Zeitschrift: Schweizerische Bauzeitung

Herausgeber: Verlags-AG der akademischen technischen Vereine

Band: 75/76 (1920)

Heft: 7

Artikel: Eisenbetonschwelle für Schmalspurbahnen

Autor: Güdel, Th.

DOI: https://doi.org/10.5169/seals-36508

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 02.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Wohnraum mit rechteckigem Grundriss von den Seiten-Abmessungen 4×5 m und der lichten Höhe 3,50 m liege an einer 18 m breiten Strasse, die gegenüberliegende Strassenwand sei über der Strassenoberfläche 19 m hoch. Das zur Erhellung des Raumes dienende Fenster soll einen solchen Lichtstrom in den Raum eintreten lassen, dass der Mittelwert der Beleuchtung der Flächen des Raumes nicht unter die für die Wohnräume zugehörige Grenze sinkt. Als solche Grenze ist der Wert 0,002 anzusehen. Der in das Fenster eintretende Lichtstrom ist angenähert gleich dem Vielfachen aus der lichtdurchlässigen Fensterfläche f und der auf die Fenstermitte fallenden Beleuchtung h, also gleich $f \cdot h$. Wir wollen nachstehend h nach Formel (2) berechnen. Bezeichnen wir den Winkel, den die durch die Fenstermitte und die Oberkante der gegenüberliegenden Strassenwand gelegte Ebene mit der beleuchteten Fensterwand bildet, mit φ , so ist F gleich der sphärischen Fläche der von dieser Ebene begrenzten Kugelabschnitte, also gleich

Wird angenommen, dass der Fenstermittelpunkt 3 m über der Strassenoberfläche liegt, so ist $\varphi=48^{\circ}\,24'$ und h wird = 0,168. Da der Gesamtinhalt der Flächen des Wohnraumes — Wände, Fussboden und Decke — gleich 103 m^2 ist, so ergibt sich für die Grösse der lichtdurchlässigen Fensterfläche der Wert $f=\frac{103\cdot0.002}{0,168}=1,226$ m^2 . Wäre die Strasse nur 12 m breit, so folgt aus $\varphi=36^{\circ}\,53'$ und h=0,1001 für f der Wert $\frac{103\cdot0.002}{0,1001}=2,058$ m^2 .

Ideenwettbewerb für die kantonale st. gallische Land- und Hauswirtschaftl. Schule in Flawil.

(Schluss von Seite 67.)

Nr. 3. "Riedernhof". Der Versuch, die neuen Gebäulichkeiten mit den bestehenden in Zusammenhang zu bringen, ist bemerkenswert und gut gelungen. Die Nähe der Scheune ist wegen der Insektenplage und Feuersgefahr nachteilig, ebenso die nahe gelegene Landstrasse.

Haupt und Nebeneingang liegen richtig. Die Tendenz nach möglichst sparsamer Korridorfläche ist anzuerkennen. In diesem Bestreben ist jedoch der Vorraum vor dem Speisesaal zu klein ausgefallen und der Gang zur Direktorwohnung dunkel und schmal geworden. Alle haus und landwirtschaftlichen Nebenräume sind praktisch in dem zum alten Stall parallelen Nordflügel untergebracht. Dieser, sowie der alte Stall einerseits und das südlich gelegene Hauptgebäude anderseits umfassen einen behäbigen Wirtschaftshof, zu welchem das Aeussere der Bauten gut passt. Das Projekt zeichnet sich auch dadurch aus, dass es mit einem kleinen Kubikmass den Zweck erfüllt.

Nr. 11. "Guter Samen, reiche Ernte". Das Projekt ist Nr. 10 hinsichtlich der Situation und Grundrissform ähnlich, tritt aber in der Durchbildung der Grund- und Aufrisse gegenüber demselben wesentlich zurück.

In den Korridoren sind die seitlichen Erweiterungen auf Kosten eines genügend grossen Treppenvorraumes gemacht worden. Es fehlt eine gute Verbindung von Haupt- und Oekonomiegebäude.

Die Raumeinteilung und die Korridore in den Flügeln befriedigen nicht. Die Direktorwohnung liegt im Nordostflügel ungünstig. Hervorzuheben ist die zweckmässige Disposition der Diensträume, der Lingerie und Glätterei. Das Projekt hat ein allzugrosses Kubikmass. Die ganze Baugruppe wirkt gut. Die grosse Bautiefe des Hauptgebäudes bedingt ein hohes Dach, dessen Raum nicht genügend nutzbar gemacht worden ist.

