Zeitschrift: Schweizerische Bauzeitung

Herausgeber: Verlags-AG der akademischen technischen Vereine

Band: 75/76 (1920)

Heft: 12

Artikel: Die Pumpen-Anlage des hydraulischen Kraftakkumulierungswerkes

Viverone

Autor: Müller, G.

DOI: https://doi.org/10.5169/seals-36525

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 30.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

INHALT: Die Pumpen-Anlage des hydraulischen Kraftakkumulierungswerkes Viverone. — Vom Bebauungsplan-Wettbewerb Gross-Zürich. — Schweizerischer Verein von Dampfkessel-Besitzern. — † Huldreich Keller. — Miscellanea: Ausbau des südtrolischen Eisenbahnnetzes. Eine Rohöl-Leitung zwischen Le Hâvre und Paris. Simplon-Tunnel II. Der Telephonograph im Eisenbahnbetrieb, Sulzersche Zweitakt-Schiffs-Diesel-

motoren. Elektrifizierung der Mont Cenis-Linie. Autogen-Schweisserkurs für Ingenieure. Deutscher Betonverein. Ecole centrale des Arts et Manufactures, Paris. — Konkurrenzen: Neubau der Schweizerischen Nationalbank in Luzern. — Literatur: Die wirtschaftliche Entwicklung der Maschinenfabrik Oerlikon 1863 bis 1917. Literarische Neuigkeiten. — Vereinsnachrichten: Gesellschaft ehem. Studierender: Stellenvermittlung.

Band 76. Nachdruck von Text oder Abbildungen ist nur mit Zustimmung der Redaktion und nur mit genauer Quellenangabe gestattet. Nr. 12.

Die Pumpen-Anlage des hydraulischen Kraftakkumulierungswerkes Viverone.

Von Obering. G. Müller, Winterthur.

Auf keinem technischen Gebiete ist heute das Interesse des Technikers wohl derart rege, wie in Fragen wasserwirtschaftlicher Natur. Namentlich in unserm Lande, das in seinen Wasserkräften einen grossen Reichtum

birgt, werden seit Jahren bedeutende-Anstrengungen gemacht, um unter dem Schutz und mit der Mithilfe der Bundesregierung die Wasserkräfte so rationell wie möglich auszunützen, zu Gunsten der Allgemeinheit; ein grosser Schritt wird damit vorwärts getan, um Land mehr und mehr von der Kohlenversorgung durch das Ausland unabhängig zu machen.

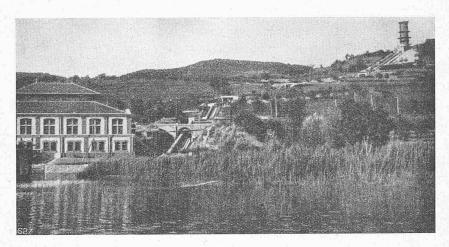


Abb. 1. Blick auf Maschinenhaus, Druckleitung und Wasserschloss.

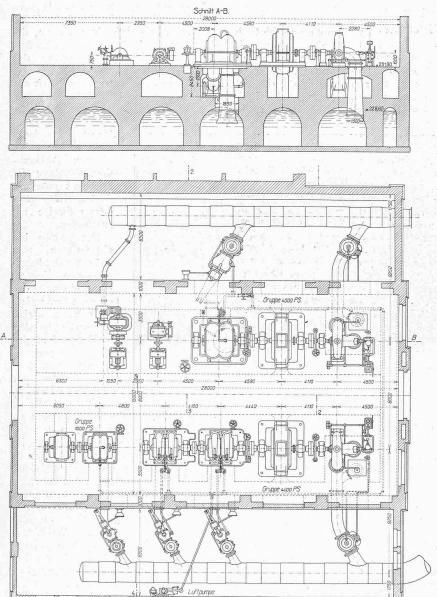
Die Bestrebungen in der rationellen Verwertung unserer Wasserkräfte zur Krafterzeugung werden neuerdings auch den hydraulischen Kraftakkumulierungen wieder zu grösserer Bedeutung verhelfen. Die ausserordentlich günstigen Erfahrungen, die mit grossen Akkumulierungsanlagen gemacht wurden, lassen ohne Zweifel den Schluss zu, dass besonders in der Schweiz neben den bereits bestehenden, kleineren

