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Seitensteifigkeit offener massiver Bogenbrücken.
Afcra Prof. A. Ostenfeld, Kopenhagen.

Während man gewöhnlich bei Untersuchung der
Seitensteifigkeit offener Fachwerkbrücken vom Drehungswiderstand

des Obergurtes absieht, wird dies für massive Bögen,
und besonders für solche aus Eisenbeton, eine allzu grobe
Annäherung sein. Indessen wird die Aufgabe durch exakte
Berücksichtigung des Drehungswiderstandes ausserordentlich
erschwert. Für gewöhnliche Fachwerkbrücken lässt sich das

Knickproblem bekanntlich auf die Untersuchung der
Determinante eines Systems von 5-gliedrigen Gleichungen
zurückführen1); wenn jetzt in jedem Obergurtstab noch ein
unbekanntes Drehungsmoment auftritt und die Zahl der Ueber -

zähligen daher mit diesen Momenten vergrössert wird, könnte
man sich zwar die Rechnung auf die Weise durchgeführt
denken, dass man die Drehungsmomente als einzige Ueber-
zählige auf ein statisch unbestimmtes Hauptsystem mit nur
biegungsfestem Obergurt einwirken liesse; ein 'solches
Verfahren würde aber offenbar zu allzu komplizierten
Rechnungen und Endgleichungen führen. — Der einzige Weg,
der hiernach übrig bleibt, scheint dann der folgende zu
sein: indem wir uns hier auf eingespannte Bögen beschränken,
betrachtet man den für eine willkürliche Belastung 6-fach
statisch unbestimmten Bogen, denkt sich, er habe eine kleine
Ausbiegung aus seiner Ebene angenommen und setzt eine
gegebene Kurven/orm dieser Biegungslme voraus, so dass
alle Ausbiegungen y bekannt sind, wenn nur die Ausbiegung

fx z. B. im Scheitel gegeben ist. Sodann berechnet
man die von den Ausbiegungen y hervorgejmfenen
Aenderungen der Beanspruchungen der verschiidenen Bogen-
punkte und schliesslich auch die hierdurch bewirkte
Ausbiegung /j im Scheitel, die somit als eine Funktion von fx
selbst hervorgeht, und man kommt auf diese Weise zu einer
Gleichung f} F (f\), woraus sich die Knickbedingung wie
gewöhnlich herleiten lässt.
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mv&

Abb. 1.

Das Verfahren ist also das nämliche, das früher von
Engesser und Vianello für gerade Säulen angewandt wurde,
und fordert daher eigentlich noch eine Verifikation der
angenommenen Form der Ausbiegungslinie, durch Vergleich
mit der berechneten. Für gerade Säulen ist doch bekanntlich

eine solche Nachprüfung nicht besonders notwendig,
indem die Form der Biegelinie nur sehr wenig durch kleine
Aenderungen des Ausgangspunktes beeinflusst wird und
im vorliegenden Falle, für einen eingespannten Bogen mit
symmetrischer Deformation, worauf wir uns hier beschränken,
scheint diese Nachprüfung noch weniger notwendig zu sein,
da die Form der Biegelinie hier so ziemlich gegeben ist.

') Siehe (Beton und Bisen> 1916, S. 123, 147.

M"
Md

Um zu fertigen Formeln zu gelangen, wird es
notwendig werden, sowohl eine einfache Bogenform wie eine
einfache Querschnittsänderung vorauszusetzen, um die
Durchführung der Rechnungen möglich zu machen. Doch kann
natürlich die skizzierte Berechnung immer durchgeführt
werden, falls man sich mit Summationen statt Integrationen
begnügen und' in jedem Einzelfalle die Arbeit nach der
Zahlenrechnung hinlegen will.

Als Einleitung soll zuerst kurz gezeigt werden die im
folgenden benutzte

/. Behandlung des eingespannten Bogens
mit räumlicher Belastung.

Indem die Querschnitthauptaxe 1 senkrecht zur Bogen-
ebene, die Axe 2 in der Bogenebene selbst liegt, werden
die sechs Schnittkräfte eines willkürlichen Querschnitts
folgendermassen bezeichnet:
in der \ M' Biegungsmoment um die Axe 1, -)- für Druck oben

Bogen- \ N Normalkraft, -\- flir Zug
ebene I T Querkraft in der Axe 2,-(-nach der konvexen Seite

T" Querkraft in der Axe 1, -f- nach vorn
Biegungsmoment um die Axen 2, -(- für Druck auswendig

Drehungsmoment, -f- wenn der Bogen sich als linksgäogige
Schraube verwindet

Die Vorzeichen für T' und T" setzen voraus, dass diese
Kräfte auf das Bogenstück links vom Schnitte angreifen.