Eisenbetonschwelle für Schmalspurbahnen.

Von Ing. Th. Güdel, Graz.

Versuche mit Eisenbetonschwellen sind zwar nicht neu; brauchbare Angaben über die Haltbarkeit und das sonstige Verhalten der Betonschwellen sind jedoch spärlich vorhanden. Mit vorliegender Mitteilung über die auf der schmalspurigen Lokalbahn Weiz-Birkfeld (Steiermark) auf meine Veranlassung vorgenommenen Versuche mit mehrjähriger Betriebs Dauer möchte ich dazu beitragen, der heutzutage besonders wünschbaren Einführung von Betonschwellen — vorläufig für Nebenbahnen — förderlich zu sein.

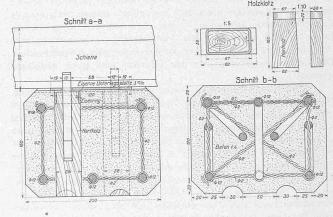


Abb. 3 und 4. Querschnitte und Dübel. - Masstab 1:5 und 1:10.

Die aus den Abbildungen 1 bis 4 ersichtliche Schwelle ist einer französischen Kleinbahnschwelle nachgebildet; es sind aber hierbei einige Verbesserungen vorgenommen worden, auf die besonders hingewiesen werden soll und die entschieden dazu beitragen, die verwendete Schwelle vorteilhafter erscheinen zu lassen und ihr Vorzüge gegenüber andern Typen einzuräumen. Das zur Verlegung gelangte Schienenprofil ist 90 mm hoch, hat 42 mm Kopf- und 75 mm Fussbreite, besitzt 22,7 cm² Querschnitt und ein Laufmetergewicht von 18 kg; das Trägheitsmoment beträgt 235 cm⁴, der grösste zulässige Achsdruck 7,5 t. Die auf der Bahnstrecke im übrigen verlegten Hartholzschwellen haben annähernd die gleichen Abmessungen wie die Betonschwellen. Auf 9 m lange Schienen entfallen 13 Schwellen.

Armiert ist die Betonschwelle mit fünf Rundeisen von 12 mm Durchmesser; von diesen laufen je zwei oben und unten gerade durch, während das fünfte abgebogen ist. Alle Längseisen sind mit Rundhaken versehen worden; das Gewicht der Eisenarmierung beträgt 9 kg. Die Betonmischung wurde mit 1:4 gewählt. Die Dimensionierung und statische Ueberprüfung geschah nach den

üblichen Näherungsformeln zur Ermittlung der äusseren Kräfte und Momente und der inneren Spannungen. Die grösste Eisenzug-Spannung beträgt rechnerisch 800 kg/cm2; die Betondruckspannung ist mit 30 kg/cm2 ermittelt und die Schubspannung im Beton mit 8 kg/cm2. Wie alle Eisenbahnoberbau Berechnungen konnte natürlich auch diese nur ganz angenähert gemacht werden; man ist hier mehr auf den Versuch, als auf rechnerische Spannungen-Ermittlung angewiesen. Es wurden deshalb auch einige Schwellen durch ruhende Belastung zum Bruch gebracht, sie

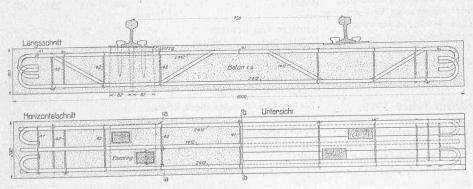


Abb. 1 und 2. Schnitte und Draufsicht der Eisenbeton-Schwelle. - Masstab 1:12.

zeigten etwa sechsfache Sicherheit gegenüber der rechnerisch ermittelten Maximalbeanspruchung.