Akkumulierungsanlagen grosse Dienste leisten zur bessern Ausnützung bereits bestehender Kraftwerke. Solche Akkumulierungswerke werden in erster Linie dazu dienen, die Spitzenbelastung im Winter für den Lichtbetrieb von Niederdruckkraftwerken zu decken, da bei diesen wegen der grossen Wassermengen an eine Aufspeicherung des Wassers zur Nachtzeit nicht gedacht werden kann; die Kraft zur Deckung der Lichtspitzen muss vielmehr von aussen zugeführt werden, in vielen Fällen durch eine kalorische

Reserve-Anlage.
Durch Angliederung einer mechanischen Akkumulierungsanlage ist es somit möglich, die kalorische ganz oder teilweise auszuschalten.

Durch den beabsichtigten, teilweise bereits durchgeführten Zusammenschluss der
grossen schweizerischen Elektrizitätswerke werden
wohl aus dem einheitlichen, zentralen Stromnetz, ähnlich wie bei der

nachstehend beschriebenen Anlage Viverone, grosse Mengen Nachtkraft und Abfallkraft zur Verfügung stehen. Dadurch wäre die Möglichkeit geschaffen, grosse Akkumulierungs-Anlagen zu errichten, die herbeigezogen werden könnten zum Kraftausgleich und zur Hebung der Konstantkraft im Winter, also zur Vermehrung der Gesamtproduktion an elektrischer Energie zur Verwendung im eigenen Lande


und allfällig zum Export. Als ungünstiges Moment bei einer mechanischen Ak-Lago di Bertignano kumulierung wird oft der Max. 378,50 schlechte Gesamt-Wirkungsgrad einer solchen Anlage efffffe Eiserne Rohrleitung \$2,10m in Stollen bezw. Betonumhüllung, bezw. freiliege ins Feld geführt. In der Tat ist dieser ein recht bescheidener zu nennen. Pumpenbetrieb geht ein Teil der eingeführten Energie verloren im Motor, in der 275 m Abb. 2. Längenprofil der Druckleitung. - Längen 1:10000, Höhen 1:2500. Querprofile des Druckstollens, 1:250. U.W. Kana Anlagen sehr wohl solche von grosser Leistungsfähigkeit mit Erfolg erstellt werden könnten. Es sei hier besonders hingewiesen auf die bezüglichen interessanten Ausführungen von Ing. W. Zuppinger (Schweiz. Wasserwirtschaft vom 10. März 1917), in denen in trefflicher Weise die grossen

Vorteile der Kraftaufspeicherung durch die Nutzbarmachung von Nachtkraft und Abfallkraft hervorgehoben werden.

Neben den natürlichen Akkumulierungsanlagen, d. h. den Sammelweihern unserer Hochdruckwerke mit ihren natürlichen Wasserzuflüssen, werden zweifellos mechanische

Wirkungsgraden: Motor 0,93; Pumpe 0,78; Druckleitung 0,97; Turbinenleitung 0,94; Turbine 0,86 und Generator 0,94, so ergibt sich ein Gesamt-Wirkungsgrad von 0,535. Tatsächlich wird dieser Wirkungsgrad noch etwas ungünstiger ausfallen, weil die Pumpe wegen der meist veränderlichen Förderhöhe nicht immer mit dem besten Nutzeffekt

Wo die topographischen Verhältnisse die Erstellung von Sammelbecken ohne zu grosse Kosten in der Nähe eines Kraftwerkes gestatten, ist es von Vorteil, die Akkumulierungsanlage an das Kraftwerk anzugliedern, wie dies bei den meisten heute bestehenden Anlagen der Fall ist. Diese Kombination gestattet meistens eine Verringerung

