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Eigenschwingungen mit periodisch veränderlicher Elastizität.

I.
In Heft 24 von Band 84') wendet sich Professor

Dr. E. Meissner gegen eine von mir entwickelte Näherungs-
Theorie2) für die Eigenschwingungen von Systemen mit
periodisch veränderlicher Elastizität. Was er scharf ablehnt,
ist die „Auffassung, wonach die Instabilität eine Resonanz-
Erscheinung sei, die irgend etwas mit der Ganzzahligkeit
von Periodenverhältnissen zu tun habe". Dagegen glaubt
er „behaupten zu dürfen", dass meine Näherungsformeln
„genügende Genauigkeit geben, wenn die elastische Kraft
nicht über den Wert Null hinaus schwankt und diesen
Wert nie längere Zeit annimmt". (Eine noch etwas grössere
Einschränkung habe ich selbst gemacht. Vergl. den in
Fussnote 2 mit II bezeichneten Aitikel, S. 55)
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Meine Näberungsformeln aber lauten bei Prof. Meissner
wie folgt: Periode der elastischen Kraft P{t) an den
Stabilitätsgrenzen

T*
Dabei ist ylr der r-te Oberton der periodischen Funktion
In P(§) In P{i> -f- T), 7„ die mit dem Mittelwert von
yP(t) berechnete „mittlere Eigenschwingungsdauer d
Systemes" und '.

es

') 13. Dezember 1924 «Zur Schwingungslehrc >, Abschnitt 4.

5) < (Eigenschwingungen von Systemen mit periodisch veränderlicher
Klastizität. > Arch. f. El., 12. Bd., S. 38 (1923) (in der Folge mit II
bezeichnet). Unter gleichem Titel in < Beiträge zur technischen Mechanik und

technischen Physik» (Festschrift für Aug. Foppl) Berlin 1924 (in der Folge
mit 111 bezeichnet).

die Abszisse, auf die die P(t)-Kurve umzuzeichnen ist.
Wenn man also die genügende Genauigkeit der obigen
Näherungsformel iürP(t)^>o anerkennt, so bedeutet dies,
dass man den Schwingungsvorgang für P{l)~F>o genügend
genau wie folgt beschreiben kann:

1. Wenn die Periode T*jr des r-ten Obertons der
Elastizität mit der halben mittleren Eigenschwingungsdauer
T0/z des Systems übereinstimmt, befinden wir uns in einem
Schüttelgebiet.

2. Die Breite 7~'xmax — T'"min dieses Schüttelgebietes
ist der Amplitude ;',, eben dieses Obertones proportional.

Angesichts dieser beiden Kennzeichen hielt ich mich
für berechtigt, von einer Art Resonanz-Erscheinung zwischen
Grund- oder Oberwellen der Schwingung In P{D) und der

Schwingung {—,) zu sprechen und glaube trotz Prof.

Meissner nicht, dass diese Bezeichnung dem technischen
Sprachempfinden zuwiderläuft. In jedem Falle ist diese
Erkenntnis, man mag sie nun ausdrücken wie man will,
für die Technik neu und wertvoll.

Ich habe ferner an mir und andern die Erfahrung
gemacht, dass das Auftreten von Schüttelzonen an Stelle
von Resonanzpunkten dem Verständnis Schwierigkeiten
bereitet. Es ist nicht ohne weiteres ersichtlich, wieso ein
schwingungsfähiges System bei gegebenem Gesetz P(t)
P(t-\-T) mit der Schwingung der elastischen Kraft nicht
nur für einen Wert von T* im Takt bleiben kann, sondern
für eine ganze Reihe nahegelegener Werte, für ein ganzes
Schiittelgebiet. Ich habe deshalb in II S. 46 für ein
einfaches Beispiel die negativ gedämpte Schwingungskomponente

allein untersucht und ihre zeitliche Lage gegen die
Schwingung der elastischen Kraft berechnet. Das Ergebnis
zeigen die (bisher nicht veröffentlichten) Abbildungen \