Wie gesagt, beschränken wir uns auf einen symmetrischen

Bogen und stellen das Hauptsystem dar durch Ueber-
schneidung des Bogens im Scheitel (Abb. 1); die sechs Ueber -

zähligen X sollen dann die Schnittkräfte im Scheitel ersetzen.
Die drei ersten dieser Ueberzähligen, das Moment Xa und
die beiden Vertikal- und Horizontalkräfte Xt und Xc, sind
die nämlichen wie für den ebenen Bogen und sollen im
Punkte O(Abb. 1) angreifend gedacht werden; die drei übrigen,
nämlich die Querkraft Xa senkrecht zur Bogenebene, das
Biegungsmoment X, um die Axe 2 de sScheitelquerschnitts
und das Drehungsmoment X/, lassen wir im Punkte Öt
(in der Symmetrieaxe) angreifen. Die positiven Richtungen
der Grössen X sind durch Pfeile in Abb. 1 angegeben; ein
positives Xj gibt ein positives Md in den verschiedenen
Bogenpunkten. Der Koordinatenanfang wird in O gelegt,
x wird nach rechts, z nach oben positiv gezählt; 01 wird
im Abstände c nach unten von O angenommen. Die Bogen-
tangente schliesst mit der x-Axe den Winkel <p ein und
cp wird für die linke Bogenhälfte als positiv, für die rechte
als negativ angesehen.

Mit einer willkürlichen Belastung ergibt sich für den
Querschnitt (x, e) (vergl. Abb. 1):

M 11 M0' — Xa — Xbx — Xcz,
M" H M0" -f- Xdp + X, cos rp — Xj sin rp,
Md MQd — Xdq -f- Xe sin cp + Xf cos <p,

Xc cos cp,
¦ Xc sin cp,

N N0-\-Xi sin <p
(1)

T T0' -\~ Xi cos <p

T" | 7/ - Xd,
und hieraus bildet man die folgende Zusammenstellung der
von den Belastungen X — 1 hervorgerufenen Beanspruchungen

:

Belastung M' M" Md N

X„ — 1

Xc — I

Xd=- 1

8» - - 1

m -1

n 1

+ x
+ «

0
0
0

0
0
0

— P
— cos. 95

¦4- sin cp

0
0
0H

— sin cp

— cos cp

0
— sin cp

-f- cos cp

0
0
0
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Hieraus ist sofort ersichtlich, dass sich die Ueberzähligen

in zwei Gruppen, Xa, Xt, Xc und Xd, X:, Xj, teilen, die

von einander unabhängig bestimmt werden und weiter, dass

sich auch die erstgenannten, Xa, Xt, Xc, aus je einer Gleichung
berechnen, sobald der Punkt O als Schwerpunkt der elastischen

ds
Kräfte —• gewählt wird. Für die drei letztgenannten Ueber-

M
zähligen erreicht man den gleichen Vorteil, falls nur:

p cos <p

~~EI^

p sin (p
: EL¦"¦¦-'

*

ds

q sin <f

sin 15p cos <p

ElT

m
q COS (p

1 tia <p c(
1 gFp

ds o,

ds o,

cos q>
ds -

von welchen Bedingungen die letzte aus Symmetriegründen
sofort erfüll ist. Mit c + z zx (Abb. 1) ist:

p x cos cp -f- zx sin cp,

¦ q — x sin cp -f- zt cos q.

womit die beiden ersten der genannten Bedingungen
übergehen in:

- x sin2 <p -\- z, sin qo res q>

(")

- 2t ein <p cos m

"^4
<&

c/„
(Ä= o,

l je sin (]y) cos 95 -|- z, SIT1S <p

EL
jejr'n 9) cos tp ~\- z, cos2 qp

07^
ds o,

Hier ist wieder die erste aus Symmetriegründen erfüllt und
mittels der letzten bestimmt sich die Lage des Punktes 01

(Abb. 1). Mit z1 c + a und

u||wird erhalten:

*. (3)

(sin2 q> -\- k coia <p) -

ds
(sin2 <p -f- k cos2 m)

