Zeitschrift: Schweizerische Bauzeitung

Herausgeber: Verlags-AG der akademischen technischen Vereine

Band: 85/86 (1925)

Heft: 20

Inhaltsverzeichnis

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 28.10.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

INHALT: Eigenschwingungen mit periodisch veränderlicher Elastizität. — Die Strassburger Resolution vom 29. April 1925. — Bahnhof-Wettbewerb Genf-Cornavin. — Ueber die Farbe in der Architektur. - Miscellanea: Winddruck im Hochgebirge. Ueber die technisch-wissenschaftlichen Forschungsarbeiten in den Vereinigten Staaten von Amerika. Der Aluminium-Fonds Neuhausen. Widerstandsfähigkeit des Beton gegenüber

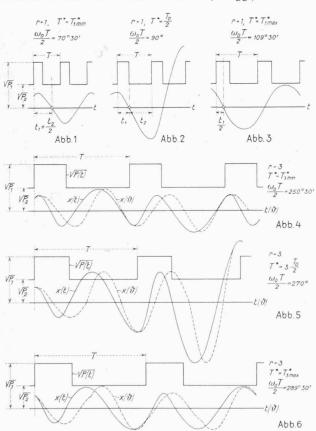
Milchsäure. Eidgen Technische Hochschule. Hochspannungsleitung Beznau-Allschwil der N. O. K. V. Internationaler Strassenkongress in Mailard, - Nekrologie; Franz Scheiblauer. - Preisausschreiben zur Erlangung eines Spannungs- und eines Schwingungsmessers. - Literatur: Farbige Häuser. Fahrwiderstände von Schleppkähnen etc. nische Blätter. Beiträge zum Bauen. Der Kaufmann. Literar. Neuigkeiten.

Nachdruck von Text oder Abbildungen ist nur mit Zustimmung der Redaktion und nur mit genauer Quellenangabe gestattet.

Nr. 20

Eigenschwingungen mit periodisch veränderlicher Elastizität.

In Heft 24 von Band 841) wendet sich Professor Dr. E. Meissner gegen eine von mir entwickelte Näherungs-Theorie²) für die Eigenschwingungen von Systemen mit periodisch veränderlicher Elastizität. Was er scharf ablehnt, ist die "Auffassung, wonach die Instabilität eine Resonanz-Erscheinung sei, die irgend etwas mit der Ganzzahligkeit von Periodenverhältnissen zu tun habe". Dagegen glaubt er "behaupten zu dürfen", dass meine Näherungsformeln "genügende Genauigkeit geben, wenn die elastische Kraft nicht über den Wert Null hinaus schwankt und diesen Wert nie längere Zeit annimmt". (Eine noch etwas grössere Einschränkung habe ich selbst gemacht. Vergl. den in Fussnote 2 mit II bezeichneten Artikel, S. 55.)



Meine Näherungsformeln aber lauten bei Prof. Meissner wie folgt: Periode der elastischen Kraft P(t) an den Stabilitätsgrenzen

$$T^* = \frac{T_0}{2} r \left(\mathbf{1} \pm \frac{y_{2r}}{4} \right) \quad r = \mathbf{1}, \ \mathbf{2}, \ \mathbf{3} \ \ldots$$

 $T^* = \frac{T_0}{2} r \left(1 \pm \frac{\gamma_{2r}}{4} \right)$ $r = 1, 2, 3 \dots$ Dabei ist γ_{2r} der r-te Oberton der periodischen Funktion $\ln P(\vartheta) = \ln P(\vartheta + T)$, T_0 die mit dem Mittelwert von $\sqrt{P(t)}$ berechnete "mittlere Eigenschwingungsdauer des Systemes" und $\vartheta = \frac{T_0}{2\pi} \int V P(t) \ dt$

1) 13. Dezember 1924 « Zur Schwingungslehre », Abschnitt 4.

2) Eigenschwingungen von Systemen mit periodisch veränderlicher Elastizität. » Arch. f. El., 12. Bd., S. 38 (1923) (in der Folge mit II bezeichnet). Unter gleichem Titel in «Beiträge zur technischen Mechanik und technischen Physik » (Festschrift für Aug. Föppl) Berlin 1924 (in der Folge die Abszisse, auf die die P(t)-Kurve umzuzeichnen ist. Wenn man also die genügende Genauigkeit der obigen Näherungsformel für P(t) > 0 anerkennt, so bedeutet dies, dass man den Schwingungsvorgang für P(t) > o genügend genau wie folgt beschreiben kann:

1. Wenn die Periode T^*/r des r-ten Obertons der Elastizität mit der halben mittleren Eigenschwingungsdauer $T_0/2$ des Systems übereinstimmt, befinden wir uns in einem Schüttelgebiet.

2. Die Breite T^*_{\max} — T^*_{\min} dieses Schüttelgebietes ist der Amplitude γ_{2r} eben dieses Obertones proportional.

Angesichts dieser beiden Kennzeichen hielt ich mich für berechtigt, von einer Art Resonanz-Erscheinung zwischen Grund- oder Oberwellen der Schwingung $\ln P(\vartheta)$ und der Schwingung $\left(\frac{dx}{d\vartheta}\right)^2$ zu sprechen und glaube trotz Prof. Meissner nicht, dass diese Bezeichnung dem technischen Sprachempfinden zuwiderläuft. In jedem Falle ist diese Erkenntnis, man mag sie nun ausdrücken wie man will, für die Technik neu und wertvoll.

Ich habe ferner an mir und andern die Erfahrung gemacht, dass das Auftreten von Schüttelzonen an Stelle von Resonanzpunkten dem Verständnis Schwierigkeiten bereitet. Es ist nicht ohne weiteres ersichtlich, wieso ein schwingungsfähiges System bei gegebenem Gesetz P(t)P(t+T) mit der Schwingung der elastischen Kraft nicht nur für einen Wert von T* im Takt bleiben kann, sondern für eine ganze Reihe nahegelegener Werte, für ein ganzes Schüttelgebiet. Ich habe deshalb in II S. 46 für ein einfaches Beispiel die negativ gedämpte Schwingungskomponente allein untersucht und ihre zeitliche Lage gegen die Schwingung der elastischen Kraft berechnet. Das Ergebnis zeigen die (bisher nicht veröffentlichten) Abbildungen 1 bis 6 für zwei Schüttelgebiete $T^* \sim \frac{T_0}{2}$ und $T^* \sim 3 \frac{T_0}{2}$. In beiden Fällen ist die volle Periode der Systemschwingung 2T. Diese enthält jedoch im zweiten Falle 3 = r volle Wellen einer Schwingung, von der jede einzelne Welle dem entspricht, was man bei Systemen mit konstanter elastischer Kraft als volle Welle einer "Eigenschwingung" bezeichnet. Um die von Meissner gerügte Zweideutigkeit zu vermeiden, will ich für diese kürzern Wellen von variabler Wellenlänge den Ausdruck "charakteristische Schwingung" gebrauchen. Dann kann man sagen: Die Frequenz der charakteristischen Schwingung ist $\frac{r}{2T^*}$, liegt also in der Nähe von $\frac{1}{T_0}$. Das ist die Bedeutung der von Prof. Meissner unverstandenen Aussage II 57 bezw. III 93. Die Wellenlänge dieser charakteristischen Schwingung ist im θ-Diagramm sehr viel weniger veränderlich als im t-Diagramm, daher die grosse Bedeutung des ϑ -Diagrammes für die Ableitung einer Näherungstheorie, die Prof. Meissner ebenfalls entgangen zu sein scheint.

Die Abbildungen zeigen ferner, dass zu jeder Periode T* eine ganz besondere Lage ("Phase") der charakteristischen Schwingung gegen die Elastizitätschwankung gehört. Ist zunächst nur die negativ gedämpfte Schwingungskomponente vorhanden, und ändert man plötzlich die Periode T* innerhalb eines Schüttelgebietes, so tritt vorübergehend auch die positiv gedämpste Schwingungskomponente auf. Nachdem sie genügend abgeklungen ist, ist abermals nur die negativ gedämpfte Komponente sichtbar, die aber jetzt eine andere Lage gegen die Elastizitätsschwankung einnimmt als vor der Aenderung von T*, und auch eine