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Von reicherem Innenausbau finden wir in Zug
eine Reihe von Häusern aus der Stilperiode der
Renaissance. Sie liegen ausserhalb der gotischen
Stadt, zum Teil als Stadthäuser, zum Teil als
Landhäuser in weiten Gärten. Zu den städtischen Bauten
gehört der Komplex der „Münz" an der Zeughausgasse,

dessen Grundriss nebenstehend abgebildet ist.
Das Haus zur „obern Münz" wurde 1580, die „untere
Münz" 1604 vom gleichen Bauherrn erbaut, und beide
bald darauf durch eine (nicht mehr bestehende)
gedeckte Galerie miteinander verbunden. Es beherbergte
anfänglich die zugerische Münzstätte; später war die
städtische Kanzlei darin untergebracht, zuletzt die
Regierungskanzlei. Das im Laufe der Jahre zum
heutigen Umfang ausgebaute Münzhaus zeigt in einer
Reihe im Bande abgebildeter reicher Zimmer den
typischen Renaissance-Stil mit kostbarer Holzarchitektur

in Eiche und Nussbaum. Beachtenswert an diesem
Bau ist, in welchem Mass die Baukünstler jener Zeit
schiefwinklige Räume und Blöcke in Kauf nahmen,
um sich in den gegebenen Plan der Strassenfluchten
restlos einzupassen; beachtenswert auch, wie gut sie
es verstanden, solche erhebliche Schiefwinkligkeit
nach aussen wie nach innen unauffällig zu machen.
Es geht gerade wieder aus diesem Beispiel deutlich
hervor, dass das Auge, das die Strassenwände meist
in starker perspektivischer Verkürzung sieht, für
Abweichungen der Häuserfronten aus der Richtung der
Strassenflucht viel empfindlicher ist, als für stumpfe
oder spitze Baublockkanten.

»Im allgemeinen — lesen wir im Text — darf
man den Typus des gewöhnlichen, gut situierten
(Zuger) Bürgerhauses als einfach und vornehm gehalten
bezeichnen. Es kommt dem Erbauer mehr darauf an, seine
Wohnräume behaglich und künstlerisch wertvoll zu gestalten,
als durch eine reiche Aussenarchitektur die Blicke der
Mitbürger auf sich zu ziehen."

Aus : Bürgerhaus in der Schweiz. — Bd. X:
Verlag: Art. Institut Orell Füssli, Zürich.

HINTERE MÜNZ

Kanton Zug.
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Verdrehungsschwingungen von Wellen.1)
Von Professor 0. Foppl, Braunschweig.

Die einfachste Anordnung, mit der eine harmonische
Schwingung erhalten wird, ist die Verbindung einer Feder
mit einer Masse (Abbildung i). Wenn die Feder, die an
einem Ende festgehalten ist und am anderen Ende die
Masse m trägt, bei der Zusammendrückung um i cm die
Kraft von c kg auslöst, so lautet die dynamische
Grundgleichung für die Bewegung der Masse m:

d*x
m df-

mit der Lösung:

— ex (0

X Xq cos yz. (»)

Ein gleich gebautes Glied mit sin( 1/—/) ist weggelassen

worden unter der Voraussetzung, dass der Zeitmasstab so

n
Abb.1 Abb. 2 Abb. 3

gewählt sein soll, dass für t o der grösste Ausschlag
vorhanden ist. Dämpfung wird ebenso wie im nachfolgenden
nicht berücksichtigt.

*) Literatur: Frahm «Neuere Untersuchungen ..» Z. d. V. d. I. 1912.
Gümbel € Verdrehungsschwingungen eines Stabes ...» Z. d. V. d. I. 1912.
A. Foppl «Vorlesungen aus der techn. Mechanik» Band 4. Geiger «Ueber

Verdrehungsschwingungen von Wellen», Dissertation. Berlin 1914.

h
Grundriss vom I.Stock des Hauses .Zur Münz". — Masstab 1 :300.

