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Zur Schwingungslehre.
Von Prof. Dr. E. Meissner, Zürich.

Die nachfolgenden Zeilen enthalten: Eine graphische
Theorie der erzwungenen Schwingungen und der Resonanz,
eine neue graphische Methode zur Fourier-Analyse einer
beliebigen Funktion, eine graphische Theorie der Stoss-

vorgänge bei schwingenden Systemen und endlich einen
Abschnitt über schwingende Systeme mit pulsierender
Elastizität. Mit Ausnahme des letzten behandeln sie einen
Stoff, den ich diesen Sommer als Anwendungsbeispiel für
meine graphische Integrationsmethode an der E. T. H.
vorgetragen habe und der, wie ich glaube, allgemein bekannt
zu werden verdient.

j\ Erzwungene Schwingungen und Resonanz.

Es sei ein System gegeben, das unter dem Einfluss
einer elastischen Kraft harmonische Schwingungen
(Eigenschwingungen) ausführen kann. Ihre Periode werde mit
T, bezeichnet. Für die Ablenkung p aus der
Gleichgewichtslage ergibt sich dann die Differentialgleichung

^-+V^=o (i)
mit der Lösung:

p Pcos(^-t — e) (2)

Wirkt ausserdem auf das System eine störende Kraft K(t)
ein, die zeitlich periodisch verläuft mit T als Periode, so

geht (1) in die Gleichung für erzwungene Schwingungen
über:

*L + *£.p K0) • • • • (3)

Die Bewegung besteht hier aus einem periodischen Anteil,
der im Takte T der störenden Kraft schwingt, der eigentlichen

erzwungenen Schwingung, und einer darüber
gelagerten beliebigen Eigenschwingung.

Bei der gewöhnlichen Behandlung dieses Vorgangs,
wie sie z. B. in der Elektrotechnik üblich ist, wird die
Störung nach Fourier-Art in eine Reihe harmonischer
Wellen aufgelöst:

00

K(tJ=l-A0 + ^Ascos{g.^-t-eg) (4)

Dann findet man, den einzelnen Wellen entsprechend, die
Lösung:

8jt« {-<''*)
cos {S^fri- *g) (4)

Sie versagt nur im Fall, wo die Eigenschwingung in
Resonanz mit einer Oberwelle tritt, was Rationalität der
Perioden voraussetzt (T: Te ganze Zahl). Alsdann
enthält die Lösung ein mit wachsender Zeit unbegrenzt
anwachsendes Glied.

Die hiermit geschilderte Methode hat einige Uebel-
stände. Einmal erscheint die Fourier-Entwicklung als ein
der Sache fremdes Element, und der Grund, warum die
Ganzzahligkeit des Verhältnisses T: T, zum Ausnahmefall
der Resonanz führt, tritt nicht natürlich in Erscheinung.
Ferner ist es, selbst wenn man sich auf die ersten Glieder
der Reihe beschränken darf, fast unmöglich, ein übersichtliches

Bild über den Verlauf des Vorgangs zu erhalten.
Besonders unübersichtlich wird alles, wenn ausserdem
beliebige Anfangsbedingungen vorgeschrieben sind, sodass
noch eine in anderem Takt schwingende Eigenschwingung
die erzwungene Schwingung überlagert.

Man kann alle diese Uebelstände vermeiden, wenn
man sich einer früher hier entwickelten Methode bedient,
um Funktionen darzustellen und Differentialgleichungen
zu integrieren, die auf Verwendung von Liniendiagrammen
als Funktionsbildern beruht.1) Um sie anzuwenden, führen
wir zunächst einen neuen Zeitmasstab so ein, dass die
Periode der Eigenschwingung den Wert 271 erhält, d. h.

