Zeitschrift: Schweizerische Bauzeitung

Herausgeber: Verlags-AG der akademischen technischen Vereine

Band: 77/78 (1921)

Heft: 24

Inhaltsverzeichnis

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 12.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

INHALT: Technische Grundlagen zur Beurteilung schweizerischer Schiffahrts-Fragen. — Wohnhaus Hirt-Suter in Biel. — Die Eisenerze der Juraformation im Schweizer Jura. — Les usines hydro-électriques du Guadiaro. — Amt für Wasserwirtschaft des Schweizer. Departement des Innern. — Miscellanea: Zur Verstaatlichung der Seetalbahn. Schweizerische Bundesbahnen. Verein deutscher Ingenieure. Eidgenössische Technische Hochschule Die älteste deutsche Dampfmaschine im Deutschen Museum zu München. Neue Eisenbahnlinie Venedig-München. Internationales Bureau der Telegraphen-Union. Die Roheisenerzeugung in den Vereinigten Staaten im Jahr 1920. — Konkurrenzen: Reformierte Kirche in Arbon. Pfarrhaus und Kirchgemeindehaus in Straubenzell. — Vereinsnachrichten: Zürcher I.- & A.-V. Stellenvermittlung.

Band 77. Nachdruck von Text oder Abbildungen ist nur mit Zustimmung der Redaktion und nur mit genauer Quellenangabe gestattet.

Nr. 24

Technische Grundlagen zur Beurteilung schweizer. Schiffahrtsfragen.

(Fortsetzung von Seite 263.)

Eine Niederwasser-Regulierung kombiniert mit Seitenkanal zur Kraftgewinnung, also einen Kompromiss zwischen zwei grundsätzlich verschiedenen Lösungen, hat Dr. Ing. H. Bertschinger (Zürich) studiert. Der Vollständigkeit halber, und weil auch ein negatives Ergebnis zur Abklärung beiträgt, erwähnen wir auch diesen Vorschlag, über den Dr. Bertschinger in einem Vortrag vor der Liberalen Partei in Basel am 7. Februar d. J. gesprochen hat, und den er wie folgt skizziert 1): "Schiffahrt auf dem Rhein, gespiesen mit dem halben Niederwasser [min. 200 bis 220 m³/sek, Red.]; die andere Hälfte des Niederwassers wird einem Seitenkanal, der ausschliesslich der Kraftgewinnung dient und unterhalb Basel abzweigt, um oberhalb Strassburg wieder einzumünden, zugeführt. Sofern die Wassermenge im Rhein grösser wird als 1000 m³/sek [B.P. + 1,0 m, Red.], gelangt der Ueberschuss im Rheinbett zum Abfluss. Die hierzu gehörenden Bauten bestehen für die Kraftgewinnung aus 120 km Seitenkanal, acht Turbinenhäusern, einem Stauwehr; für die Schiffahrt aus einer Schleuse 170 imes 25 mund 120 km Niederwasser-Regulierung. Bei der Teilung des Niederwassers auf schiffbaren Rhein und auf Kraftwerk-Seitenkanal ist eine zehnjährige Bauzeit notwendig für die Niederwasser-Regulierung. Diese ergibt zufolge Einengnng ein viel kleineres Profil als heute; es könnte das Hochwasser nicht mehr vom Rhein allein aufgenommen werden. Dies bedingt, dass die Regulierung erst nach Erstellung des Kraftwerkkanals, der eine Entlastung zu gewähren hat, vorgenommen werden kann. Stückweise Regulierung ist aber wertlos, wie sich an der Rhone gezeigt hat. Die Bauzeit dürfte Jahrzehnte in Anspruch nehmen und der Erfolg bliebe doch aus."

Die bezüglichen Baukosten berechnet Dr. Bertschinger auf etwa 1220 Mill. Fr. (wovon rund 1100 Mill. für Kraftwerkanlagen und 120 Mill. Fr. für Schiffahrtsanlagen), die (3000 stündige) Kraftleistung auf 1280 Mill. kWh zu 10 Cts./kWh, und die Schiffahrtleistung des auf Halb-N.-W. regulierten Rheins auf 2,4 Mill. t im Jahr.

Nachdem aber Dr. Bertschinger selbst diese kompromissliche Lösung nicht empfiehlt, beschränken wir uns auf deren Registrierung, indem wir bezüglich der weitern Vergleichstudien Dr. Bertschingers, die ihn schliesslich 2) zur Befürwortung der durch Baggerungen zu unterhaltenden Regulierung unter Verzicht auf Kraftnutzung führen, auf die genannte, ziffernreiche Quelle verweisen.