Sehr wichtig für das spätere gute Verhalten der Schwellen war die Verwendung der gedrehten Bügel, ähnlich den patentierten Sperrbügeln von Züblin, die besonders den durch starke Erschütterungen beanspruchten Eisenbetonkörpern bedeutend erhöhte Festigkeiten verleihen. Diese gedrehten Bügel ermöglichen es auch, die Rundeisen in vollständig fester Lage zu erhalten, sodass sie sich beim Einbringen des Betons nicht verschieben. Ein weiterer bedeutender Vorteil für die fabrikationsmässige Erzeugung liegt darin, dass die Eisengerippe früher fertig hergestellt werden können und leicht in die Formen für die Betonierung zu bringen sind. Im vorliegenden Fall, wo es sich nur um einige hundert Versuchschwellen handelte, bestanden die Formen aus Holz; sie waren teilweise mit dunnem Blech beschlagen, teilweise mit Papier ausgelegt; bei grösserer Anzahl wären Eisenformen unbedingt empfehlenswert. Der Beton wurde mit etwa 10% Wasser angemacht und gestampst; vor flüssigem Beton ist hier zu warnen.

Die auf der Unterseite der Schwelle angebrachten zwei Rillen haben den Zweck, die Unterstopfung mit Oberbauschotter besser zu ermöglichen. Die Betonschwellen müssen natürlich ebenso nachgekrampt werden wie andere Schwellen. Infolge des grösseren Gewichtes dieser Schwellen — eine Betonschwelle wiegt 120 kg, bezw. dreimal mehr als eine Holzschwelle — verschicht sich aber der Oberbau viel weniger als bei Holz- oder Eisenschwellen. Die Unterhaltungskosten für den Oberbau sind ganz bedeutend geringer.

Eine Hauptschwierigkeit bietet immer die Schienenbefestigung. Hier, wo im allgemeinen meist Nägel Verwendung finden, sind in jede Schwelle, wie aus den Zeichnungen ersichtlich, vier konische imprägnierte Hartholzklötze eingelassen, die oben durch einen schmiedeisernen Ring gegen das Aufsprengen verstärkt sind. Vor dem Eintreiben der Nägel sind in die Holzklötze, unter genauer Berücksichtigung allfälliger Spurerweiterung, Löcher gebohrt worden. An Stelle von Nägeln können natürlich auch Schrauben verwendet werden. Die anfänglich zur Anwendung gekommenen Unterlags-Platten von 3 mm Stahlblech erwiesen sich als zu dünn; sie wurden beim Befahren aufgebogen. Teilweise sind die gewöhnlichen Unterlagsplatten wie auf den gedexelten Holzschwellen verwendet worden. Die eingetriebenen Schienennägel haben sich während des neunjährigen Bahnbetriebes nicht gelockert.

Teilweise wurden die Schwellen schon nach 14tägiger Erhärtungsdauer (im September 1911) verlegt und sofort befahren. Diese absichtlich kurz gewählte Erhärtungszeit erwies sich insofern als zu gering, als die Schwellen auf der Oberseite feine Querrisse bekamen, meist in der Geleiseaxe, teilweise auch von den Dübel-Löchern ausgehend. Diese gerissenen Schwellen wurden aber trotzdem nicht entfernt und haben gegenüber den andern, nicht gerissenen Schwellen im Betrieb keine Nachteile gezeigt.

Die Kosten stellten sich im Jahre 1911 auf rund 6 Fr. das Stück, samt Verlegen und erstmals unterkrampen; dieser Preis war doppelt so hoch wie für Lärchenholz-Schwellen. Da aber mit der Auswechslung der Holzschwellen bereits begonnen werden musste, ist heute schon die wirtschaftliche Ueberlegenheit der Betonschwelle gegenüber der Holzschwelle nicht mehr zu bezweifeln, da die erstgenannte keinerlei Gebrechen oder Veränderungen aufweist. Besonders in scharfen Bögen und in 20 % Steigung zeigt sich infolge der ruhigen Lage des Oberbaues der Vorteil der schweren Schwelle gegenüber der leichten Holz- oder Eisenschwelle deutlich.

Ueber die mit derartigen Schwellen ausgebauten Versuchstrecken sind bisher ungefähr 20000 Züge gerollt; wenn überhaupt nachteilige Erscheinungen zu erwarten wären, hätten sie sich somit unbedingt schon zeigen müssen. Der wirtschaftliche Vorteil der vorbeschriebenen Eisenbetonschwelle tritt mit zunehmendem Alter immer mehr hervor.

Schweizer. Maschinen-Industrie im Jahre 1919.

Dem 36. Jahresbericht des Vorstandes des Vereins schweizerischer Maschinen-Industrieller an die Vereinsmitglieder und dem Bericht dieses Vereins an den Vorort des Schweizerischen Handelsuud Industrie-Vereins entnehmen wir die folgenden Angaben über die Tätigkeit des Vereins bezw. die Lage der schweizerischen Maschinenindustrie im Jahre 1919.