Die Schwingungsdauer T, d. h. die Zeit, nach deren
Ablauf der Ausschlag x wieder den vorher gehabten Wert
annimmt, ist nach Gleichung 2:

T -fr (3)

In gleicher Weise lässt sich die Schwingung einer
Schwungmasse behandeln, die auf einer Welle sitzt und
das Trägheitsmoment J hat (Abbildung 2). Der Freiheitsgrad

für die Bewegung der Schwungmasse ist jetzt der
Verdrehungswinkel cp und statt der rücktreibenden Kraft

tritt hier das rücktreibende Moment c —— in
VerdrehungsWinkel

die Erscheinung. Den Gleichungen 1, 2 und 3 entsprechen
die Gleichungen:

J^l-^-ccp (4)
dt*

(Do cos

T ,f
(f- t (5)

(6)

Man erhält für die Verdrehungschwingungen Gleichungen,
die ebenso gebaut sind, wie die Gleichungen für die
gradlinigen Schwingungen. Da sich die Anordnungen für
gradlinige Schwingungen leichter graphisch darstellen und
übersehen lassen, behandelt man zweckmässig nur diese
und wendet die Ergebnisse ohne weiteres auf
Drehschwingungen an. Im nachfolgenden ist deshalb nur die
Rede von Massen, Federlängen und Federkräften, man
kann sich darunter aber ebensogut auch Trägheitsmomente,
Wellenlängen und Drehmomente vorstellen.

Da die Schwingungsdauer nur abhängt von der
Kraft, die bei einer Längenänderung der Feder um 1 cm
auftritt, kann man eine beliebige Feder auch durch eine

Bezugsfeder von bestimmtem Windungsdurchmesser und
Drahtstärke ersetzen, wenn man die Länge / der Bezugsfeder

so wählt, dass sie bei der Längenänderung um 1 cm
die gleiche Kraft c liefert wie die tatsächliche Feder.
Dieser Ersatz der tatsächlichen Feder durch eine Bezugsfeder

ist namentlich dann zweckmässig, wenn mehrere
Schwingungsanordnungen der Abbildung 1 mit verschiedenen

Federdurchmessern, Drahtstärken usw. vorliegen.
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Dann kann man bestimmte Abmessungen (Drahtstärke und
Windungsdurchmesser) für eine Bezugsfeder zu Grunde
legen und jede tatsächliche Feder durch eine Bezugsfeder
mit der besonderen für den jeweiligen Fall in Frage
kommenden Länge ersetzen, sodass sich die verschiedenen
Anordnungen ausser durch die Massen nur noch durch
die Federlängen unterscheiden. Zur Bestimmung der
Schwingungsdauer der Anordnung nach Abbildung 1 ist
also nur die Kenntnis der Länge / der Bezugsfeder und
der Masse m nötig, die man auch nach Abbildung 3 durch
die Strecken / und m graphisch wiedergeben kann.

Wenn man Federn von verschiedenen Längen, sonst
aber gleichen Abmessungen, um den gleichen Betrag, etwa
um 1 cm, zusammendrückt, so lösen sie Kräfte aus, die
im umgekehrten Verhältnis zu den Längen / der Federn
stehen. Das c in Gleichung 3 kann also durch eine von
der Wahl der Bezugsfeder abhängige Konstante geteilt
durch die Federlänge / ersetzt werden; oder man kann
schreiben:

T a \ m l (7)
wobei a durch die Bezugsfeder festgelegt ist.

In dem Aufsatz „Verdrehungsschwingungen von
Wellen und geradlinige Schwingungen von Massen, die
zwischen Federn gehalten sind" in Heft 5 der „Zeitschrift
für angewandte Mathematik und Mechanik" 1921 habe ich
gezeigt, wie man verwickeitere Anordnungen mit mehreren
Massen nti, m2, ms die zwischen Federn von den
Längen Ix, l2, 4 gehalten sind (Abbildung 4), so in
Anordnungen nach Abbildung 3 zerlegen kann, dass die
Gesamtschwingung sich aus Einzelschwingungen nach
Abbildung 3 zusammensetzt. Zu diesem Zweck werden die
Längen durch die Knotenpunkte Kl2, K2i AT„_IiM je
in zwei Teile geteilt und die zwischenliegenden Massen

m2, ms, nti m„ 1 ebenfalls so unterteilt, dass

«1 4i m%\ l12 m23 4a m22 /23 mn hs • • • (8)
wobei

ntn -f- mM m2; mM + rn3i m3; (9)
und

'11 O 'is »i i '»2 -\- '23 — 's J • • • (10)

oder, wenn man die Ergebnisse von 9 und 10 in 8
einsetzt :

m1l11=m21 (4 —4i) (m2 — m21)l22 m32(l2 — hi)... (11)