T T
bis 6 für zwei Schüttelgebiete T" ~ —- und T* ~ 3 -.In
beiden Fällen ist die volle Periode der Systemschwingung
¦2T. Diese enthält jedoch im zweiten Falle 3 r volle
Wellen einer Schwingung, von der jede einzelne Welle
dem entspricht, was man bei Systemen mit konstanter
elastischer Kraft als volle Welle einer „Eigenschwingung"
bezeichnet. Um die von Meissner gerügte Zweideutigkeit
zu vermeiden, will ich für diese kürzern Wellen von
variabler Wellenlänge den Ausdruck „charakteristische
Schwingung" gebrauchen. Dann kann man sagen : Die

Frequenz der charakteristischen Schwingung ist ——, liegt
also in der Nähe von -.-. Das ist die Bedeutung der von

Prof. Meissner unverstandenen Aussage II 57 bezw. 111 93.
Die Wellenlänge dieser charakteristischen Schwingung ist
im //-Diagramm sehr viel weniger veränderlich als im
/-Diagramm, daher die grosse Bedeutung des iV-Diagrammes
für die Ableitung einer Näherungstheorie, die Prof. Meissner
ebenfalls entgangen zu sein scheint.

Die Abbildungen zeigen ferner, dass zu jeder Periode
7"* eine ganz besondere Lage („Phase") der charakteristischen

Schwingung gegen die Elastizitätschwankung gehört.
Ist zunächst nur die negativ gedämpfte Schwingungskomponente

vorhanden, und ändert man plötzlich die Periode
T* innerhalb eines Schüttclgebictes, so tritt vorübergehend
auch die positiv gedämpfte Schwingungskomponente auf.
Nachdem sie genügend abgeklungen ist, ist abermals nur
die negativ gedämpfte Komponente sichtbar, die aber jetzt
eine andere Lage gegen die Elastizitätsschwankung
einnimmt als vor der Aendcrung von 7"*, und auch eine
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andere Grösse der negativen Dämpfung besitzt. Man kann
auch umgekehrt sagen, dass innerhalb der Schüttelgebiete
zu jeder Phase der charakteristischen Schwingung eine
bestimmte Periode T* der Elastizitätsschwankung (bezw. eine

2 7'*
mittlere Periode der charakteristischen Schwingung)

und ein bestimmter Dämpfungsexponent gehört (der in
Abbildungen 1 bis 3 für die eine Hälfte der gesamten
denkbaren Phasenverschiebung T" negativ, für die andere Hälfte
positiv ist). Die begrenzte Veränderlichkeit der Eigen-

F*
Schwingungsdauern 7"* bezw. — findet also ihre Erklärung

in der begrenzten Veränderungsmöglichkeit der gegenseitigen
Phase von Elastizitätsschwankung und Systemschwingung.
Wenn Prof. Meissner diese Erklärung mit den Worten
verwirft: „Man sieht, zu welchen Mitteln der Verfasser seine
Zuflucht nehmen muss", so sehe ich nur zwei Möglichkeiten ;

entweder hält er die mitgeteilten Resultate für falsch, oder
für überflüssig. Im ersten Falle hätte er den Fehler nennen
sollen. Im zweiten Falle beurteilt er die Denkungsweise der
Ingenieure unrichtig. Wir besitzen nämlich nicht allein
Bedürfnis nach abstrakter mathematischer Strenge, sondern ein
vielleicht noch grösseres Bedürfnis nach Anschaulichkeit.