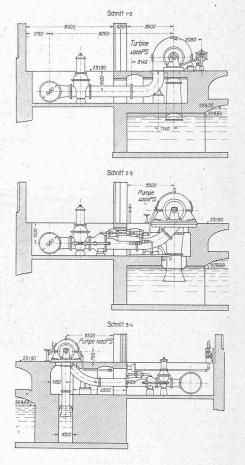


Abb. 3. Grundriss und Schnitte des Maschinenhauses der hydraulischen Kraftakkumulierungs-Anlage Viverone. Masstab 1:250.

der Erstellungskosten für das Maschinenhaus, sie bietet eine gute Uebersichtlichkeit der Gesamt-Anlage und hat den grossen Vorteil der Vereinfachung des Betriebes. Die Absonderung des Akkumulierungswerkes von der Kraftzentrale dagegen hat den Nachteil, dass in den meisten Fällen eine elektrische Fernleitung erstellt werden muss; neben den Kosten für diese

Leitung wird auch die Wirtschaftlichkeit der Anlage etwas beeinträchtigt durch die neu hinzutretenden mechanischen

Verluste in Fernleitung und Transformator. Mechanische Akkumulierungsanlagen müssen als Hoch-

druckanlagen gebaut werden. Je grösser das Gefälle, umso geringer ist die Wassermenge, die hochgepumpt werden muss; demzufolge werden auch die Sammelbecken kleiner und weniger kostspielig, die Rohrleitungen werden zwar länger, jedoch im Durchmesser bedeutend kleiner. Grosses Gefälle bedingt hohe Umdrehungszahlen; die Maschinen-Gruppen werden daher bei gleich grosser Leistung kleiner und billiger und im Zusammenhang damit auch das Maschinenhaus in seinen Abmessungen gedrängter, bezw. seine Erstellungskosten niedriger ausfallen. Die zulässige Höhendifferenz zwischen Pumpe und Hochreservoir dürfte hauptsächlich begrenzt sein durch die Betriebsbedingungen der Zentrifugalpumpe, da bei einer gegebenen Leistung ein bestimmtes Verhältnis eingehalten werden muss zwischen

arbeitet, d. h. er wird im allgemeinen 50 bis 52 0/0 kaum überschreiten. Trotzdem wird bei einem solchen Werke eine gute Rentabilität immer noch zu erreichen sein, wenn berücksichtigt wird, dass Nacht- und Abfallkraft kostenlos bezogen werden können, sofern sie vom eigenen Werke abgegeben werden.

Zur Erreichung möglichst niedriger Anlagekosten und eines möglichst hohen Wirkungsgrads der Anlage wird man nur wenige, jedoch grosse, leistungsfähige Maschinen aufstellen. Je grösser die Maschine ist, umso günstiger ist ja ihr Wirkungsgrad. Zudem sind bei einer grossen Anlage die Betriebskosten nur unwesentlich grösser, als bei einer kleinen. Zur Verminderung der Anlagekosten sind ferner natürliche Sammelbecken ins Auge zu fassen, wie dies in vorbildlicher Weise bei der nachstehend beschriebenden Anlage Viverone der Fall ist. Als untere Sammelweiher können Flüsse und Seen, als obere Bergseen oder Hochtäler in Frage kommen.

Fördermenge und Förderhöhe, wenn die Pumpe mit möglichst hohem Wirkungsgrad arbeiten soll. Ist anderseits der Niveauunterschied der beiden Sammelweiher durch die topographische Lage bereits bestimmt, so ist eben die Anlage nach allen Gesichtspunkten hin auf Rentabilität und gute hydraulische Ausnützung genau durchzustudieren.

Die grösste aller bisher gebauten hydraulischen Akkumulierungsanlagen ist die bereits vorgehend erwähnte von Viverone in der Provinz Novara, die im Nachstehenden unter besonderer Berücksichtigung der von der Firma Gebr. Sulzer A. G. in Winterthur erstellten Pumpenanlage kurz beschrieben werden soll.

Diese im Jahre 1913 dem Betriebe übergebene Akkumulierungsanlage wurde für die "Società Anonima Elettricità Alta Italia" in Turin gebaut. Sie dient ausschliesslich für Akkumulierungszwecke als Regulierung und zum Energie-Ausgleich für die zahlreichen hydroelektrischen Kraftwerke dieser Gesellschaft in Piemont. Die für den Betrieb der Anlage nötige Energie wird als Abfallkraft dem zentralen Stromnetz der Gesellschaft entnommen.

