Zeitschrift: Schweizerische Bauzeitung

Herausgeber: Verlags-AG der akademischen technischen Vereine

Band: 81/82 (1923)

Heft: 7

Artikel: Das Stahlbeton-Verfahren

Autor: Müller, C.H.

DOI: https://doi.org/10.5169/seals-38957

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 02.10.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

becken und dem hohen Ausbau der Anlage ausschliesslich als Winterenergie Verwendung finden kann. Im weiteren ist hervorzuheben, dass die Anlage in den Jahren 1917 bis 1920 erstellt wurde, d. h. in der Zeit der grössten Teuerung.

Zum Schlusse erwähnen wir, dass folgende Haupt-Unternehmungen am Bau beteiligt waren: Seeanstich, Staumauer, Wasserfassung, Zulaufstollen und Wasserschloss: Baumann & Stiefenhofer, Wädenswil. — Unterbau der Druckleitung und Seilbahn: Maggi & Ramseyer, Piotta. — Druckleitung samt Ausrüstung der Apparatenkammer: Escher Wyss & Cie., Zürich. — Maurer- und Betonarbeiten des Maschinenhauses: Seeberger, Frutigen; Ghielmetti & Moccetti, Bern; Leuenberger, Trachsel & Niggli, Spiez. — Turbinen: Piccard, Pictet & Cie., Genf. — Generatoren: Brown, Boveri & Cie., Baden; Transformatoren und 60 kV-Schaltanlage: Maschinenfabrik Oerlikon; 15 kV-Schaltanlage mit Schaltstand: Carl Maier, Schaffhausen.

Die während der Bauzeit herrschenden kritischen Arbeitsverhältnisse veranlassten die Generaldirektion der S. B. B. zu einer weitgehenden Verteilung der Arbeiten und Lieferungen, sodass sich im ganzen über 50 grössere und kleinere Unternehmungen am Bau beteiligten. Es würde zu weit führen, sämtliche Unternehmungen hier zu nennen.

Die Projektierung und Oberleitung des Baues besorgte der Oberingenieur für Elektrifikation der S. B. B., E. Huber-Stockar und seine Stellvertreter H. Eggenberger, A. Dänzer (†) und H. Egg, sowie Architekt Th. Nager bei der General-direktion der S. B. B. Die örtliche Bauleitung lag in den Händen der Ingenieure Weitnauer (baulicher Teil) und H. Habich (maschineller und elektrischer Teil). Im weitern waren als Bauführer tätig die Ingenieure Lucchini, Ochsner, Lusser, Boller, Architekt Bloch und der gegenwärtige Betriebsleiter Schmid.

Das Stahlbeton-Verfahren.

Von Ingenieur C. H. Müller, Zürich.

Bei Eisenbetonbauten sind die Sicht- und Gebrauchsflächen vielfach Beanspruchungen ausgesetzt, die nicht nur auf statischem Gebiete liegen. Im Vordergrund steht dabei die mechanisch-physikalische Inanspruchnahme, die an die Widerstandsfähigkeit und Haltbarkeit der Betonflächen oft grosse Anforderungen stellt. Bei Fussböden in Fabriken, Lagerräumen, Autohallen, Waschküchen, Pferdeställen, Kokslöschbühnen, Treppen für Bahnhöfe, Geschäftshäusern und öffentlichen Gebäuden aller Art, bei Rutschflächen von Silos, Erzbehältern und Kohlenbunkern, in Kesselhäusern, ferner bei der Wegerung von Eisenbeton-Schiffen, sowie bei den Arbeitsböden in Eisenbeton-Eisenbahnwagen, Strassenbahnschienen-Einfassungen, Randsteinen usw. steht die Frage der mechanischen Abnützung des Betons im Vordergrund. Nicht nur die allgemein bekannte Tafsache, dass der übliche, wenn auch in gutem Mischungsverhältnis

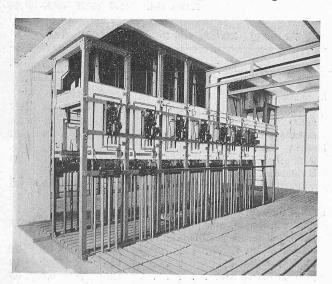


Abb. 94. Verteilraum unter den Schaltpulten.