Ich komme nun zu den „Schlüssen, die in keiner
Weise stichhalten, durch die der Vorgang gewaltsam zur
Resonanz-Erscheinung gestempelt wird". Da ist zunächst
zu sagen, dass sich gemäss II Seite 48 Fussnote 1') die
angegriffenen Ueberlegungen nur auf die innerhalb einer
Schüttelzone negativ gedämpfte Schwingungskomponente
beziehen, während die positiv gedämpfte Komponente als
nicht vorhanden angesehen wird. Da diese bei geeigneten
Anfangsbedingungen überhaupt nicht auftritt, oder, wenn
sie ursprünglich vorhanden war, mit der Zeit
vernachlässigbar klein wird, liegt diese Einschränkung besonders
nahe. Sie ist ausserdem auf die Berechnung der Schüttelgebiete

ohne Einfluss, da deren Grenzen nicht von den
Anfangsbedingungen abhängen. Mit dieser Einschränkung
und für P(t) ~F> o wird Prof. Meissner gerne zugeben, dass
man sich in einem Schüttelgcbiete befindet, solange der

T

Ausdruck (£)„ -^ - j (^-J -^- d,l posittv .st.
o

Nun hat die charakteristische Schwingung bei nicht
zu stark veränderlicher Elastizität im ß- Diagramm eine

nur wenig veränderliche Wellenlänge. Es ist ferner möglich,

die Periode T* so zu wählen, dass eine ganze Zahl (r)
Wellen der charakteristischen Schwingung auf eine doppelte
Periode iT~ treffen. Die charakteristische Schwingung von

—) hat dann eine wenig veränderliche Wellenlänge vom

Mittelwert T*/r. Wenn nun auch noch die Kurve In P(>>)
einen Oberton von der Ordnungszahl r besitzt, so ist leicht
einzusehen, dass (£%'' im allgemeinen von Null verschieden
ist, ausser für eine ungedämpfte Systemschwingung von ganz
bestimmter Phase gegen die Elastizitätsschwankung. Das
Vorhandensein eines r ten Obertons der In /-\#)-Funktion bedingt
also das Auftreten einer Schüttelzone von der Ordnungszahl r.

Das ist in kurzem der Gedankengang der zu der
bereits diskutierten Gleichung für die Grenzen der Schüttelgebiete

bei /-*(/) ^>o führt. Da bei ihrer Ableitung von der
Systemschwingung x(li) — x(ß -4- 2T) nur die am stärksten
ausgeprägte Harmonische berücksichtigt wird, kann die
Formel nur nähertingsweise richtig sein. Allein auch Prof.
Meissner gibt zu, dass sie „überraschend gute numerische
Resultate" liefert, „selbst wenn die Schwankungen der Elastizität

nicht mehr ganz klein sind", und das ist ein Beweis
dafür, dass die mitgeteilten Ueberlegungen gerade das Wesentliche

des Schwingungsvorganges richtig erfassen. Ich darf
erwarten, dass man hierin mehr erblicken wird als bloss

„Luftsprünge, mit denen über Klippen hinweggesetzt wird".
Västeras, den 29. Januar 1925. Dr. L. Drryfus.

') In Arbeit III, die in der Hauptsache ein verkürzter Abdruck von

II ist, tat diese Fussnote leider vergessen worden, wodurch die Angriffe
Prof. Meissners teilweise vcrst&ndlich werden.

IL
Den Ausführungen des Herrn Dreyfus habe ich

folgendes beizufügen: Mir scheint, Herr Dreyfus verschiebe
den Schwerpunkt der Diskussion. Ich habe nicht die
Näherungsmethode, sondern die Art ihrer Begründung
angegriffen. Meine Kritik muss ich im ganzen Umfang
aufrecht erhalten, und ich kann beifügen, dass seine
Darstellung in der Föppl-Festschrift S. 90, Zeile 8 v. u. und ff.,
den wesentlichen Punkt ganz übersieht und das zu
Beweisende voraussetzt.