Diese Gleichung ist die strenge Lösung, die durch
Einsetzen in Gleichung 7 die Schwingungsdauer T liefert.
Wenn man Gleichung 11 analytisch aufzulösen hat, wird
man zuerst die ran, m32 durch Zusammenfassung von
je zwei aufeinander folgenden Gliedern eliminieren und
dann die / durch Verhältniszahlen ersetzen. Bei n Massen
hat man 2 n — 3 Gleichungen mit ebensovielen
Unbekannten, die n — 1 reelle Lösungen haben. Diese Lösungen
enthalten nicht nur die Schwingung, bei der zwischen je 2

Tabelle I.

Im nachfolgenden soll die praktische Anwendbarkeit
dieser theoretischen Ueberlegungen zur Bestimmung der
Eigenschwingungszahlen von mit Schwungmassen behafteten

Maschinenwellen an Beispielen gezeigt werden.

Gang der Rechnung.
Wir zergliedern zuerst die Anordnung nach Abbildung

5 in Einzelanordnungen nach Abbildung 3. Die
Unterteilung der Längen und der Massen erfolgt nach der
Gleichung:
mx lu mn (4 — /n) (m2 — m2X) 4s «*82 (4 — 4s)

(m3 — m32) 43 nti (4 — 43) (12)

7>.

ma ""ü
ms2 *ms<

m

1, li U

l„ K, la l21 K2 l21

H —St »j
/T7/-2 /77j ,2

m2 i

l,.< l2-i I3-1

AbbA

Abb.5

Die fünf Gleichungen haben drei Lösungen für /u, die
die drei möglichen Schwingungsformen darstellen. Nach
Gleichung 7 hat die Schwingungsform 1. Ordnung, d. h.
die mit der grössten Schwingungsdauer T, den grössten
Wert von 4i- Die Auffindung der Wurzeln der Gleichungen
auf analytischem Wege würde erhebliche Schwierigkeiten
bereiten. In den meisten Fällen genügt es überdies, wenn
man die Schwingungsdauer 1. Ordnung, also den grössten
Zahlenwert von llt angeben kann. Man wird versuchen,
diesen durch Probieren zu ermitteln. An der angegebenen
Stelle habe ich gezeigt, dass der innenliegende Knotenpunkt

der Schwingung 1. Ordnung nicht weit entfernt ist
vom Schwerpunkt S der in Abbildung 5 wiedergegebenen
Anordnung. Für die erste Annäherung denkt man sich
deshalb S als Knotenpunkt festgehalten. Man berechnet die
Eigenschwingungszahl des links (oder rechts) von S
gelegenen Teiles der Anordnung. Das mx ln dieses Teiles,
das in Gleichung 7 eingesetzt, T ergibt, ist aber kleiner
als 2 ms, wenn mit s der Schwerpunktabstand bezeichnet
und die Summierung über die links oder rechts von 5
gelegenen Massen erstreckt wird ; es ist also:

m l y 2 m s B-l (13)
wobei y ein echter Bruch ist. Für die 1. Annäherung setzt
man yx 0,85 bis 0,90 ein. Man hat dann einen
Annäherungswert, den ml in Gleichung 12 haben soll und
kann daraus zuerst /u nach der Formel

4. ^ («4)

dann w21 aus dem 2. Glied der Gleichung 12

I 2 3 4 5 6 7 8 9 IO II 12 13

>\ Ums n Bx hi "'21 '23 m:,t 0 mi V Ums' 72

1,33 3,o 0,850
0,880

2.55

2,64
i,275
1,32

—9,27
—8,25

0,248

0,2855
3,39
3,695

-1,835
-1,558

0,900
1,032

1,30 2,90 0,880

mn
berechnen usw.,

*i (15)