Tabelle I. Einfuhr von Maschinen und Automobilen.

Maschinengattung	1913	1917	1918	1919
	t	t	- t	t
Dampf- und andere Kessel	3067	1273	702	1704
Dampf- und elektrische Lokomotiven .	216	91	-	136
Spinnereimaschinen	1568	1274	967	1120
Webereimaschinen	610	288	905	512
Strick- und Wirkmaschinen	114	181	119	338
Stickereimaschinen	822	369	581	804
Nähmaschinen	1117	824	540	1063
Maschinen für Buchdruck usw	1048	248	161	689
Ackergeräte und landw. Maschinen .	3517	1802	1564	3241
Dynamo-elektrische Maschinen	751	193	33	205
Papiermaschinen	1290	395	632	711
Wasserkraftmaschinen	394	97	170	114
Dampfmaschinen und Dampfturbinen .	763	112	137	115
Verbrennungs-Kraftmotoren	192	155	58	113
Werkzeugmaschinen	3867	1791	1162	6022
Maschinen f. Nahrungsmittelfabrikation	1358	924	366	827
Ziegeleimaschinen usw		110	79	316
Uebrige Maschinen aller Art	7748	3395	2732	4455
Automobile	1095	485	233	5698
Totaleinfuhr	31391	13916	11141	28183

Zu Ende des Jahres 1919 gehörten dem Verein 167 Werke mit 50314 Arbeitern an. Die Bewegung der Gesamtzahlen der Mitglieder und der von ihnen beschäftigten Arbeitern seit dem Jahre 1913 geht aus der folgenden Zusammenstellung hervor.

Ende 1913: 155 Werke mit 43081 Arbeitern

"	1914:	154	"	11	36123	,,
"	1915:	157	"	"	47 283	,,
,,	1916:	154	"	"	54374	"
11	1917:	154	"	,,,	57314	"
"	1918:	163	"	11	53014	"
11	1919:	167	11		50314	,,

Von der Gesamtzahl der Werke Ende 1919 entfallen auf den Kanton Zürich 56 (Ende 1918: 54) Werke mit 17 246 (18 738) Arbeitern, Bern 28 (26) Werke mit 5360 (4898) Arbeitern, Schaffhausen 8 (8) Werke mit 5176 (6139) Arbeitern, Solothurn 13 (13) Werke mit 4022 (4025) Arbeitern, Aargau 11 (11) Werke mit 4016 (4297) Arbeitern, Thurgau 11 (12) Werke mit 2714 (2568) Arbeitern, Genf 5 (5) Werke mit 2360 (2137) Arbeitern, Luzern 7 (7) Werke mit 2013 (2410) Arbeitern; in den übrigen Kantonen liegt die Arbeiterzahl je unter 2000.

Aenderungen im Vorstande des Vereins sind im Berichtjahre nicht eingetreten.

In Bezug auf die allgemeine Lage der schweizerischen Maschinenindustrie führt der Bericht aus, dass die durch den Waffenstillstand hervorgerufene Geschäftstockung bis in die zweite

Tabelle III. Einfuhr von Rohmaterialien in 1000 t.

	1913	1917	1918	1919
Brennmaterial:				
Steinkohlen	1969	1227	1158	1258
Koks	439	621	674	191
Briketts	968	415	289	281
Eisen:	J. 74 94			
Roheisen und Rohstahl	123	92	49	58
Halbfabrikate: Stabeisen, Blech,				
Draht, Röhren, Schienen usw	281	229	173	134
Grauguss	9,5	3,6	2,3	2,6
Uebrige Metalle:				
Kupfer in Barren, Altkupfer	2,8	7,2	6,4	8,4
Halbfabrikate: Stangen, Blech, Röhren,				
Draht	9,0	16,2	3,7	3,8
Kupfer-Fabrikate	1,5	6,7	0,2	0,6
Zinn in Barren usw	1,4	1,1	0,2	1,4
Zink " " "	2,1	5,3	*)	*)
Blei " " "	5,9	2,3	*)	*)
Nickel,, ", "	0,4	0,1	*)	*)

^{*)} Im Bericht sind für 1918 und 1919 darüber keine Angaben gemacht.