Wenn Herr Dreyfus in der vorliegenden Erwiderung
sein Energiekriterium J0t~Ü> 0 dadurch zu halten sucht,
dass er im Integral zum vornherein die spezielle Lösung
des instabilen Falles einsetzt, die ins Unendliche anwächst,
so begeht er eine Trivialität. Die Bedingung J0r^> o ist
nicht charakteristisch für eine Instabilitätszone, sie kann
dort erfüllt sein oder auch nicht, sie kann aber auch im
Stabilitätsgebiet statthaben. Denn es ist klar, dass dort die
Energiestreuung während einer Zeit T bald positiv, bald
negativ sein muss, da doch die Bewegung weder erlischt,
noch ins Unendliche anwächst.

Herr Dreyfus wendet in seiner Erwiderung ein
eigentümliches Verfahren an. Er stellt verschiedene Behauptungen
auf, illustriert an einem Beispiel und führt seinen Gegenbeweis

mit der Redewendung: „Die Abbildungen zeigen
ferner ..." Dabei passiert ihm auch noch das Missgeschick,
dass er stets mein Beispiel sprungweise unstetiger Elastizität

benützt, für das seine Differential-Gleichung in der

Veränderlichen & sinnlos wird, da ja gar nicht existiert.

Spezielle Beispiele können nun natürlich nichts aussagen
über den allgemeinen Fall, sie können sogar irreführen.
In der Tat, die „Erkenntnis", die Herr Dreyfus oben unter
1) formuliert, trifft zufälligerweise zu für das erwähnte
Beispiel.1) Sie ist aber schon falsch, wenn man die Elastizität

dreimal springen lässt, wie folgendes Gegenbeispiel

zeigt. Es sei in —~ -4- tu2 v o

o> 2 für o <C / < T/t 2, co 1 für 7"/12 <^ / < 7 Tj 12,

co 1 8 fü r 7 7"/12 <C / < T.
Nach Dreyfus wird der Mittelpunkt der ersten Labilitätszone

gegeben durch — 7",
32 Berechnet man dagegen

2 23

nach der genauen Formel S. 97 meines Aufsatzes III den
Wert von ,/:l für diese T, so findet man /= — 0,9445.
Der nach Dreyfus berechnete Mittelpunkt der Labi/itätszotte
liegt also überhaupt nicht mehr in derselben, sondern fällt
schon ins Stabilitätsgcbict. Der wahre Mittelpunkt liegt nicht

bei T 71—, sondern bei7"=.T —. Um einen Einwand

zum vornherein zu entkräftigen, will ich noch beifügen, dass
sich auch noch derartige Beispiele mit geringerer
Elastizitätsschwankung konstruieren lassen.

Was nun Herr Dreyfus weiter über den Schwingungsverlauf

anführt, kann so lange nicht zu seiner Verteidigung
dienen, als jede Spur eines Beweises für seine zahlreichen
Behauptungen fehlt. Wenn ich nun unten, um die
Diskussion ins Positive zu wenden, diese Beweise selber gebe,
so ändert das an meiner grundsätzlichen Ablehnung seiner
Resonanzauffassung nichts. Denn wenn auch während einer
Periode T im instabilen Fall genau eine ganze Anzahl von
Wellenbergen und Tälern („charakteristische Schwingungen"
nach Dreyfus) in den Fundamentalintcgralen Af, und Art

auftreten, so unterscheiden sie sich durch Breite, Form
und Höhe, und es ist durchaus nicht einzusehen, warum
eine Summation der Wirkung, die die Resonanz
kennzeichnet, eintreten sollte. Uebrigens wird dieser Analogie-
schluss durch die Erscheinung selbst widerlegt: Es rcsotiiert

') Man hat tu setzen T,¦ r—-p ....,¦'.,!. J.. und damit den Aus-
» v, T, -f- V, r3

druck tu bilden

7a ^co-f " '''jcosf-- —) — j'|, sin 't'Mainf '"). F.s wird dann

A —(-•)"(«»'(rSr1) i '¦«¦"¦2(/a'!,r,)j "nd ,la r'> ' '•! M-1-
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ja nur das eine der Integrale N, warum denn nicht das
zweite, für das doch genau dieselben Bedingungen gelten?