hergestellte Beton derartig grossen und ständigen Abnützungsvorgängen nicht gewachsen ist, sondern auch der Umstand, dass dabei meistens eine erhebliche Staubentwicklung stattfindet, die vielfach als sehr lästig und schädlich empfunden wird, hat Anlass zu verschiedenen Versuchen und Vorschlägen gegeben, die Beton-Oberflächen in dieser Hinsicht zu verbessern. Die ausführende Praxis kennt bis jetzt kein Mittel, das in allen Teilen genügend befriedigt hätte. Der Grund hierfür liegt zum Teil darin, dass nach den älteren Verfahren die verbesserten Betonflächen keine gleichmässige Widerstandsfähigkeit, sondern härtere und weichere Teile aufweisen, von denen die weicheren Teile (Zement oder Beton) unter entsprechender Entwicklung vom Staub der Abnützung rascher anheimfallen. Dadurch entstehen bald Unebenheiten, die verschiedene Nachteile mit sich bringen. Es ist deshalb begreiflich, wenn gegenüber allen derartigen Anpreisungen ein starkes Misstrauen besteht, das nur durch greifbare Beweise einer besseren Leistung beseitigt werden kann.

In voller Kenntnis dieser Verhältnisse und der Schwierigkeit der Aufgabe sind nun schon seit Jahren eingehende Versuche und Erprobungen durchgeführt worden, um ein Verfahren herauszubringen, das den vorerwähnten Ansprüchen genügt. Die Versuche haben erst Ende 1920 zum vollen Erfolge geführt; die einzelnen Phasen des Werdeganges haben deutlich erkennen lassen, wie schwer es ist, einerseits grösste Härte und anderseits weitgehende Staubfreiheit der Oberfläche mit einander zu verbinden.

Das Stahlbeton-Verfahren nach den Patenten von Professor Dr.-Ing. Kleinlogel in Darmstadt gestattet, eine in beliebiger Stärke aufzubringende, zusammenhängende, einheitlich geschlossene, gegen mechanische Abnützung in hohem Grade widerstandsfähige und dabei staubfrei bleibende, metallartige Haut auf Beton zu erzeugen. Stahlbeton ist eine künstliche Eisenmasse, hergestellt durch Mischung von Portlandzement mit einem eigens dazu präparierten Härtematerial. Für die Beurteilung der Güte, der praktischen Brauchbarkeit und der Wirtschaftlichkeit des Stahlbeton-Verfahrens mögen die nachstehenden Angaben dienen, die sich einesteils auf amtliche Versuche, andernteils auf die bisherigen Erfahrungen der Praxis stützen.

Härtegrad. Die seit Dezember 1919 bis zum heutigen Tage durchgeführten Versuche in den Materialprüfungsanstalten der Technischen Hochschulen in Stuttgart und Darmstadt haben ergeben, dass die mit Stahlbeton versehenen Probekörper einen ganz ausserordentlichen Härtegrad besitzen, der sowohl jedem Kunststein als auch dem härtesten Naturstein überlegen ist. Beispielsweise ist die Stahlhaut selbst besten maschinengepressten Kunststeinplatten an Abnutzung achtfach überlegen und bei bestem Granit von besonderer Auslese ergab sich aus 30 Versuchen ein Mittelwert von 2,2-facher Ueberlegenheit.

Staubfreiheit. Die Tatsache der Staubfreiheit geht ohne weiteres aus der Sonderart der Erzeugung des Stahlbetons hervor, indem schliesslich an der Oberfläche keinerlei Teile eines Bindemittels und dergleichen, sondern nur noch Metallteile vorhanden sind, die bekanntlich an sich zu einer Staubentwicklung kaum Anlass geben können.

Rostsicherheit. Da stahlartige Oberflächen an sich der Gefahr des Rostens unterliegen, ist es erforderlich, bei der Verarbeitung der Stahlhaut darauf zu achten, dass bei der Abglättung das Bindemittel anfänglich bis zur Oberfläche hervortritt und ein spachtelartiger Ueberzug zurückbleibt. Bei angestellten Beobachtungen hat sich ergeben, dass Stahlbeton-Flächen, die dauernd der Benutzung unterliegen, keinen Rost aufweisen. Sollte sich aber an der Oberfläche der Stahlhaut Rost bilden, so handelt es sich nur um einen äusseren Hauch, zumal die darunterliegenden weiteren Teile der Härteschicht durch die Eigenart des Verfahrens ohne weiteres gegen Rost geschützt sind.