B 2,55 + 0,091[0r32 _!'o°9°oo 2,5S + °'°68 2,6lS y= °'873

Massen 1 Knotenpunkt — bei n Massen (n—1) Knotenpunkte

— liegt (Schwingung der (n— i)ten Ordnung),
sondern zugleich auch alle Schwingungen der niederen
Ordnung. Ich habe an der angeführten Stelle den Begriff
des aussenliegenden Knotenpunktes eingeführt und gezeigt,
dass z. B. die Schwingung 1. Ordnung bei n Massen (n —2)
aussenliegende und 1 innenliegenden Knotenpunkt, die
2. Ordnung n — 3 aussenliegende und 2 innenliegende
Knotenpunkte hat usw.

k-hi
und erhält aus

dem letzten Glied der Gleichung 12 :

«O (4—4s) Bx. (16)
Da 43 schon aus dem
vorausgehenden Ansatz bekannt ist,
liefert Gleichung 16 einen Wert
für «V, der von den vorausgehenden

Annahmen abhängt und der
nicht mit dem bestimmten Wert

von mi= 1 übereinstimmen wird. Wir erhalten also den
Wert, den die Masse mt haben musste, wenn der Ansatz
m l B. wirklich die Lösung der Gleichungen 12 wäre.

Nach diesen Ueberlegungen ist die erste Zeile der
Tabelle I berechnet. Man erhält hier für mi den Wert
0,900 statt des gegebenen 1,0. Für die Anordnung mit
den Massen tnlt m2, m:i und ml kennt man einerseits Bt
und damit die Schwingungsdauer T-' nach der Formel 7,
Tl'=ayBl; anderseits kann man hierfür den Schwer-
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punkt S' und 2m • s' links von S'berechnen. Man kann
also nach Gleichung 13 das y2 ermitteln (Spalte 11 bis 13).

Für die Berechnung der zweiten Annäherung nimmt
man an, dass die Anordnung mit der Masse mt das gleiche
y habe wie die Anordnung mit der Masse ml und rechnet
die zweite Zeile der Tabelle mit y2 0,880 wieder unter
Benützung der Gleichung 12 durch. Man erhält so ein
tfti" 1,032, das dem B2 2,64 entspricht und das dem
wirklichen Wert tn4 1,00 schon beträchtlich näher liegt

chem Drehmoment gleiche Verdrehungswinkel ergeben.
Nach einer bekannten Form der Festigkeitslehre ist:

Ä Ml I \

wobei M das Drehmoment, G den Schubelastizitätsmodul

und ip das polare Trägheitsmoment des
Wellenquerschnitts bezeichnet. Da Wellenstück und
Bezugswellenstück bei gleichem Drehmoment gleichen Verdrehungswinkel

haben sollen, ist:
Utd (ip)nd

J, =800 1
- 600cm -

E
-300 cm-

J3=<fOOO

d=2Zcm

Jj.-800

h hrecf-

d=25cm

3Z 1500

Igred 1,95cm

Abb.6

J3 4000

d= 18 C.

¦ Urt>d "29,1 Cm

Ji, -100
>i
J

Jfy 100
->i
r

oder lred l —Y^— (20)
tp (ip)red lt

Das Trägheitsmoment der Bezugswelle
ist mit (ip)rea bezeichnet. (4)™<* ist nach
Gleichung 19 und den bestimmten für die
Bezugswelle gemachten Annahmen:

(4W ^; (21)

oder, G mit 800000 kg/cm2 eingesetzt:

(213)(V)r

Abb. 7

als «/. Die verschiedenen Werte, die für m^ erhalten
werden, kann man abhängig von den Annahmen für B
in einer Kurve auftragen, von der die beiden Punkte m/,
Bx und w4", B2 bekannt sind. Um das B zu ermitteln,
das zum tatsächlich vorhandenen m± gehört, denkt man
sich das Kurvenstück durch eine Gerade ersetzt und extra-
bew. intrapoliert nach der Formel:

0,8 • IO6

lred =125

125 cm4

(22)

B Bx + (B2 - Bx) (17)

und erhält in der Tabelle den Wert B 2,618.

Wie man sieht, ist in diesem Falle das y2 0,880,
das in der ersten Zeile erhalten wird, eine gute Annäherung

an das tatsächliche Ergebnis (y 0,873). Das ist
aber in diesem besonderen Falle darauf zurückzuführen,
dass die Massenverteilung verhältnismässig gleichmässig ist.
Im allgemeinen Falle, z. B. bei der Berechnung einer Schiffswelle

auf Drehschwingungen, kann es vorkommen, dass die
letzte Schwungmasse, z. B. die Schiffschraube, ein im
Vergleich zu den übrigen Massen kleines Trägheitsmoment
hat. Dann ist es, wenn man eine rasche Annäherung an
den wahren Wert m^ haben will, empfehlenswert, die
Berechnung unter Benützung des yx und Bx von beiden
Seiten zu beginnen und bei jener Masse mn deren statisches
Moment auf S bezogen — also mr sr — den grössten Wert
hat, endigen zu lassen.

Nach Tabelle I und Formel 7 würde sich die Schwingungsdauer
1. Ordnung berechnen zu

Tx a }B a J 2,618 (18)
Die Grösse von a ist in einem bestimmten Fall durch die
Abmessungen der Bezugsfeder gegeben.

Durchrechnung
eines Zahlenbeispiels.

Die auf einer Schiffswelle
sitzenden Schwungmassen mögen
durch die in Abbildung 6
eingeschriebenen Zahlenwerte gegeben
sein. Die Trägheitsmomente sind
Massenträgheitsmomente, also von
der Dimension kg cm sek2. Wir
haben die Anordnung zuerst auf
einheitliche Bezugsfedern, d. h.
gleiche Wellendurchmesser, umzurechnen, und zwar
wählen wir als Bezugswelle ganz willkürlich jene Welle,
die bei der Länge von 1 cm und dem Drehmoment

von 1 cmkg die Verdrehung A cp — (oder 57,3° io-8)
io8

liefert. Die drei in der Abbildung auftretenden Wellenstücke

von den Längen / werden auf die Längen l„d der
Bezugswelle so umgerechnet, dass die tatsächlichen Wellenstücke

und die zugehörenden Bezugswellenstücke bei glei-

Nach dieser Formel sind die drei Stücke llr.d, hred und l3red
der Bezugswelle berechnet und in Abbildung 7 eingetragen.

Die Schwingungsdauer der Anordnung wird, wie
man aus dem Vergleich der Formeln 3 und 6 ersieht,
nicht geändert, wenn man sich die Schwungmassen vom
Trägheitsmoment J durch gradlinig schwingende Massen m
und die Wellenstücke durch Zug- und Druckfedern ersetzt
denkt. Die Bezugsfeder muss dabei entsprechend den
Annahmen, die für die Bezugswelle gemacht worden sind, so
gewählt sein, dass sie bei der Länge von 1 cm und der

Zusammendrückung um —- cm die Kraft von 1 kg auslöst.° io8
Für die Anordnung mit den gradlinig schwingenden Massen
(Abbildung 8) kann man sich den Schwerpunkt S berechnen,
wenn man überdies noch voraussetzt, dass die Massen
keine Breite haben, also je in einem Massenpunkt
vereinigt sind (Schwingungsschwerpunkt).

Der Abstand der Masse mx vom Schwerpunkt S
wird berechnet nach der Formel:

mx s, -\-m2 (s, — 4)
w3 (4 4- 4 — s.) + w4 (4 +44-4— «0;

_ "h h ~ "h [h + 0 + "'1 (A + '2 + 4)- /2„\1 ~
">i + «2 + »'s + "li

Der Wert von 2ms der Massen rechts oder links von S
ist für die in Abbildung 7 gemachten Zahlenangaben :

2 m s mx Sx -\- m2 s2 7250 kg sek2 (24)
Der 1. Annäherungswert für die Schwingungsdauer 1.

Ordnung ist demnach unter Benutzung des Wertes yx 0,85 :

7\' a*]Ü250 • 0,85
IOs 4,93 sek (25)

Tabelle II.