Herr Dreyfus hat sich in seinen Rechnungen durch
ein Beispiel leiten lassen und das ist der Grund, warum
er in der Richtung geblieben ist. Die Genauigkeit seiner
Formeln, über die ich mich vermutungsweise geäussert
hatte, muss ich nach dem oben erwähnten Gegenbeispiel
jetzt freilich etwas ungünstiger beurteilen.

Zu den Bemerkungen über die Psychologie des
Ingenieurs und das für ihn nötige Mass von wahrer Anschaulichkeit

und von Strenge nehme ich nicht Stellung, da
hierzu wohl hier nicht der Ort ist.

Das Folgende möchte ich zur Förderung der Sache
beitragen : Ich gehe aus von der Differentialgleichung (3*)
von III:

¦0- + T*q(r).y o •

deren allgemeine Lösung mit Hilfe der dort verwendeten
normierten Integrale >tu >j-> lautet

y et >/, -f- ß )]2 (2)
Die inhomogene Gleichung

-£±- + T*q(x)-y=f(x) (3)

hat dann die Lösung
r r

y ~ >)M J/>/2 'It -I- 7t }fin dx -4- A, t], -+- A2 7, (4)
O u

Ferner berufe ich mich auf die von Sturm') herrührenden
Sätze:

ot) Die Integrale von (t) oszillieren.
ß) Die Nullstellen zweier Integrale von (1) trennen sich.
•/) Mit wachsendem T wandern die Nullstellen der Inte¬

grale r]i ?ya gegen den Nullpunkt zu.
Diese Sätze lassen sich elementar beweisen.2)

1) Jetzt werde das Integral ?y2 in seiner Abhängigkeit
von T betrachtet, wobei die Relationen

7, (o) 0 7', (o) 1 (5)

zu beachten sind. Das Intervall o <^ / <^ 2 n heisse A.
Für 7~=o hat /y2 keine Nullstelle in A. Wenn T wächst,
so rückt nach y) sagen wir für T Qt eine erste
Nullstelle von r)2 nach 2 rr. Dann haben alle übrigen Lösungen
von (1) wegen ß) eine und nur eine Nullstellc in J. Für
T <F\ &i haben sie entweder eine oder keine. Wächst T
weiter, so rückt für T 02 eine zweite Nullstelle nach
27T, während die erste ins Innere von I wandert. Für
dieses T hat also >ya einen Wellenberg und ein Tal in A.

Alle andern Lösungen haben jetzt genau zwei Nullstellen
in A. Für Q\ <F\T <C_ (-l^ dagegen haben sie entweder eine
oder zwei Nullstellen (nach ß). Und so weiter. Allgemein
erhält man eine unendliche Folge von Werten

O @o <0i <@« <Ö, (6)

von der Art, dass für 0,_, <F T <F\ 0,- die Zahl der
Nullstellen jedes von ?y8 wesentlich verschiedenen15) Integrals
gleich ist (i—1) oder i, und dass für T= ©,- diese Zahl
genau gleich i ist.

3) Die Werte T'= 0, fallen ins Labilitätsgebiet. Denn
für sie ist (mit den Bezeichnungen meiner frühern
Aufsätze) c o also wegen (a ¦ d— b • c) 1 auch d I : a
und somit

y_±(.t + .Vj-i-(.+-L)
Dieser Ausdruck ist grösser als -f- 1, wenn a positiv, kleiner
als — 1, wenn a negativ ist. Wir wollen dem entsprechend
im ersten Fall von einem positiven (/.>), im letztern von
einem negativen Labilitätsgebiet (L sprechen.

3) In jeder Labilitätszone gibt es nach (III) zwei
Fundamentalintegrale N, und Nj so, dass

A, (t + 2„) a N, (t) TV, (r | 2,7) I Nt (t)

') Mao vergl. etwa Röcher: Lecons sur les m6thodes de Sturm.
Paris 1917. Coli. Borel.

