigenschaften dieser Kosten aufmerksam machen,
die Verwendbarkeit der Theorie zu zeigen.

/. Der Einfluss der Elektrifikation auf den Charakter der
Zugförderungskosten der S. B. B.

Der Bericht der Generaldirektion der S. B. B. an den
Verwaltungsrat vom 30. Juni 1924 über „Die Wirtschaftlichkeit

des elektrischen Betriebes im Vergleich zum
Dampfbetrieb" enthält ein ausserordentlich interessantes und
aufschlussreiches Zahlenmaterial über die Abhängigkeit der
Eisenbahnselbstkosten vom Beschäftigungsgrad. Es ist in
dieser Zeitschrift bereits veröffentlicht und, allerdings von
ganz anderem Gesichtspunkt aus, besprochen worden1).
Wir können uns also auf jenen Artikel beziehen und uns
eine nochmalige Wiedergabe und Erläuterung der zahlen-
mässigen Grundlagen unserer Untersuchung ersparen.

Die in dem vorerwähnten Bericht enthaltenen
Zahlenangaben, die eigentlich nur zur Ermittlung des „Paritätspreises

der Kohle" dienen, gestatten uns, mit wenigen
ergänzenden Annahmen, das in mehrfacher Beziehung
lehrreiche Bild der Zugförderungskosten graphisch darzustellen
und so einen Ueberblick über Aufbau und Wachsen dieser
Kosten bei Dampf- und elektrischem Betrieb zu gewinnen.

Betrachten wir zuerst die „festen", vom Beschäftigungsgrad

unabhängigen Kosten. Hier spielt, bei elektrischem
Betrieb, die Verzinsung und Erhaltung (Tilgung und
Erneuerung) des Kapitals mit g£ — 42,72 Mill. pro Jahr eine
sehr gewichtige Rolle, während der entsprechende Aufwand
bei Dampfbetrieb, einschliesslich der geringen Mehrkosten
des Bahnunterhalts, nur die Höhe von gD 4,875 Mill.
erreicht. Bedienung und Unterhalt sämtlicher elektrischer
Anlagen, kosten a£ 4,376 Mill. Fr. Auch diese Kosten
sind wohl zum grössten Teil unabhängig vom Grad der
Beanspruchung des Verkehrsunternehmens. Ein Gegenposten

findet sich hier beim Dampfbetrieb nicht.
Die Ausgaben für Führung, Bedienung und Unterhalt

der Triebfahrzeuge Ce und cd, wie auch die übrigen noch
zu erwähnenden Kosten sind abhängig vom Grad der
Beschäftigung, der im Bericht der Generaldirektion in Brutto-
Tonnenkilometern und Zugskilometern ausgedrückt ist.
Ueber den Verlauf der Kostenlinie bei wachsender
Beschäftigung gibt der Bericht leider keine direkte Auskunft,
da er sich auf einen ganz bestimmten Beschäftigungsgrad
von 9,2 Milliarden Bruttotonnenkilometer (Verkehr 1913)
konzentriert. Wir sind daher auf eigene Schätzung
angewiesen und irren wohl nicht in der Voraussetzung, dass
auch diese Kosten nicht von o aus ansteigen, sondern
sich aus einem festen und einem proportional steigenden
Teil zusammensetzen, denn auch bei kleinster Beschäftigung

entstehen erhebliche Kosten, schon deshalb, weil ja
ein grosser Teil der Züge, unbekümmert ob besetzt oder
nicht, immer geführt werden muss. Nehmen wir einmal

ganz roh an, dass ungefähr 70 °/0 der fraglichen Kosten
immer vorhanden seien und nur 30 °/0 von der Tonnen-
Kilometerzahl direkt abhänge, so erhalten wir bei elektrischem

Betrieb zwei Werte, die unsere Kostenlinie bestimmen

: 15,5 Mill. bei Beschäftigungsgrad o und 22,594 Mill.
bei Beschäftigungsgrad 9,2 (9,2 Milliarden Brutto-tkm), und
bei Dampfbetrieb entsprechend 21 Mill. und 28,983 Mill.

Beim elektrischen Betrieb sind dann noch die Kosten
für Fremdstrom unter Abzug der Einnahmen aus dem Verkauf

bahneigener Energie bg total 1,27 Mill. zu erwähnen.
Wir nehmen hier einen von o proportional steigenden
Verlauf an, obschon dies nicht ganz stimmen wird. Der
Kinfluss dieser Kosten ist aber so gering, dass wir diese
kleine Willkür in Kauf nehmen können.

Die Ausgaben für Speisewasser und Kohlentransport
beim Dampfbetrieb, dp, betragen 5,35 Mill. Sie sind direkt
abhängig von der verbrauchten Kohlcnmenge. Die Kohlen-
menge selbst ist, nach dem Bericht der Generaldirektion,

') Duroh l'rol. Dr. IV. Kummer in Band 84, 25. Oktober 1934.
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