2 (Vj

x sin m cos 9 (1 — k)
äs

(4)

woraus sich der Abstand c berechnen lässt. Ein positives
c bedeutet, dass 01 "unter O zu liegen kommt. Für k 1,

ein Fall, der natürlich durchaus nicht allgemein zutrifft, der
uns aber weiter unten speziell interessieren wird, geht aus

(4) hervor, dass Ox im Schwerpunkte der elastischen Kräfte

gif fällt. Für rechteckigen Querschnitt ist
1 ia i'i'/> — h b~ und J„ — 7—
12 BJ'|i"

wo m zwischen 38,5 und 42,7 (letzteres für b — h) liegt.
Wird weiter für Beton G:E 0,45 0,375 angenommen,
so ergibt sich:

o'\ m b*

65 54 Ü
oder für b:h —, —, 1, 2, 5

k 0,81 1,00 1,32 3,23 15,8,
bis k sj 0,98 1,20 1,59 3,89 19,0.

Nach Festlegung^er Punkte O und Ot bestimmen
eich die sechs Ueberzähligro-aus je einer Gleichung uiid die
drei letzten dieser Gleichungen lauten:

XA (P' + kf)-^- [(-Mo-'P + kMoU)-^

Xe \ (cos' 95 4- * »in* <p)
ds

(Ma" cos 93 -|- ^ M^ sin <p)
ds

Xf \ (sin9 95 -f- k oo»' 95) sin 9) — ii A/0rf cos 9p)
ds

(5) *. — 1

.Y* — 1

Xc• — — 1

^frf^= -1
in welchen Gleichungen die Werte / und ^ durch die X, — 1

Gleichungen (2) gegeben sind. X/-= — 1

IUI

II. Ausknickung des eingespannten Bogens im einfachsten Falle.

Die äussere Belastung sei lotrecht. Für den ebenen

Bogen hat man dann nur mit den Momenten M0' zu tun,
während M0" o und Md o. Nimmt der Bogen dagegen
die Ausbiegungen y, senkrecht zu seiner Ebene, an, wird die
Belastung die ursprünglichen Momente M0' ein wenig ändern
und die Momente M0" und M0d werden von Null verschieden.
Die Grösse der genannten Aenderungen hängt von der
Wirkungsweise der Belastung ab; bleibt z. B. die Belastung
immer lotrecht und greift sie in Punkten der Bogenaxe
an (was übrigens in der Wirklichkeit kaum möglich sein
wird), so bekommt man einen Wert der Aenderungen; wird
die Belastung durch schlaffe Hängestäbe übergeführt, die
sich ein wenig schräg stellen, wenn sich der Bogen
ausbiegt, so ergibt sich ein anderer Wert; noch mehr
abweichend werden die Verhältnisse, wenn steife Hängestäbe
zusammen mit den Querträgern steife Halbrahmen bilden.
Wir nehmen indessen vorläufig an, die erwähnten Aenderungen
der M0-Werte seien so geringfügig, dass man sie ganz
vernachlässigen kann, üpd strenge gilt daher die erstfolgende
Untersuchung nur für einen unbelasteten Bogen, der z. B.
allein von einer Temperaturänderung beansprucht wird.
Wir kommen auf die Berücksichtigung der Schrägstellung
der Hängestäbe und eventueller Halbrahmen zurück.

Wenn der Bogen die Ausbiegungen y annimmt, stellen
sich infolge hiervon auch einige kleine Winkeländerungen a

um die Axe 2 und kleine Verdrehungen ¦& ein, indem,
die Bogenaxe in eine Raumkurve übergeht; auch diese
Deformationen werden natürlich die erwähnten Aenderungen
der Schnittkräfte beeinflussen. Indessen hängen die
Ausbiegungen y in ähnlicher Weise von a und # ab, wie die

Durchbiegung eines geraden Balkens von den Tangentenwinkeln,

und ebenso wie man gewöhnlich in der Differentialgleichung

der elastischen Linie eines geraden Balkens die
dy : dy im Verhältnis zu 1 vernachlässigt, wird es daher
berechtigt sein, im folgenden die Grössen a und # als
verschwindend zu betrachten.