') Z. B Riemann-Wtber: Partielle Differential-Gleichungen der Physik.
2. Band. Braunschweig.

•) d. h. nicht nur um einen konstanten Faktor verschiedenen.

Dabei hat o das selbe Zeichen wie J. Nun ist für 0 ^> o
die Zahl der Nullstellen der N in A notwendig gerade,
ungerade für 0^0. Die Fundamentalintegrale haben in
einer positiven Zone eine gerade, in einer negativen Zone
eine ungerade Zahl von Nullstellen in A.

4) In eine Labilitätszone fällt nie mehr als ein Wert
&[. Denn von zwei auf einander folgenden Werten liegt
stets der eine in Z.+ und der andere in L~.

5) Zwischen zwei negativen Labilitätszonen liegt stets
eine positive und umgekehrt. Dieser Hauptsatz kommt darauf
heraus, zu zeigen, dass die Kulminationen der Kurve J(T)
niemals ins Stabilitätsgebiet hineinfallen. Man hat also den

Ausdruck .„. zu berechnendi
Die Ableitung von (1) nach T gibt zunächst

rf2 dy 1 -t-9 dy ~r
1* ST +T-qw,=-*Tq.y (7)

was nach (4) die Lösung hat
r r

-gy + 2 TtjA qy >/3 dx — 2 T-nA qy >/, di -f ht ?y, -4- A2 7, (8)
O O

Setzt man hierin y ;/, und bemerkt man, dass wegen (5)
Aj — h2 o ist, so wird

t),h 27")>], I q 71 Tjt dr 27 r)i J 1 7J dj

(9)

und für r 2.t
1 n

-gy 2 T | '1 ia 'I' '/2 — c >h] </t ¦ ¦ ¦

Die Ableitung von (8) nach r gibt

o o

und für y r\% und t 2.t (//, A2 o)
171

Tjy 27" \(][b,,l — d,h rj,]dx
U

woraus durch Addition zu (o)

-gy (V) Tjr T i ^ [(° — d) '>' 'l* —c>fmt> >il] dx (10)

Nun ist für ein Instabilitätsgebiet

Ni c >]: +(a — d) tjt N3 c »;, -4- ^ - ffj »y,

während im stabilen Gebiet an Stelle dieser Lösungen die
in III mit 9', <f>., bezeichneten reellen Integrale

<P\ — C i/i -|- (cos <y; — ff) >]i <pt sin 9' • jyt I cos oj —

treten. Man rechnet leicht nach, dass sich (10) in die Form
bringen lässt:

für eine Stabilitätszone:

o

für eine Labilitätszone:

(»)

8J '
| 7 • A, A^trfr (12)

Im stabilen Gebiet ist c ungleich o und nach (11) hat somit -s-y
stets das selbe Zeichen. Wenn also die Kurve J{T) in den
Streifen | / 1 eintritt, so durchsetzt sie ihn und tritt auf
der andern Seite heraus. Kommt sie aus einem positiven
Labilitätsgebiet Z.4, so geht sie zu einem negativen Z.~

und umgekehrt. Damit ist der anfangs aufgestellte Satz
bewiesen.1)

Wir haben bisher ein eigentliches Schneiden des
Streifens durch die Kurve J(T) vorausgesetzt. Der Fall
des Bcrührcns von innen ist auch als Grcnzfall möglich
und erledigt sich leicht direkt. Er führt zu dem Ausnahme-

') Ein Teil dieser Resultate lindot sich schon bei Bocher, loc. cit.



256 SCHWEIZERISCHE BAUZEITUNG [Bd. 85 Nr. 20

fall a d=i, 6 c o, wo alle Integrale rein periodisch
sind. Die zugehörige Labilitätszone reduziert sich auf einen
Punkt.