I 2 3 4 5 6 7 8 9 IO II 12 13 14

*1 Uvis y. Bx ',2 "'21 '23 »'32 '¦13 »'si »'s' V Ums Vt

7,40 7250 0,850

0,790

6160

5725
7.70
7,16

—5260

—9090
0,912
0,541

593°
4060

6l,6
57,25

-189.5
— 20^5

5740
3857

7,64 7S00 0,790

B 6160 — (6160 — 5725)
4000 - 5740
3857 — 5740

5760

da die Bezugsfeder von der Länge 1 cm bei der
Längenänderung um 1 cm nach der Voraussetzung die Kraft
c= io8 kg auslöst. Daraus folgt:

n\ -777-r 1218 • i/min (25)Y
Unter Benutzung der Formel 12 ist Tabelle II

berechnet worden. Da die am weitesten rechts gelegene
Masse m± in Abbildung 7 nur geringes Gewicht — also
ein kleines statisches Moment auf S bezogen — hat, ist
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bei der Aufstellung der Tabelle die Masse tn3, die das
grösste statische Moment in Bezug auf 5 hat, als Schlussmasse

angenommen worden. In Spalte 9 und 10 ist
deshalb von rechts mit der Lösung der Gleichung begonnen
und in Spalte n m3 als Summe der Ergebnisse der Spalten

8 und 10 eingesetzt worden. Hätte die Anordnung
der Abbildung 8 statt der Masse m3 4000 kg sek2/cm
die Masse m3 5780 kg sek3/cm aus der ersten Zeile der
Tabelle, so wäre der angenommene Wert Bx 6160 der

durch einen inneren oder äusseren Knotenpunkt unterteilt.
Nur die inneren Knotenpunkte treten bei der Schwingung
in die Erscheinung. Auf die Längen- und Massenknotenpunkte

wird noch ausführlicher im folgenden Abschnitt
zurückgekommen.

In Abbildung 10 sind Massen und Längen gegenseitig
vertauscht worden. Abbildung 10a stellt eine Anordnung
dar, die an beiden Enden durch je eine Masse begrenzt
wird. Durch Vertauschung erhält man daraus Abbildung 10b,

S Äbb.8

richtige Wert zur Bestimmung von Ti- Für diese Anordnung
mit m3 ist in Spalte 13 wieder das 2ms links vom
Schwerpunkt berechnet worden. Daraus erhält man in
Spalte 14 das tatsächliche y2 0,790 für die Anordnung
mit den Massen mx, m2, m3 mit das in der zweiten Zeile
als neuer Annäherungswert für die Anordnung nach
Abbildung 8 verwendet worden ist. Mit y,2 0,790 erhält
man in der zweiten Zeile das tatsächliche B2 für eine
Anordnung mit der Masse m3" 3850 kg sek2/cm, die der
gegebenen Anordnung mit der Masse m3 4000 kg sek2/cm
schon recht nahe kommt. Durch Interpolation wird nach
Gleichung 17 der Wert B und daraus nx 1260 als
minutliche Periodenzahl für die Schwingung erster Ordnung
der Anordnung nach Abbildung 7 erhalten.

Grenzfälle der Schwingungen und Beziehungen zwischen
m und l.

Bei der Berechnung der Schwingung können zwei
Grenzfälle auftreten:

1. An einer bestimmten Stelle, z. B. an der Stelle 2,
kann das m2l, das nach Gleichung 12 errechnet wird,
gleich m2 sein. Dann wird im nächsten Glied (m2 — mn) o
und 42 — co, und in
dem darauffolgenden m2

Glied 4 — 4s — co m,

und «i3j o. DasWel- [ h
lenstück l2 hat also Abb. 10a

einen aussenliegenden
Knotenpunkt im Un- „,¦
endlichen; d. h. 4 an- ">!

dert bei der Schwin- § z,' |

gungsbewegung seine | Abb. 10b

Länge nicht. Die
beiden Massen m2 und m3 bleiben bei der Schwingung in
stets gleicher Entfernung oder, wenn man sie als Schwungmassen

und die Federn als Wellen ansieht: sie führen
gegeneinander keine Verdrehungen aus.