23t

U= 2JT- (6)

(7)

(5)

Es geht K(t) in eine Funktion K(u) über, die die Periode
T

~t7
besitzt und (3) verwandelt sich zu

'

%+ P=-&X(»J *M- • •

mit R(u + UJ R(u)
Ist nun p(u) eine beliebige Funktion, so verstehen wir
unter ihrem Liniendiagramm C» die Kurve, die in der
at-y-Ebene von den Geraden

gu x • cos (u) -f- y • sin (u) — p (u) o

eingehüllt wird. Das Lot OQu vom Anfangspunkt auf gu
hat die Länge p(uj und bildet
mit der x-Axe den Winkel «
(Abbildung 1). Es lässt sich zeigen'),

Abb.1

W

m
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wo

dass QuPu dp_

du ist, also die

erste Ableitung von p darstellt,
und dass die Kurve Cu im Pukte
Pu den durch

e(u)=p(u)+^ (8)

gegebenen Krümmungsradius
besitzt.«)

Die Gleichung (1) für die
Eigenschwingung sagt in dieser

Darstellung demnach nichts anderes aus, als dass das Linien-
Diagramm des Integrals (2) überall den Krümmungsradius
Null hat.

Das Liniendiagramm der Eigenschwingung ist ein
Punkt P. Sind a und b seine Koordinaten, so hat man in
Uebereinstimmung mit (2)

p{u) a • cos («) -f- b • sin («) (2')
Es bedeutet OP die Amplitude, der Winkel von OP mit
der #-Axe die Phase e der harmonischen Schwingung.

• Für das Liniendiagramm der erzwungenen Schwingung
erhalten wir nach (7)

e(u) R(u) (/)
d. h. es ist für jede Richtung u der Normalen der
Krümmungsradius vorgeschrieben. Die Gleichung (7) integrieren
heisst einfach, eine Kurve gemäss dieser Forderung zeichnen.

Zur praktischen Durchführung dieser Aufgabe wird
die Funktion R(u) durch eine stückweise konstante Funktion
gemäss Abbildung 2 ersetzt Nimmt man die Intervalle
dieser „Treppenkurve" klein genug, so kann das mit
beliebiger Annäherung geschehen. Sind ai, a« a* die
Intervalle, sodass

<*i -f- Ott + + au U
und Ri, Ri Ru die zugehörigen Funktionswerte, so ist
jetzt eine Folge von Kreisbogen P0 Pt P„ so zu
zeichnen, dass P,_, Pi den Radius Ri und den Zentriwinkel

as hat, und dass alle diese Bogen stetig und mit

») cS. B. Z.», Bd. 62, S. 199 u. 221 (Oktober 1913).

2) Man kann von dieser Darstellung sofort im- Darstellung von

p (u) in Polarkoordinaten übergehen, indem man statt Cu die von den

Punkten Qu gebildete cFusspunktkurve» konstruiert.
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stetiger Tangente aneinander anschliessen. Wenn die
Anfangsbedingungen

p{o) a p'{o) b | (8')
vorgeschrieben sind, so sind a, b die Koordinaten des
ersten Punktes P0 und die Tangente ist dort normal zur
Axe u o. Die Tangente im Endpunkte P„ bildet mit
ihr den Winkel U der Periode von R. Den weitern Verlauf
der Integralfunktion p{u) erhält man, indem man dem
letzten Bogen P„—z P„ wieder den ersten P0 P, anreiht
und wie anfänglich weiterfährt. Die Kurve, die so
erhalten wird, stellt sich also dar als eine Folge von unter
sich kongruenten Bogenstücken P0 P„- Sie kann sich in
Ausnahmefällen schliessen, wird sich jedoch im allgemeinen
unbegrenzt oft um einen mittlem Punkt herumwinden.
Die Bedeutung dieses Punktes wird klar, wenn jetzt die
Frage nach der eigentlichen erzwungenen Schwingung,
also nach dem periodischen Integral aufgeworfen wird.
Da einer Abänderung der Anfangsbedingungen (dem
Hinzufügen einer beliebigen Eigenschwingung zum Integral)
einfach eine Verlegung des Anfangspunktes des
Koordinatensystems entspricht, so ist dieser nun so zu wählen,
dass die Bedingungen für Periodizität der Lösung:

p{U)=p{o) p'(U)=p'(o) _. (9)
erfüllt werden. Dieser Punkt 0* ergibt sich eindeutig,
solange U kein ganzzahliges Vielfaches von n ist, als Schnittpunkt

der Winkelhalbierenden der zwei Tangenten in P0
und P„ mit der Winkelhalbierenden der beiden Normalen
in denselben Punkten, wobei wegen des zu beachtenden
Vorzeichens von p bezw. p' immer nur eine von den zwei
vorhandenen Winkelhalbierenden in Frage kommt. Ist U
ein ungerades Vielfaches von n, so ist der gesuchte Punkt
O* der Mittelpunkt des von den erwähnten Tangenten und
Normalen gebildeten Rechtecks. Nur wenn U ein
ganzzahliges Vielfaches der Eigenschwingungsperiode 271 ist,
versagt die Konstruktion; O* liegt unendlich fern. Mit
Ausnahme dieses Falles liegt 0* im Endlichen und man erhält
jetzt das Schaubild des Integrals, indem man den
konstruierten Kurvenbogen P0P„ einfach um den Punkt O* um
die Winkel U, ¦zU, 3U usw. dreht. Die Kurve liegt dann
in ihrem ganzen Verlaufe im Innern eines leicht angebbaren
Kreises um O*, bleibt also immer im Endlichen. Freilich
wird dieser Kreis sehr gross, wenn nahezu der Ausnahmefall

£/:2?r= ganze Zahl vorliegt, da dann O* sehr weit
wegfällt. Das periodische Integral zeigt dann, sehr starke
Schwankungen, und das Gleiche gilt für alle andern
Integrale, die andern Anfangspunkten O entsprechen. Es muss
als ein Hauptvorteil dieser Darstellung bezeichnet werden,
dass der Einfluss der Anfangsbedingungen auf den Verlauf
des Integrals ohne weiteres anschaulich ersichtlich ist.

Klar und einfach tritt nun auch der Ausnahmefall
der Resonanz in Erscheinung. Es ist U' zn - g, wo g
irgend eine Zahl bedeutet. 0* fällt ins Unendliche und die
Kurvenbogen PoPn, die aneinandergereiht sind, entstehen
durch Parallelverschiebung aus dem ersten von ihnen
(Abbildung 3). Sie entfernen sich schliesslich mehr und mehr
ins Unendliche, und dementsprechend verläuft auch der
Schwingungsvorgang mit Ausschlägen, die unbegrenzt nach
einem leicht zu überblickenden Gesetze anwachsen. Man
erhält so die bekannten Bedingungen für Resonanz, ohne
die Störung in Grund- und Oberwellen aufzulösen. Man
sieht auch ein, dass das Anwachsen der Schwingungen
bedingt wird von der Entfernung der Endpunkte P'p und
P*** des ersten ^-Kurvenbogens. Fallen sie ausnahmsweise
zusammen, so schliesst sich die Kurve nach ^-Schlaufen,
bleibt also, trotzdem die Resonanzbedingung für die ^-te
Oberwelle erfüllt ist, ganz im Endlichen. Dies entspricht
offenbar dem Fall, wo bei Fourier-Analyse der störenden
Kraft die Amplitude der g-ten Welle gleich Null wird.

Wir erkennen unschwer aus dieser Betrachtung den
engen Zusammenbang unserer Konstruktion mit der
analytischen Methode und folgern daraus, dass es möglich
sein muss, aus der Konstruktion auch die Fourier-Koeffi-
zienten der periodischen Funktion R{u) graphisch zu
ermitteln. Dies soll im folgenden Abschnitt geschehen.
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2. Graphische Bestimmung der Fourier-Koeffizienten
einer periodischen Funktion.

Es sei F(f) eine periodische Funktion mit der Periode
Tc- Durch die Masstab-Aenderung nach Gleichung (5) geht
sie in eine Funktion R(u) über, die die Periode U= 27z
besitzt. Diese Funktion sei nun in eine Fourier-Reihe zu
entwickeln:

R{ii) — — -\- ax cos u -f 6, sin u -4- a2 cos 2 u -f- b2 sin o.u (10)

wobei es sich um die Bestimmung der hier auftretenden
Zahlen ak, bk aus dem graphisch gegebenen Verlauf der
Funktion R(u) handelt.

Wir zeichnen genau wie im vorigen Abschnitt eine
Kurve Clt die der Forderung (7) näherungsweise genügt
als Folge von Kreisbogen. Neu ist dabei nur der Umstand,
dass hier U in ist, sodass die Endtangenten des Bogens
P'o P„ parallel, werden. S;nd x, y die Koordinaten eines
laufenden Punktes P der Kurve C,, und ist s die Bogenlänge

P0 P, so ist
ds R-du; dx — R-s\a(u)-du; dy R-cos(n)-du (ri)
Sei L die Bogenlänge von P0 P„, seien dxW, Jjy« die

>
Komponenten des Vektors PÜP„. Dann gibt die Integration
von (r.i) über u von o bis zn

Z. / R{u)-du A*< > — / R(„) sin u¦ du
O (j

A v(-> J" R(u) cos u du
('0
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und da nach Fourier allgemein

aa — I R(n) cos (ku) -du bk — — I R{u) sin (ku) -du (12)

so hat man
AyM — AxW

(13)a0 — a, —— bi

womit a0, «i, b, graphisch bestimmt sind.

Ersetzt man in (12) die Integrationsvariable u durch
w.k, so folgt

2 7t k 1 -l k

cik — \R (~\ cosu-du bk ~\R l~\sia(u)-du (12')
O O

Man zeichnet jetzt die der Forderung

g(u) R(h-) (14)

genügende Kurve Ca, die aus d dadurch entsteht, dass

man alle Zentriwinkel der Kreisbogen k mal grösser nimmt,
und bei der also die Tangente k volle Umläufe macht.
Diese Kurve heisse die kte Auswicklung, die zur Funktion
R(u) gehört. Als ihre Schlusslinie werde der Vektor
bezeichnet, der von ihrem Anfangspunkt nach ihrem
Endpunkte geht. Wegen (n) und (n') erhält man für seine

Komponenten:
2 .1 k 2 .T k

Ax= — I Rt "A cos (u)-du Ay +j R(h\s\n(n)- da

und der Vergleich mit (12') gibt
(*)

-¦Ayak bk
1 m— ¦ zl x

BJC
¦ ('5)

Mithin gilt der Satz:
Die k-ten Fourier-Koeffizienten ak, bk der Funktion

R(u) sind das -[-—---fache der Komponenten der Schlusslinie

in der k-ten Auswicklung der Funktion R(u).
Durch diesen Satz wird die Fourier-Analyse einer

Funktion auf die Konstruktion ihrer Auswicklungen
zurückgeführt.

Setzt man die Fourier-Entwicklung (ro) in der Form an

indem man Amplitude und Phase der einzelnen Wellen

einführt, so ist die Amplitude Ak das -j^--fache der Länge

der Schlusslinie in der k-ten Auswicklung und die Phase

Ek ist der Winkel der Schlusslinie mit der y-Axe.
In Abbildung 4 ist die Analyse graphisch

durchgeführt für die an der Spitze stehende Treppenkurve von
drei Stufen. Die Auswicklungen bestehen dementsprechend
aus drei Kreisbogen. Die ersten vier Auswicklungen sind

gezeichnet. Die folgenden führen hier periodisch wieder

zu denselben Schlusslinien. Man entnimmt aus ihnen
1 1

as • — «4 0«1
1 1

«9
I -n 4

6r= + —-^ b2

und allgemein

«4* + 3

Otft -f- 2

ff4* + I

1

t4» + 3)31 4
1 [

1 ' L ,15 »

o3 -\ b. o
2-sr 2

s T3-* 4 *

«.«4-, O

(+»-(-i)jr 4

a4,t o 64» +1 l4»-t-ijjr 4

(4» + Z)3l
*m3 (4» + 3)* 4

Die Genauigkeit und Raschheit des geschilderten
Verfahrens hängt ab von der Stufenzahl in der Treppenkurve,

durch die die zu analysierende stetige Kurve
angenähert wird. Man kann diese Stufen recht kurz nehmen,
bevor sich der störende Einfluss zeichnerischer Ungenauig-
keiten bemerkbar macht. Da es sich meist nur um die

Ermittlung der ersten drei oder vier Fourier-Koeffizienten
handelt, dürfte das Verfahren durchaus brauchbar sein,

wenn Abweichungen von der Grössenordnung eines
Prozentes zulässig sind.

j. Stossvorgänge bei einem schwingenden System.

Das schwingende System (1) erfahre eine Reihe
unregelmässiger Stösse, die seine Geschwindigkeit jeweilen
augenblicklich ändern. In der durch (5) gegebenen
Zeitmessung seien tiu u2, u$ die Zeitpunkte, in denen die
Stösse erfolgen, At, A%, A3 die sprungweisen Aende-

y-H • di)
rungen, die die Geschwindigkeit —— durch sie erfährt.

ö ' & du
Welche Bewegung führt das System aus

Die Zeichnung des Liniendiagramms gibt übersichtlichen

Aufschluss darüber. Bis zum ersten Stoss besteht die

durch die Anfangsbedingungen bestimmte Eigenschwingung,
deren Diagramm etwa der Punkt d sein möge. Durch
den ersten Stoss wird p(u) nicht geändert, behält also

seinen Wert/»^) bei. Dagegen springt die Ableitung (p''u)
plötzlich um den Betrag Ax. Nach dem Stoss vollzieht
sich somit eine Eigenschwingung, deren Diagrammpunkt

d auf der Stützlinie g(ut) um den Betrag Ax verschoben
ist, und zwar im Sinn des wachsenden Winkels u, wenn
A-i positiv ist, im umgekehrten Sinn, wenn Ax negativ
ausfällt. Die Verschiebungsstrecke d d, die mit der Axe

u o den Winkel \-u-i einschliesst, bezeichnet also die
2

Wirkung des Stosses vollständig. d bleibt Diagrammpunkt
bis zum nächsten Stoss zur Zeit u ut. Alsdann springt
das Liniendiagramm zum Punkte Cs, wobei C2C3 A% ist,
und der Vektor C3 Q mit dem Vektor d d den Winkel
u% — i*i bildet.

Das Liniendiagramm des ganzen Bewegungsvorgangs
ist also eine Folge von Punkten Cy ddCt, Sie bilden
ein Polygon, dessen Seiten die Längen A1} A2, A3, Ak
haben. Die Normalen auf den Seiten bilden mit der Axe
u o die Winkel «,, w2l «3, u4 Das Polygon ist somit
auf die einfachste Weise aus den gegebenen Stosskräften

konstruierbar.
In Abbildung 5 erfolgt

ein erster Stoss zur Zeit
u ji/4, ein zweiter, doppelt

so kräftiger, zur Zeit
u n/z in entgegengesetztem

Sinn, ein dritter von
der Intensität dieses
letztern, aber wieder im
ursprünglichen Sinn zur Zeit