6) Aus dem bisher Bewiesenen ergibt sich, dass für
Fundamental-Lösungen Nt und N. in der i-ten Labilitätszonc
die Zahl der Wellenberge und Täler insgesamt gleich i ist.

7) Ueber die Lage und Grösse der Labilitätszonen
ergeben sich aus dem Vorhergehenden einige Beziehungen,
wenn man noch folgenden bekannten 2) Satz zu Hilfe
nimmt: Ist in Gleichung (1)

Ki< + V'7 < K,
_

so gilt für den Abstand o irgend zweier aufeinander
folgender Nullstellen einer Lösung von (1)

_ü_ < „< Jf—
TIC, — — TKX

Sind nun Tu und T,, die Randpunkte der ;-ten Labilitätszone,

und beachtet man, dass dort halb- oder ganzperiodische

Lösungen mit i Nullstellen bestehen, so folgt hieraus
1 71

Ti, K2
ITC <

171 l 71

oder

T„ K,
i 71

7~i + i A"2
< 271 <

7",-r 1K,

¦2K,
C 7V, < Tt. <

; A',
(13)

Diese Ungleichungen beschränken die mögliche Lage und
Länge der Zonen. Die Gleichheitszeichen gelten für
verschwindende Elastizitätsschwankung. In diesen Relationen
spielt die mittlere Elastizität keine Rolle.

8) Zum Schluss soll noch gezeigt werden, dass für
unendlich kleine Elastizitätsschwankungen die mittlere Elastizität

die Lage der Zonen bestimmt.
Wir setzen in (1) q (/.0 -4- öco)2 wo ).B konstant,

deo unendlich klein ist. Der Index o bezeichne die Grössen,
die man für öoj o erhält, ein vorausgesetztes 0 ihren
Zuwachs, wenn man öoj ungleich o nimmt Es ist dann

sin7V.„
710 cos 77.0 t; >/20 TL a0 ¦. do co 3 7/.0 2 TT;

_. ~. sin7702.T
b0 — — 1 /.o sin 7/0 2.-7 ; cQ TL

(14)

Setzt man y —y0-\-öy0 in (1) ein und vernachlässigt Glieder
höherer Ordnung, so wird

är' öy„ _|_ T* k\ öy0 — 2 7"* /„ ¦ dto • v0

Dies hat nach (4) die Lösung
r

öy0 + */io f 2 T1 kl öu>y0 7«o di
o

z

— 1/20 J 2 r2 /.„ d(oy0 71 dx I- A] ijU) 4 Aj 'y;0

Man erhält für v„ 7,0 und t 2.t

dau z TJ /02 / rJüJ | «„ 710 '/so — <"o 7!o «'t

('5)

Differenziert man (15) nach 1 und setzt r0 —= )/. und t — 277

so ergibt sich ähnlich wie früher

1) d„ 2F' i.l f öm b0 )fm — d„ 710 7«o di

woraus

o

Aber die Benützung der Werte (14) gibt hierfür

öjo — 2^ A0 sin (r/o 2tt) J »3cü ¦ rfi
o

Nun ist die mittlere Elastizität nach Dreyfus
2,1 11

'"•' ~ 2'.t' J ^ + f)"^ dT ~ ;'° ' Tn \ ')""1'

Wenn wir also fordern, dass sie für alle Wert q stets
die selbe (k0) sein soll, so wird das Integral an zweiter
Stelle null und damit auch die erste Variation der Kurve
J{T). Die Aenderungen der Stabilitätsgebiete sind also
innerhalb dieser Grössenordnung null.

Für die Berechnung der höhern Variationen kommt
es dann freilich auf den Verlauf von öco im einzelnen an.