Wie schon erwähnt, sind sowohl das Saugreservoir, als auch das Druckreservoir natürliche Sammelbecken; die topographischen Geländeverhältnisse haben hier die denkbar günstigste Gelegenheit gegeben, die bei einer solchen Anlage so schwer ins Gewicht fallenden Anlagekosten von Sammelweihern auf ein Mindestmass herabzusetzen. Der Lago die Bertignano, der als oberes Sammelbecken dient, hat ein Fassungsvermögen von 300000 m³, das der jetzigen Leistung des Werkes von 6000 kW entspricht. Diese Leistung soll in einem zweiten Ausbau auf 12000 kW und in einem dritten Ausbau sogar auf 24000 kW erhöht werden.

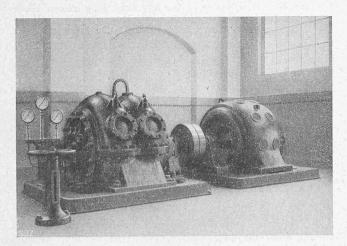


Abb. 5. Pumpengruppe von 1250 PS bei 960 Uml/min.

Es ist daher in Aussicht genommen, den Inhalt des Bertignano-Sees durch Erstellung eines Abschluss-Dammes auf 480 000 bezw. 960 000 m³ zu erhöhen. Bei der Leistung des Werkes von 12000 kW wird die Wassermenge im See von Kote 369,00 auf Kote 378,50, also um 9,5 m aufgestaut,

während das Niveau des das untere Sammelbecken bildenden Lago di Viverone durch die Wasserentnahme während der Pump-Periode nur um 0,62 m zurückgeht, nämlich von Kote 329,22 auf Kote 328,60. Diesem veränderlichen Niveau der beiden Seen entsprechend ist natürlich auch die Förderhöhe für die Pumpen, bezw. das Gefälle für die

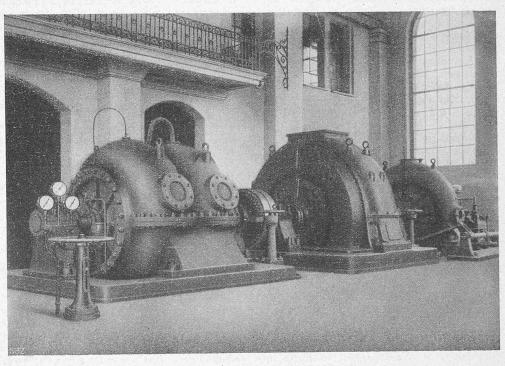
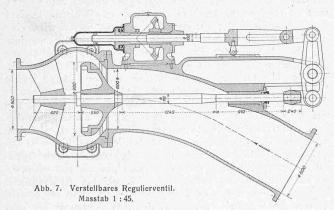


Abb. 4. Maschinengruppe von 4500 PS bei 735 Um/lmin des Kraftakkumulierungswerkes Viverone.

Turbinen sehr veränderlich, da die Niveau-Unterschiede zwischen beiden Seen nach den vorstehenden Angaben zwischen 139,78 und 149,90 m schwanken.

Die Gesamtanordnung der Anlage ist aus den Abbildungen 1 und 2 ersichtlich. Die Länge der Druck-Leitung von der Zentrale bis zum Wasserschloss beträgt rund 700 m, bei einem lichten Durchmesser von 1450 mm; sie hat im Anfang eine Steigung von 19,2 %, auf der letzten Strecke vor dem Wasserschloss eine solche von 35,8 % und ist für die anfängliche Leistung des Kraftwerks von 6000 kW bemessen; für dessen weitern Ausbau wird eine zweite Leitung von gleichem Durchmesser erstellt werden. Die Wandstärke der Stahlröhren beträgt in der untern Druckpartie 18 mm. Charakteristisch, an dieser Leitung ist der Umstand, dass auf deren ganzen Länge keine Dilatationstücke eingebaut sind. Der einen Durchmesser von 10 m aufweisende Turm des Wasserschlosses ist aus Stahlblech; seine Höhe ist mit 39,5 m bereits für den maximalen Aufstau des Bertignano-Sees bemessen. In dem an diesen Ausgleichturm angebauten Wasserschloss ist das automatische Rohrbruchventil mit den zugehörigen Apparaten untergebracht. Vom Wasserschloss bis zum Stausee ist die Druckleitung mit 2100 l. W. gemäss Abbildung 2 hergestellt; sie hat eine Länge von rund 1200 m, wovon 470 m im Tunnel verlegt sind. Ihre Steigung bis zum Ausguss im Stausee beträgt 6 bis 7 % 00.