Die erste Aufgabe ist nun, die Ueberzähligen A' mit
Berücksichtigung der Ausbiegungen y senkrecht zur Bogenebene

(siehe Abbildung 2, unten, y positiv nach vorne) zu
berechnen. Bei Aufstellung des Ausdruckes für die Momente
im Schnitte (x, z, y) erinnert man sich jetzt, das a und ir
vernachlässigt werden sollen; die Tangente der Ausbiegungslinie

(Axe des Drehungsmomentes) soll also als parallel
zur ursprünglichen Bogenebene, und die Querschnittsaxen
1 und 2 sollen als wagerecht bzw. parallel zur Bogenebene
angesehen werden. Xa ruft dann nur um die Axe 1 ein
Moment hervor, aber weder um die Axe 2, noch um die
Bogentangente; die senkrechte Kraft Xt gibt die Momente:
— Xtx um die Axe r, -4- Xt sin rp • y (im Punkte y in
Abbildung 2 ist cp negativ) um die Axe 2 und — Xt cos
95 • y um die Bogentangente usw.; Xa, X, und Xr rufen die
nämlichen Momente hervor wie in (1) angegeben, da eine
Parallelverschiebung aller dreier Momentenaxen um die
Strecke y senkrecht zur Bogenebene keinen Einfluss auf die
Wirkung dieser Kräfte üben kann. Im ganzen ergibt sich:

M M' — Xa — Xtx Xa
' M" Xty sin <p — Xcy cos cp -4- Xdp -\- X, cos cp — A/sin cp,

Md —Xtycoscp—Xcy$mcp—A^ -f-X, sin 93+A/cos 9?,

(6)

und die von den Belastungen X
mente werden somit:

— 1 herrührenden Mo-

Belastung M' M" Md

1

o
0

o

0 0

y sin <p -+- y cos 9

ycoscp -+¦ y sin 9

— P •4-?
- COS cp — sin cp

" sin cp — cos 99

(7)
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Weiter ist für alle X gleich Null:.M0' M0\ M" | o, WQraus. | | yXJ>
ü// o wo A/„' den nämlichen Wert hat wie für den
ebenen Bogen.

Hieraus geht sofort hervor, dass die Belastungsglieder
der drei letzten Elastizitätsgleichungen Null sind, jene der
drei ersten Gleichungen die nämlichen wie für den ebenen

Bogen. Wenn der Punkt O als Schwerpunkt der Kräfte
ds

—?- gewählt ist, wird die ganze erste Elastizitätsgleichung

unverändert wie für den ebenen Bogen, was geschrieben
werden kann:

Xa Aa«, (8a)
indem Aa°, Xt° diejenigen Werte der A-Grössen
bezeichnen, die für den ebenen Bogen gelten.

Von den übrigen fünf Elastizitätsgleichungen brauchen
hier nur die dritte und fünfte, zu Bestimmung von Xc und A„
aufgestellt zu werden, wenn wir uns auf einen symmetrischen
Bogen und überdies auf eine symmetrische Deformation
beschränken; in dem Falle müssen nämlich die drei in der
Symmetrieebene liegenden Kräfte -As, Xd und X/ gleich Null
sein. Die genannten beiden Gleichungen werden unschwer
mittels der obigen Zusammenstellung (7) gebildet, sie lauten:

z2 ds \ yi cos2 cp l y2 sin2

-Eir+\-^irds+\~^rP ds +

-T-Xe EL
¦ds- y

Xc
CO»* cp ds

EI,
> ds

GIV + XC

G/p

y cos2 cp

Pel

¦ds
Eh

¦ds.

(8b)

ds-
[y sin2^ds =J (8c)

Bevor wir indessen zur näheren Auswertung dieser
Gleichungen schreiten, müssen zuerst die Voraussetzungen über
Bogenform usw. festgestellt werden.

Als Form der Ausbiegungskurve nehmen wir an:

m I -)- cos (9)

und weiter setzen wir voraus:

Qg—rrte*

^N

Abb. 2.

einen parabolischen Bogen

,=/(±_4(i)')(,o,
eine Querschnittänderung,

gegeben durch:

Acoso^V,} (JI)
J2 cos 99 72 J

wo Ixc und I2C
unveränderlich sind und
schliesslich noch:

^§t| <»>

was nach obigen
Auseinandersetzungen

über die Werte dieses Verhältnisses einem Werte von b: h
entspricht zwischen y2 und 8/4. Für die Eisenbeton-Einzelbögen,

die hier allein in Betracht gezogen werden sollen,
wird das Verhältnis b : h wohl gewöhnlich innerhalb dieser
Grenzen liegen und man erhält daher sicherlich einen recht
zutreffenden Begriff der Sache mit der Voraussetzung (12),
die überdies die Rechnungen ausserordentlich vereinfacht.