Abgesehen vom negativen Erkenntniswert vorstehenden Lösungsversuches mit Teilung des Niederwassers zeigt er, wie schwer es für Fernerstehende, also ohne genaue Kenntnis der örtlichen Verhältnisse ist, Regulierungs- und Schiffahrtsfragen einer Stromstrecke vom Charakter des Oberrheins zwischen Basel und Strassburg zu behandeln. Es scheint uns deshalb angebracht, hierüber zunächst einmal einem gründlichen Kenner der Stromstrecke, dem auch schweizerischerseits anerkannten Fachmann Dr. Ing. K. Kupferschmid, das Wort zu erteilen, dem erst kürzlich in den Ruhestand getretenen langjährigen Mitglied der badischen Oberdirektion des Wasser- und Strassenbaues in Karlsruhe, zugleich Rheinschiffahrtsinspektor und Staatskommissar der badischen Schifferschulen.

Die Schiffbarmachung des Oberrheins zwischen Strassburg und Basel.

von Dr. Ing. Karl Kupferschmid, Oberbaurat a. D., Karlsruhe.

Die Schiffbarmachung des Oberrheins von Strassburg bis Basel beschäftigt neuerdings wieder die Oeffentlichkeit in hervorragendem Masse. Die Erörterungen in der Tagespresse und in den Fachblättern befassen sich aber vorwiegend mit ihrer politischen und volkswirtschaftlichen Seite, während die bau- und schiffahrtstechnische Seite, die doch ebenso wichtig, wenn nicht wichtiger ist, bisher kaum gestreift worden ist. Ich entspreche daher gerne dem Wunsch der Redaktion, mich zu diesen Fragen auf Grund meiner Erfahrungen ebenfalls zu äussern.

Der Stromzustand.

Zum Verständnis der Schiffbarmachungspläne ist einiges über den derzeitigen Zustand des Stromes und die auf ihm betriebene Schiffahrt vorauszuschicken.

Der im vorigen Jahrhundert korrigierte Strom zeigt innerhalb der vollständig ausgebauten Ufer bei Niederwasser in ziemlich gleichmässigen Abständen abwechselnd an den Ufern anliegende Kiesbänke, zwischen ihnen sich schlängelnd den Talweg, in dem die Tiefe da am grössten ist, wo er an die Ufer anfällt, am kleinsten dagegen auf den Uebergängen (Schwellen) von einem Ufer zum anderen; dem entsprechend im Längenschnitt eine Folge von Woogen mit schwachem und Furten mit starkem Gefäll, jene an den Talweganfällen, diese auf den Uebergängen, und die Stromsohle ununterbrochen in einer Bewegung, die sich bei Niederwasser auf den Talweg und seine nächste Umgebung beschränkt, mit steigendem Wasser ausbreitet und bei Hochwasser stürmisch über die ganze Breite des Bettes verläuft. Bei langdauernden Niederwassern legen sich die Kolke mehr und mehr an die Ufer, die Uebergänge werden schroffer, sodass ihre Richtung die Stromaxe mitunter sogar im rechten Winkel schneidet. Anhaltende Mittelwasser, namentlich die normal verlaufenden Sommeranschwellungen strecken den Talweg, er legt sich in den Kolken weniger hart an die Ufer und die Uebergänge schneiden die Stromaxe unter spitzem Winkel. Nach dem Ablauf eines Hochwassers zeigt sich die Schlangenlinie des Talwegs vielfach gestört, häufig haben sich Nebenrinnen gebildet und die Kiesbänke sind hier verschleift, dort erhöht, mitunter sogar aufeinander geschoben. Das aus Talweg, Kolken, Schwellen und Kiesbänken bestehende Gebilde wandert also unter fortwährender Veränderung stromabwärts. Die im Jahr zurückgelegte Strecke beträgt je nach dem Verlauf der Wasserstand-Bewegungen durchschnittlich etwa 300 bis 600 m.

Diese Erscheinungen haben letzten Endes ihre Ursache darin, dass das mit der Rheinkorrektion in erster Reihe angestrebte Ziel — die Sicherung des Ufergeländes gegen die Ueberschwemmungen und die Besserung der Gesundheitsverhältnisse der Uferanwohner — nur durch eine Tieferbettung des Stromes und diese wiederum, ausser durch eine starke Kürzung des Laufes mittels Durchstichen, nur durch die Zusammenfassung der Nieder- und Mittelwasser sowie der gewöhnlichen Sommeranschwellungen in einem Bett erreichbar schien.

Die erwartete Wirkung ist auch eingetreten, aber nicht in der ganzen Strecke von Basel bis Strassburg, sondern nur bis gegen Sasbach. Das Mass der Tieferbettung seit Anfang der 1860er Jahre, um welche Zeit der Strom bereits im korrigierten Bette lag, beträgt heute bei Bellingen und Rheinweiler gegen 5 m bei Breisach etwa 0,5 m. Abwärts Sasbach dagegen hat die von früher

¹⁾ Autoreferat in «Basler Nachr.», 1. Juni d. J., Nr. 226 und 227.

²⁾ Allerdings unter nur teilweise zutreffenden Voraussetzungen.