Das Maschinenhaus, wie es in Abbildung I ersichtlich ist, genügt nur für die Aufnahme der Maschinen des ersten Ausbaues mit 6000 kW. Durch symmetrische Verlängerung soll es später zu einer stattlichen Zentrale ergänzt werden. In dem überragenden Hochbau sind die Transformatoren und die Hochspannungsanlage untergebracht. Ueber die Anordnung der Maschinen-Gruppen, der Rohrleitungen, Hülfsmaschinen usw. im Maschinenhaus orientiert Abb. 3. Es kamen zur Aufstellung: Eine Gruppe mit einer Sulzer-Hochdruck-Zentrifugalpumpe von 4500 PS maximaler Leistung, die wohl die grösste bisher gebaute Zentrifugal-


pumpe darstellt (Abbildung 4), eine Gruppe mit einer Sulzer-Hochdruck-Zentrifugalpumpe von 1250 PS Leistung (Abbildung 5), sowie zwei Gruppen von je 2000 PS der Firma A. Riva & C. in Mailand.

Der gesamte bauliche Teil der Anlage wurde entworfen und ausgeführt von der Firma Locher & Cie. in Zürich. Druckleitung und Wasserturm sind von den Officine di Savigliano in Turin, die Turbinen-Anlage von der Firma Riva in Mailand erstellt worden. Die Generatoren

und Motoren sowie die gesamten elektrischen Installationen stammen von den Siemens-Schuckert-Werken in Berlin. Im Folgenden soll nur auf die von Gebr. Sulzer gelieferte Pumpenanlage näher eingetreten werden.

Die Gruppierung des Maschinen - Aggregats von 4500 PS ist die bei den mechanischen Akkumulierungswerken übliche: Pumpe-Generator - Turbine. Beim Pumpenbetrieb arbeitet der Generator als Synchron-Motor, wobei er

eine Leistung bis zu 4850 PS abzugeben vermag. Als Kupplungsorgane zwischen den einzelnen Maschinen dienen elastische, ausrückbare Stiften-Kupplungen. Die Pumpe, deren Bauart Abb. 6 erkennen lässt, ist eine zweistufige Hochdruck-Zentrifugalpumpe mit symmetrisch gebauten Laufrädern mit doppelseitigem Wassereintritt, wodurch ein vollständiger Schubausgleich in axialer Richtung gewährleistet ist. Die Laufräder und die Leitapparate sind aus Stahlguss, das zur bequemen Zugänglichkeit und Freilegung der inneren Pumpenorgane in der Horizontalebene geteilte Pumpengehäuse aus Spezialgusseisen. Der Anschluss der Pumpe an die Druckleitung erfolgt im Untergeschoss, während ihr Saugrohr direkt in dem unter der Pumpe liegenden Saugkanal eintaucht. Ihre Welle ist in zwei getrennten, ausserhalb der Wasserräume der Pumpe liegenden Lagerböcken gelagert. Das hintere Lager ist zur Sicherung der Welle

gegen axiale Verschiebungen mit Kammen versehen; ein Axialdruck tritt bei der symmetrischen Anordnung der Laufräder, wie bereits bemerkt, nicht auf. Beim beidseitigen Wellenaustritt geschieht die Abdichtung mittels Druckwasserabschluss unter Anwendung von Labyrinth-Dichtungsbüchsen; es sind also hier die üblichen Stopfbüchsen, die bei derart grossen Wellenabmessungen erfahrungsgemäss Veranlassung zu allerlei Störungen bieten, weggelassen worden. Das Füllen von Saugleitung und Pumpe erfolgt durch Entlüften mittels einer Schieber-Luftpumpe; die Saugleitungen besitzen daher keine Boden-Ventile. In der Druckleitung ist zum vollständigen Abschluss