1'« t t/=0
¦-V V,

Abb. 5 4H Das Resultat die-
£

ser Stösse ist das Umwerfen der Eigenschwingung d in Ct.
Soll ein Stoss die Amplitude nicht beeinflussen, so muss
CCi Cd sein, also auch Qd Qd. Dies bedeutet
entgegengesetzt gleiche Geschwindigkeiten vor und nach
dem Stösse. Die Phase ändert sich nur dann nicht, wenn
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d und C2 auf einem Strahl durch 0 liegen,
d. h. wenn der Stoss in der Gleichgewichtslage

stattfindet.
Wenn eine Gruppe von n Stössen sich

nach der Zeit U=un periodisch wiederholt,

so ist die Wirkung der ersten Stoss-
gruppe eine Verschiebung des Diagrammpunktes

von C, nach Cn^.1 Ci. Die
zweite Gruppe verlegt Ci nach Cu, die
dritte Cu nach Cm u. s. f. Hierbei sind
die Strecken d Ci, C1C11, C11C111 alle
gleich lang und die äussern Winkel zweier
aufeinander folgenden Seiten sind gleich
U. Wenn U kein ganzzahliges Vielfaches
der Periode Uc 2 n der Eigenschwingung
ist, so ist das Vieleck C1C1C11C111 einem
endlichen Kreis ein beschrieben und der
Bewegungsvorgang bleibt in endlichen
Grenzen. Genau periodisch wird er, wenn
das Verhältnis U: Us das zweier ganzer
Zahlen qx und q2 ist. Wegen q2 U qx 2.71

wird sich nach der Einwirkung
von q2 Stossgruppen alles periodisch

wiederholen. Das Polygon
der C-Punkte schliesst sich auf qx X
Umläufen.

Ist aber U g • o.n, wo g eine >r~
ganze Zahl bedeutet, so liegen
die Punkte C statt auf einem Kreis
aequidistant auf einer Geraden,
und die Bewegung des Systems
wächst mit der Zeit ins Unendliche.
Man kann dies als Slossresonanz
bezeichnen. Die Periode der Stoss-
gruppe ist dann ein ganzzahliges
Vielfaches der Eigenperiode des
schwingenden Systems.

Wenn bei einer beliebigen
Stossfolge die Zahl der Stösse in
geeigneter Weise ins Unendliche
gesteigert wird, ihre Intensitäten
aber nach Null vermindert werden,
so geht das darstellende Polygon
der Punkte C in eine gewöhnliche
Kurve über, deren Kontingenz-
winkel nun die unendlich kleinen
Zeitintervalle zwischen den Stössen,

deren Linienelemente die
unendlich kleinen Geschwindigkeitssprünge messen. Die
Kurve kann aber auch als Diagramm einer erzwungenen
Schwingung gedeutet werden, die von einer äussern störenden

Kraft herrühren.
Man kann sonach mit beliebiger Annäherung die

Wirkung äusserer Kräfte ersetzen durch eine Folge sehr rascher
und sehr feiner Stösse. Für eine Naturbeschreibung, die auf
die diskontinuierlichen Vorgänge aufbaut (wie vielfach die
moderne Physik), ist das von Bedeutung. (Schluss folgt.)
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Abb. 9 und 10. Frontansicht und Grundriss 1:400 des Doppelhauses VIf/VIII an der Strassenkreuzung.

Die Wohnkolonien der Baugenossenschaft
des eidgen. Personals in Zürich.

(Mit Tafeln 9 und 10.)

Die heute wiedergegebenen Abbildungen zeigen eine
Kolonie, die 1921 bis 1923 im Anschluss an die im letzten
Heft veröffentlichte ebenfalls von den Architekten Leuen-
berger & Giumini erbaut wurde.

Der Bauplatz (vergl. Lageplan Abb. 8), in Wipkingen
an einem Plateaurand oberhalb des städtischen Wasserwerks

gelegen, wird beherrscht vom Schulhaus Letten,
das vor acht Jahren die Gebrüder Bräm erbaut haben1)
und das mit seiner rotgetönten ruhigen Masse das Farbenthema

für die Umgebung stellt.
') Dargestellt in Band 68, Seite 273 (9. Dezember 1916). Red.
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Abb. 8. Lageplan'der Wohnkolonie im Letten. — Masstab 1 :2000.
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