Hattlestigkeit. Es ist eine besondere Eigentümlichkeit der metallischen Haut, dass sie mit der Unterlage (Beton und dergl.) eine ausserordentlich innige Verbindung eingeht. Die Haftlestigkeit der Stahlbetonmasse ist ganz hervorragend, und zwar nicht nur auf frischem, sondern auch auf altem Beton oder auf Stein. Beispielsweise wurde an einer Granitstufe, die mit Stahlbeton überzogen worden war, ein Stück Granit an der Kante abgeschlagen und dieses durch Stahlbetonmasse ersetzt. Nach entsprechender Erhärtung wurde eine Lostrennung der Stahlbetonmasse versucht, wobei sich jedoch die Masse nur mit anhaftenden Stücken Granit

los schlagen liess. Auch während der Vornahme von Versuchen in der Materialprüfungsanstalt Stuttgart wurde die grosse Haftfestigkeit bereits erkannt. Die weitreichende Haftung der Stahlbetonmasse ist u. a. auch daraus zu entnehmen, dass sich diese mit gleichem Erfolge auch auf Natursteinen aller Art, ferner auf Bimsbeton, Ziegelsteinen, Chamotte, ja sogar auf Kork, Torfoleum und dergleichen aufbringen lässt.

Bearbeitungsmöglichkeit. In manchen Fällen ist insbesondere auch die Bearbeitungsmöglichkeit des Endproduktes von Bedeutung. Um diese festzustellen, wurden in der Materialprüfungsanstalt der Technischen Hochschule Darmstadt im Jahre 1920 besondere Versuche durchgeführt. Dabei wurde festgestellt, dass sich Stahlbeton, ganz ähnlich wie Gusseisen, hobeln, drehen, bohren, feilen, sägen und schleifen lässt. Die Hobel- und die abgedrehten Flächen waren verhältnismässig eben und die Bohrlöcher zeigten glatte Wandungen, ohne ausgebrochene Stellen beim Austritt des Bohrers.

Im weiteren Verfolg dieser Eigenschaften wurden auch Versuche mit autogener Durchlochung angestellt. Stahlbeton leistete dabei grösseren Widerstand als Stahl, bezw. Gusseisen. Die Schmelzränder zeigten ein ganz ähnliches Aussehen wie bei Gusseisen, jedenfalls völlig verschieden von den bei gewöhnlichem Beton üblichen Erscheinungen.

Zug, Druck und Biegungsfestigkeit. Nach amtlichen Versuchen sind die Zugfestigkeit und die Biegungsfestigkeit etwa doppelt so gross wie bei bestem Beton, die Druckfestigkeit dagegen ist dreibis viermal grösser. Stahlbeton lässt sich daher in allen jenen Fällen als sehr guter Ersatz für Gusseisen verwenden, in welchen nicht die volle Druckfestigkeit des Gusseisens verlangt wird.

Wasserdichtheit. Bei besonderen Versuchen in der Materialprüfungsstelle Darmstadt im April 1921 hat sich ergeben, dass eine
nur von Hand aufgebrachte, also keineswegs aufgepresste Stahlhaut
von 5 mm Stärke einem Wasserdruck bis zu 14 at standgehalten
hat, ohne dass sich irgendwelche Undichtheiten zeigten. Die Versuche wurden bei 14 at Druck und einer Einwirkungsdauer von
192 Stunden abgebrochen, da die Prüfungsanstalt der Ansicht war,
dass eine weitere Fortsetzung keinen praktischen Zweck mehr habe.
Neuerdings sind am 12. Oktober 1922 an der MaterialprüfungsAnstalt der Technischen Hochschule in Stuttgart Stahlbetonplatten
von 25/25 cm, 6 cm Stärke, wobei rund 20 mm Stahlbetonbelag,
auf höhern Wasserdruck bis 80 at geprüft worden, ohne dass dabei
Wasser ausgetreten wäre.

Von privater Seite wurden Versuche mit Platten von nur 5 mm Stahlbetonbelag auf 200 at Widerstandsfähigkeit abgepresst. Das Ergebnis soll amtlich nachgeprüft werden und es sind zurzeit besondere Platten zu diesem Zwecke in Vorbereitung.

Der Stahlbeton findet überall da praktische Anwendung, wo die Aussenflächen von Beton und dergl. einer grossen mechanischen Beanspruchung unterliegen. Infolge seiner hervorragenden Wasserdichtigkeit eignet er sich aber auch vorzüglich zur Abdichtung von Wassergerinnen jeder Art, für Turbinenkammern, Rohrleitungen, Wasserbehälter, Tunnels und Brückenbauten, sowie Schachtanlagen für Bergwerke und dergleichen. Da er nur sehr schwer mit autogener Stichflamme zerschnitten werden kann, findet er auch Anwendung bei der Herstellung von Tresorkammern, Kassen- und Mauerschränken. Seine Herstellungsweise ist sehr einfach; als ganz besonderer Vorzug ist hervorzuheben, dass die Haut auf kaltem Wege erzeugt und aufgetragen wird.

Schweizer. Maschinenindustrie im Jahre 1922.