2. An einer Stelle, z. B. Stelle m3, wird 42 4j
dann ist (4 — 4s) ° und, nach Gleichung 12, m32 co
also auch m3 — m32 —00 und 43 °- Das heisst: ein
Knotenpunkt liegt in der Masse m3. Die Masse macht bei
der Schwingung, für die sie Knotenpunkt ist, keine
Bewegungen mit.

Aus Gleichung 12 ersieht man ferner, dass Massen
und Längen für die Schwingung vollständig gleichwertig
sind. Beide werden nach bestimmten Verhältniszahlen
geteilt und es spielt immer nur das Produkt aus einem
Massenteil und einem Längenteil eine Rolle. Man kann
deshalb auch in der Darstellung die Massen durch
wagrechte neben einander gereihte Strecken und die
Federlängen durch zwischengesetzte senkrechte Strecken wiedergeben.

Aus Abbildung 4 wird dann Abbildung 9.
Für die Zergliederung des Schwingungsvorgangs

muss es gleichgültig sein, welche der beiden Grössen m
und / man als Massen und welche als Längen auffasst.
Daraus folgt, dass den Knotenpunkten, die die Längen
unterteilen, solche entsprechen müssen, die die Massen
unterteilen. Jede zwischenliegende Masse und Länge wird

Abb. 9

bei dem die Enden durch die Federn 4' bezw. 4' gebildet
werden. Die Anordnung 10 b geht aus 10 a hervor, wenn
man die Strecken m und / bezw. m und /' wechselseitig
gleich setzt, also:

mx 4'; m2 4'; m 4' ^(26)und /, 4 m2 ; 4 m3
Die beiden Anordnungen haben, wenn für beide das
Produkt ml gleich ist, gleiche Schwingungsbilder und
Schwingungsdauern. In den vorausgehenden Ausführungen
ist deshalb schon die Lösung für die Aufgabe, die
Eigenschwingungszahlen einer Welle zu bestimmen, die an
beiden Enden festgehalten ist, mit enthalten.

Schwingungen höherer Ordnung.
Bei einer Schwingung von der r-ten Ordnung wird eine

Anordnung mit aussenliegenden Massen (nach Art der
Abbildung loa) durch rinnenliegende Längenknotenpunkte
und r — 1 innenliegeude Massenknotenpunkte unterteilt.
Die Schwingung 2. Ordnung hat also z. B. zwei
Längenknotenpunkte Ki und K2 und einen Massenknotenpunkt Qy
(Abbildung n). Wenn bei der Anordnung mit n Massen
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Abb. 11

nicht zwei Massen, sondern zwei Federn aussen liegen
(Abbildung 10 b), dann sind bei der Schwingung r-ter
Ordnung rinnenliegende Massenknotenpunkte und r—1
innenliegende Längenknotenpunkte vorhanden. Die
Längenknotenpunkte sind dadurch ausgezeichnet, dass an diesen
Stellen die Federn bei der Schwingung ruhen. Man ändert
den Schwingungsvorgang nicht, wenn man die Feder an
der Stelle K aufschneidet und die beiden Enden festhält.
Durch den Massenknotenpunkt dagegen wird die Masse so
in zwei Teile geteilt, dass durch die Teilfläche bei der
Schwingung keine Kräfte übertragen werden. Man kann
also z. B. bei der Anordnung Abbildung 11 die Masse m3
in Qi aufschneiden, ohne die zugehörige Schwingung
2. Ordnung dadurch zu stören. Durch Ox wird die
Gesamtanordnung so in zwei Teile geteilt, dass die Schwingung
1. Ordnung jeden Teiles gleich der Schwingung 2. Ordnung
der Gesamtordnung ist.

Wenn die Schwingung I. Ordnung bekannt ist und
die Schwingung II. Ordnung berechnet werden soll, weiss
man vor allem, dass 7j kleiner ist als 70 Den ersten
Ansatz wählt man zweckmässig so, dass man Bx etwa gleich
setzt B\\. Die weitere Durchrechnung zur Annäherung
an den tatsächlichen Wert findet in gleicher Weise wie
bei Tabelle II statt.
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