Mit den Voraussetzungen (9) bis (12) findet man die
Punkte O und 01 (Abbildung 1) zusammenfallend, im
Abstände »/s/ unter dem ScheiteK dieser Koordinatenanfang
ist schon in (10) berücksichtigt worden. Nach Ausführung
der Integrationen können jetzt die Gleichungen (8b) bis (8c)
geschrieben werden:

c('+W4f#U—3;X<=CXJ>, | (13b)

wo
4 PI

3 * flIj zßl,'
C ~ttjj[7~o gleich jenem Koeffizienten zu Xc ist, den

man beim ebenen Bogen erhalten würde; da weiter die
rechte Seite die nämliche ist wie beim ebenen Bogen, somit
v0 rechte Seite
Xc — -x kann man sie hier als CXe schreiben

und
1 y St* v n

4SA*{S'

und A, flXc

(14)

Wenn diese Werte von Xc und Xe und ausserdem
Xt Xd X/ o, in (6) eingeführt werden, ergibt sich:

M" + v (t/i - y)cos <PXc°,

Md= + 7(^A—y\ sin <pXco,

und hiermit soll schliesslich die Ausbiegung y =fl im
Scheitel berechnet werden (das Moment M' trägt zu dieser
Ausbiegung nicht bei). — Durch eine einfache Anwendung
der Arbeitsgleichung, mit der Belastung 1 im Scheitel,
senkrecht zur Bogenebene und auf das Hauptsystem
wirkend, findet man:

/1
1

eL M" (x cos cp

0
t/—*) sin <p)dx-+-

1 ¦\mMd {x sin i

t J 0
+ (\f— ») cos cp) dx

und nach Einführung der Werte von M" und Md (und
mit Eh GIp):

EI»'/,\=yXc°\ £A-y)dx vXc«^A.

Hieraus erhält man endlich die Knickbedingung:

-,. Xe<>P M nit'EA'v-^r oder yXc° „ ' ¦ (15)
43T« ' P

wo y praktisch genommen (siehe Gleichung 14) für kleine
Ausbiegungen gleich 1 ist.

Dass man also zu der für eine beiderseits
eingespannte gerade Säule bekannten Eulerschen Knickkraft
gelangt, ist vielleicht nicht besonders überraschend, es ist
doch aber ganz interessant, diese Tatsache einmal
konstatiert zu bekommen, und auch night für die Praxis
überflüssig, wie aus dem Falle des Langwieser Viaduktes
hervorgeht. Hierüber berichtet Schürch („Der Bau des
Talüberganges bei Langwies an der elektrischen Bahn Chur-
Arosa", Berlin 1916 Julius Springer, S. 30):

„Zu einer Diskussion gab die Frage der Knickgefahr

des grossen Bogens Veranlassung. Es ist
klar, dass, da es sich hier um einen Fall zusammengesetzter

Festigkeit (Biegung und Druck) handelt, nur
die von der Normalkraft erzeugte Druckspannung,
nicht aber die grösste Gesamtspannung am Rande,
kleiner als die Knickspannung bleiben muss. Unsicher
ist dagegen die Entscheidung bezüglich der Knicklänge.

Setzt man eine zuverlässige Einspannung an
den Widerlagern voraus, so wäre die freie Knicklange

gleich der halben Stablänge, in diesem Falle
gleich der halben abgewickelten Bogenlänge von rund
140 m, also rund 70 m. Der Gutachter wollte jedoch
die völlige Einspannung nicht gelten lassen und nur
etwa '/» oder s/» der freien Stablänge oder rund
100 m als Knicklänge annehmen."

Wie man sieht, wird hier mit der Bogenlänge, statt
der in (13) eingehenden Spannweite /, gerechnet; dass
man dagegen nicht mit voller Einspannung rechnen zu

|8fJ|fen glaubte, ist natürlich eine andere Sache. Uebrigens
handelte es sich hier nicht um die Ausknickung der Einzelbögen,

sondern des von den beiden, miteinander verbundenen

Einzelbögen bestehenden ganzen Bogenträgers, und
es ist daher gewiss nicht berechtigt, den Wert k 1 hier
zu benutzen. Wollte man die Frage hier näher
untersuchen, musste man die ganze Rechnung mit Summationen,
statt Integrationen, durchführen. (Schluss folgt.)
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