Unserer Uebung gemäss entnehmen wir dem Jahresbericht des Vereins schweizerischer Maschinen-Industrieller einige Angaben über die Tätigkeit des Vereins und über die Lage der schweizerischen Maschinen-Industrie im vergangenen Jahre.

Dem Verein gehörten zu Ende 1922 insgesamt 149 Werke mit 39756 Arbeitern an, was einer Abnahme in der Zahl der Werke um 14, in jener der Arbeiterschaft um 1461 oder rund 3,5% gegenüber dem gleichen Zeitpunkte des Vorjahres entspricht.

Im übrigen orientiert die Tabelle Seite 95 oben über die Bewegung der Gesamtzahlen der Vereinsmitglieder und der von ihnen beschäftigten Arbeiter während der letzten Jahre.

Von der Gesamtzahl der Werke Ende 1922 entfallen auf den Kanton Zürich 51 (Ende 1921: 57) mit 15112 (15878) Arbeitern, Bern 28 (28) Werke mit 4904 (4619) Arbeitern, Schaffhausen 7 (7) Werke

Tabelle I. Einfuhr von Maschinen und Automobilen in t.

Maschinengattung		1913	1920	1921	1922
		t	t	t	t
Dampf- und andere Kessel .		3067	3014	1634	1135
Dampf- und elektrische Lokomot	iven .	216	276	161	281
Spinnereimaschinen		1568	1261	774	722
Webereimaschinen		610	1141	533	414
Strick- und Wirkmaschinen .		114	491	227	177
Stickereimaschinen		822	700	6	13
Nähmaschinen		1117	1602	629	953
Maschinen für Buchdruck usw.		1048	1776	1536	896
Ackergeräte und landw. Maschin	en .	3517	4808	2666	2038
Dynamo-elektrische Maschinen	الدروات	751	380	530	420
Papiermaschinen	- 1	1290	1097	1420	705
Wasserkraftmaschinen		394	375	296	180
Dampfmaschinen und Dampfturb	inen .	763	355	521	538
Verbrennungs-Kraftmotoren .		192	326	201	307
Werkzeugmaschinen		3867	11187	4172	2819
Maschinen f. Nahrungsmittelfabri		1358	1738	903	911
Ziegeleimaschinen usw		2070	1359	1224	678
Uebrige Maschinen aller Art .		7748	8201	6334	5415
Automobile		1095	12067	4783	3206
Totale	infuhr	31391	52154	28550	21808

Tabelle II. Ausfuhr von Maschinen und Automobilen in t.

Maschinengattung		1920	1921	1922
-19	t	t	t	t
Dampf- und andere Kessel	2111	2983	2145	1081
Dampf- und elektrische Lokomotiven .	979	1198	1117	647
Spinnereimaschinen	1305	2288	2314	2432
Webereimaschinen	6684	7608	6263	5718
Strick- und Wirkmaschinen	311	561	578	839
Stickereimaschinen	1901	3652	1335	912
Maschinen für Buchdruck usw	423	613	463	989
Ackergeräte und landw. Maschinen .	715	553	311	248
Dynamo-elektrische Maschinen	7936	6657	7154	4800
Papiermaschinen	174	878	738	571
Müllereimaschinen	6970	5893	3595	2965
Wasserkraftmaschinen	4939	3737	5574	3441
Dampfmaschinen und Dampfturbinen .	5595	3249	3852	3435
Verbrennungs-Kraftmotoren	6372	7668	4769	5250
Werkzeugmaschinen	979	8136	2696	2423
Maschinen f. Nahrungsmittelfabrikation	2411	4731	2714	249
Ziegeleimaschinen usw	631	1135	347	345
Uebrige Maschinen aller Art	4016	3417	2915	2114
Automobile	2215	1821	517	573
Totalausfuhr	56667	66778	49397	4127

Tabelle III. Einfuhr von Rohmaterialien in 1000 t.

	1913	1920	1921	1922
Brennmaterial:				
Steinkohlen	1969	1935	1066	1257
Koks	439	302	241	456
Briketts	968	400	316	482
Eisen:				Section 1
Roheisen und Rohstahl	123	82	31	85
Halbfabrikate: Stabeisen, Blech,				
Draht, Röhren, Schienen usw	281	231	118	132
Grauguss	9,5	6,0	5,6	5,5
Uebrige Metalle:				
Kupfer in Barren, Altkupfer	2,8	8,9	5,1	7,8
Halbfabrikate: Stangen, Blech, Röhren,	The of	1000	la la	Pist.
Draht	9,0	7,7	4,2	3,0
Kupfer-Fabrikate	1,5	2,2	2,0	1,4
Zinn in Barren usw	1,4	1,0	0,9	0,9
Roh vorgearbeitete Maschinenteile		5,8	2,8	1,9