Zum Schlüsse seien noch einige früher nicht erwähnte
Beispiele zum betrachteten Schwingungsvorgang angeführt:

Die Vertikalschwingungen eines Fahrzeugs, das mit
konstanter Horizontalgeschwindigkeit über einen elastisch
gebetteten Schienenstrang konstanter Schienenlänge
wegfährt ;

Die kleinen Schwingungen eines Pendels, dessen
horizontale Drehaxe in einer Horizontalebene Drehschwingungen

ausführt;
Die kleinen Schwingungen eines Pendels mit geneigter

Axe, wenn die Neigung kleine periodische Aenderungen
erleidet (die auch über die Vertikallage hinausführen
dürfen).

Endlich ist zu bemerken, dass gewisse Probleme der
elektrischen Uhrregulierung auf verwandte Erscheinungen
führen.

*

Anmerkung: In meinem Aufsatz: Zur Schwingungslehre,

„Schweizer Bauzeitung" Bd. 84, Nr. 24, S. 285 ist in
Formel (24) ein sinnstörender Fehler stehen geblieben.
Statt co muss stehen cos.

Zollikon, den 11. März 1925. E. Meissner.

Die Strassburger Resolution vom 29. April 1925.

Bekanntlich hatte die Rhein-Zentralkommission in ihrer
diesjährigen Aprilsession sich auszusprechen vor allem über
das von der Schweiz zur Genehmigung unterbreitete
Ausführungsprojekt für die Regulierung der Rheinstrecke Kembs-
Strassburg. Sodann lag ihr zur Genehmigung vor ein
generelles, französisches Projekt für die Fortsetzung des
Seitenkanals von Kembs bis Strassburg, d h. für die sieben
weitern Stufen des Rhein-Seitenkanals.

Beide Projekte waren von einer Subkommission, die
anfangs März in Strassburg getagt hatte, vorberaten worden.
Als Grundlage für die Genehmigungdes schweizerischen
Regulierungsprojektes war die Resolution vom 10. Mai 1922 ')
massgebend, für den Seitenkanal die Artikel 358 und 359*)
des Versailler Vertrages. Obschon nun eine klare Trennung
der beiden Projekte und deren Genehmigung je durch eine
besondere Resolution vorzuziehen gewesen wäre, da die
Voraussetzungen und Grundlagen beider voneinander
wesentlich verschieden sind, ist es aus natürlichen Gründen
und mit Rücksicht auf die besonderen Verhältnisse
verständlich, wenn der Wille der Mehrheit der Zentralkommission

dahin ging, beide Projekte und deren Genehmigung
in eine einzige Resolution zusammenzufassen. So sagt
denn auch der Ingress der Resolution, dass die
Zentralkommission dem Regulierungsprojekt seine Genehmigung
erteile, und dass das Seitenkanal-Projekt die im Artikel 358
aufgestellten Bedingungen erfülle, und zwar ausgehend
einerseits von der Resolution vom 10. Mai 1922 für die
Regulierung, anderseits von den Artikeln 358 und 359 des
Versailler Vertrages für die sieben Kanalstufen; beide
Genehmigungen sind an besondere Bedingungen gebunden.

Für die REGULIERUNG gelten folgende Bedingungen :

1. Die Regulierungsarbeiten im Rhein zwischen Istein
und Strassburg sollen abschnittweise von Strassburg rhein-
atifwärts ausgeführt werden, dürfen aber gleichzeitig auf
zwei verschiedenen Strecken in Angriff genommen werden:
die eine unmittelbar anschliessend an die Regulierungsstrecke

Strassburg-Sondernheim und die andere von einem
Punkte aus, der sich am unteren Ende der Erosionstrecke,
in der Gegend von Harthcim befindet8); immerhin können
von der oberen Strecke aus die Arbeiten sowohl
stromaufwärts gegen Istein hin, als auch stromabwärts gegen
Strassburg hin gleichzeitig ausgeführt werden.

') Wortlaut „S. B. Z." vom 3. Juni 1922.
») Wortlaut „S. B. Z." vom 28. Mai 1921.
») Bad Km 45, vgl. Alib 5 auf Seite 180 (4 April d. J Red.
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