zwischen Pumpe und Leitung ein hydraulisch betätigter Schieber von 800 mm 1. W. eingebaut. Zum Regulieren der Wassermenge ist zwischen der Pumpe und dem Abschluss-Schieber ein besonders konstruiertes Regulierventil angebracht (Abbildung 7). Das Einstellen dieses Ventils für eine bestimmte Wassermenge geschieht von Hand, dagegen schliesst es bei plötzlichem Unterbruch des Betriebes automatisch. Seine Betätigung erfolgt in bequemer Weise von einem zentral gelegenen Bedienungständer aus, an dem

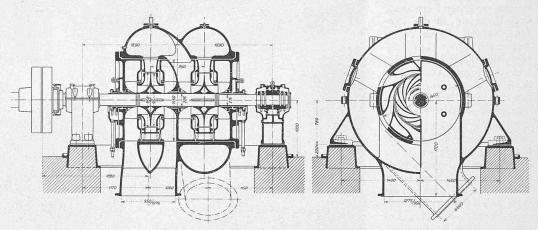


Abb. 6. Längs- und Querschnitt durch die Sulzersche Hochdruckpumpe für 4500 PS, 735 Uml/min.

auf einer Skala die jeweilige Oeffnung des Ventils jederzeit abgelesen werden kann.

Die Inbetriebsetzung der Maschinengruppe für den Pumpvorgang findet in folgender Weise statt: Die Gruppe wird zunächst durch die Turbine auf die normale Umdrehungszahl gebracht, sodann wird der Generator, der als Synchron-Motor arbeiten soll, an das Stromnetz angeschlossen, worauf die Turbine durch Ausrücken der Kupplung abgestellt wird. Der Druckschieber wird nun vollständig geöffnet und mittels der oben beschriebenen Reguliervorrichtung die Fördermenge eingestellt. Beim Abstellen der Gruppe wird der Schieber geschlossen und hierauf der Motor abgeschaltet.

Wie weiter oben erwähnt wurde, schwankt die topographische Förderhöhe für die Pumpen je nach dem Niveau im Stausee, bezw. nach der Beanspruchung der Anlage zwischen 139 und 149 m. Es ergaben sich dadurch und unter Berücksichtigung der Rohrreibungsverluste für die Pumpe sehr verschiedenartige Betriebsbedingungen, denen bei der Konstruktion der Pumpen nach Möglichkeit Rechnung getragen werden musste.

Die vertraglichen Garantiebedingungen für die Pumpen bezogen sich auf nachstehende Betriebsverhältnisse:

Fördermenge	1380	1700	1750	l/sek
Manometrische Förderhöhe	156	145	142	m
Umdrehungszahl	735	735	735	Uml/min
Wirkungsgrad der Pumpe	78	75	74	0/0
Kraftbedarf	3700	4370	4500	PS_c

Da die Periodenzahl starken Schwankungen unterworfen ist, musste auch für einen Betrieb mit 750 *Uml/min* volle Garantie gegeben werden. (Schluss folgt.)

Vom Bebauungsplan-Wettbewerb Gross-Zürich.

(Fortsetzung von Seite 124.)

Die Pläne zum nächsten Kapitel "Strassen" sind zu umfangreich, um hier wiedergegeben zu werden, weshalb auf den "Schlussbericht" und die darin enthaltenen grossen Verkehrslinienpläne, allenfalls auch auf Abbildung 4 (Seite 110) verwiesen sei. Das gleiche gilt von der hinsichtlich der Grünanlagen u. dergl. besonders hervorgehobenen Detailbearbeitungen der Vorortgebiete Oerlikon-Seebach in den Entwürfen Nr. 4 und 8.

Der Bericht des Preisgerichts fährt fort wie folgt: