Zeitschrift: Schweizerische Bauzeitung

Herausgeber: Verlags-AG der akademischen technischen Vereine

Band: 73/74 (1919)

Heft: 4

Artikel: Entwicklungsformen des Dampf-Kälteprozesses

Autor: Ostertag, P.

DOI: https://doi.org/10.5169/seals-35567

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

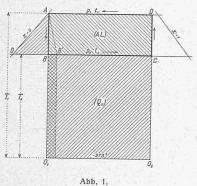
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 01.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

INHALT: Entwicklungsformen des Dampf-Kälteprozesses. nungen". - Le Domaine de Tournay. - Miscellanea : Zum Kapitel "Standesehre". Die Grenzen der Kraftübertragung mittels Wechselströmen. Zur Geschäftsmoral im Baugewerbe. Internationale technische Kommissionen. Jubiläum der Technischen Hoch-

schule in München. Teuerung und Teuerungszulagen. — Konkurrenzen: Bebauungsplan Biel und Vororte. — Literatur: Der ewige Kreislauf des Weltalls. Literar. Neuigkeiten. — Vereinsnachrichten: Schweiz. Ing.- u. Arch.-Verein. Zürcher Ing.- u. Arch.-Verein. Tafeln 3 bis 6: Le Domaine de Tourney.

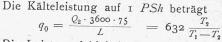

Band 73. Nachdruck von Text oder Abbildungen ist nur mit Zustimmung der Redaktion und nur mit genauer Quellenangabe gestattet.

Nr. 4.

Entwicklungsformen des Dampf-Kälteprozesses. von Prof. P. Ostertag, Winterthur.

Eine einfache und klare Darstellung des Kreisprozesses in der Dampskompressions-Kältemaschine erhält man mit Benützung der Entropietafel. Eine Wärme-Energie dQ mit der Temperatur T kann als Produkt $T \cdot dS$ aufgefasst werden und stellt sich als Flächenstreifen dar, wenn T als Ordinate und die Entropiezunahme dS als Abszisse aufgetragen wird.

Solange der Kälteträger flüssig ist, liegen die Zustandspunkte auf der unteren Grenzkurve (spezifische Dampfmenge x=o), der gesättigte Dampfzustand ist durch die obere Grenzkurve (x=1) gekennzeichnet. Kurven links von der unteren Grenzkurve gelten für das Gebiet der elastischen Flüssigkeit, rechts von der oberen Grenzkurve für überhitzten Dampf; Punkte zwischen den Grenzkurven zeigen feuchten Dampf an.1)



Als Idealvorgang ist der Prozess von Carnot anzusehen. Der flüssige Kälteträger (Punkt A' in Abbildung 1) steht unter dem hohen Druck p_1 und der entsprechend hohen Temperatur t_1 . Die zur Kältewirkung nötige tiefe Temperatur t2 wird durch adiabatische Expansion (AB) im Zylinder EZ (Abb. 2) erzielt, wobei ein Teil der Flüssigkeit verdampft. Der übrige Teil nimmt im Verdampfer V eine Wärme Q, aus der Umgebung auf, bewirkt somit die Kälteleistung, die in Abbildung 1 als Recheck BCO2O1 dargestellt ist. Nun muss der Kältestoff auf den Anfangsdruck p_1 verdichtet werden, was durch adiabatische Kompression im Zylinder KZ ge-

schieht (CD). Bleibt der Endpunkt (D in Abbildung 1) im Sättigungsgebiet (nasses Verfahren), so ist als letzte Zustandänderung DA die Wärme Q_1 (Rechteck DAO_1O_2) zu entziehen, was im Kondensator K vor sich geht.

Der geschlossene Prozess gibt die Kälteleistung Q_2 und verlangt die Arbeit L, deren Wärmewert AL (A = 1/428) als Rechteck ABCD sichtbar ist. Aus der Abbildung t folgt:

$$\frac{Q_1}{T_1} = \frac{Q_2}{T_2}$$
, $Q_1 = Q_2 + AL$

Die Leistungsfähigkeit einer Anlage ist demnach um so grösser, je kleiner der Temperatur-Unterschied zwischen Kühlwasser und Sole ist.

Die erste Abweichung vom beschriebenen Vorgang besteht im Ersatz des Expansionszylinders durch ein einfaches Drosselventil (R in Abbildung 2). Im Diagramm wird die Linie AB durch die Drosselkurve AB' ersetzt; die Kälteleistung vermindert sich um das Rechteck unter BB' und der Arbeitsbedarf wächst um das Stück OAB.

Die zweite Abweichung besteht in der Einführung des trockenen Verfahrens; der Kompressor saugt nur Dampf an, was durch Vorschalten eines Flüssigkeitsabscheiders \hat{A}_1 (Abbildung 3) erreicht wird. Dadurch erstreckt sich die Wärmeaufnahme im Verdampfer bis zur oberen Grenzkurve

(Punkt C in Abbildung 4) und die Verdichtung bringt den angesaugten Dampf sofort in den überhitzten Zustand (Adiabate CD). Es hat sich nämlich als Vorteil erwiesen, wenn der Zylinder keine Flüssigkeit empfängt, die sich an den Wandungen ansetzt, dort den Wärmeübergang von den Wandungen an den angesaugten Dampf fördert und bei der Expansion aus dem schädlichen Raum durch Verdampfung den Liefergrad vermindert. Jede Feuchtigkeit im Kompressor wirkt demnach schädlich.

Dagegen soll im Verdampfer eine Ueberflutung

stattfinden, damit dort der

Wärmeübergang leicht vor

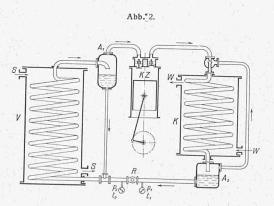
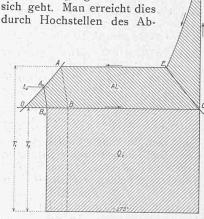
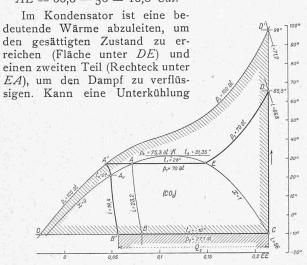



Abb. 3.

scheiders A_1 und Rückleitung der abgeschiedenen Flüssigkeit in die Zuleitung zum Verdampfer (Abbildung 3).

Der Kompressor KZ stösst das heisse Gas von oben in den Kondensator K. Man kann beim Eintritt in die Schlange eine Düsenwirkung hervorrufen, um die im Sammler A_2 noch eintretenden Restgase abzusaugen und dem Kondensator nochmals zuzuführen.


Wird die Oberfläche des Kondensators reichlich bemessen und das Kühlwasser W im Gegenstrom mit lebhafter Bewegung durchgeleitet, so gelingt es, das Kondensat unter die Sättigungstemperatur t_1 auf t_u abzukühlen. Im Diagramm (Abbildung 4) rückt nun die Drossellinie AB

¹⁾ Näheres siehe: Ostertag, «Berechnung der Kältemaschinen», Berlin 1913. Verlag von Jul. Springer.

nach A, B, und der Gewinn der Unterkühlung stellt sich als Rechteck mit der Breite BBu dar. Diese Wirkung macht sich besonders bei Verwendung von Kohlendioxyd als Kälteträger fühlbar, da dieser Stoff eine grosse Flüssigkeitswärme besitzt. Häufig wird bei solchen Anlagen hinter den Kondensator ein besonderer Flüssigkeitskühler gesetzt. (Siehe die Anlage von Escher Wyss & Cie. an der Landes-Ausstellung Bern 1914. Schweiz. Bauzeitung 1915, Bd. LXV, No. 26 vom 26. Juni 1915).

Als ein derartiges Beispiel sei angenommen, im Verdampfer herrsche eine Temperatur von — 10 $^{\circ}$ C, im Kondensator eine solche von 28 $^{\circ}$ C. Der Kompressor hat demnach den Dampf von 27,1 at auf 70 at abs. zu bringen (CD in Abbildung 5). Die hierzu nötige Arbeit ergibt sich als Differenz der Wärmeinhalte von D und C:

AL = 66.8 - 56 = 10.8 Cal.

nicht stattfinden, so trägt der Stoff die Flüssigkeitswärme i = 23.2 Cal durch das Drosselventil in den Verdampfer (AB), wo die Kälteleistung $Q_2 = 56 - 23.2 = 32.8$ Cal entsteht.

Abbildung 5.

Auf 1 *PSh* ergibt dies
$$q_2 = 632 \cdot \frac{32,8}{10,8} = 1920$$
 Cal

Auf I PSh ergibt dies $q_2=632\cdot\frac{3^2,8}{10,8}=1920$ Cal Nach Carnot würde erhalten $q_0=632\cdot\frac{263}{38}=4370$ Cal Damit stellt sich der Wirkungsgrad gegen "Carnot" auf 0,44.

Das Ergebnis wird günstiger mit der Annahme, das Wasser vermöge die flüssige Kohlensäure auf 210 zu unterkühlen. (A Au). Nun werden nur noch 14,4 Cal in den Verdampfer getragen und es ist

$$Q_2 = 56 - 14.4 = 41.6 \, Cal; \quad q_2 = 632 \cdot \frac{41.6}{10.8} = 2440 \, Cal$$

Der Wirkungsgrad steigt jetzt auf 0,56, d. h. um 12 %. Soll dieselbe Kälteleistung zustande kommen, ohne dass eine Unterkühlung möglich ist, so muss das Gas auf 100 at verdichtet werden (CD') und verlangt die Arbeit AL = 15,2 Cal. Die Abkühlung vollzieht sich alsdann oberhalb des kritischen Punktes K (D'A'), wobei der Uebergang in den elastisch-flüssigen Zustand ohne scharf abgegrenzte Dampfbildung vor sich geht.

Ein anderes Verfahren schlägt R. Plank vor. Das Gas wird nur auf 70 at verdichtet; nach der Abkühlung erfährt die Flüssigkeit eine Druckzunahme von 70 auf 100 at in besonderer Pumpe (AA'), sodass dieselbe Kältewirkung erzielt wird. Die Arbeit der Pumpe ist in Abbildung 5 als Rechteck unter AA' dargestellt, dafür fällt

die Kompressor-Arbeit kleiner aus, entsprechend DD'.
In Abbildung 6 ist das Schema einer Zwischen-Verdampfung mit zweistufiger Kompression gezeichnet. Sie erweist sich zweckmässig, wenn an zwei Orten Kälte mit verschieden tiefen Temperaturen erzeugt werden soll. Der kältere Dampf strömt aus dem Verdampfer Vn zum N.-D.-Zylinder und von da zum H.-D.-Zylinder. Auf dem Wege

dorthin vereinigt er sich im Behälter B mit dem weniger kalten Dampf, der im Verdampfer Vn eine Kälteleistung in kleinern Temperaturgrenzen erzeugt hat. Beide Mengen werden vom H.-D.-Zylinder in den Kondensator K gedrückt und fliessen durch die Regulierventile R_h und R_n den Verdampfern zu.

Das Schema zeigt einen Riesel-Kondensator, Bauart Riedinger, dessen Schlange in drei Zonen unterteilt ist. Die beiden untern Zonen bringen die Abkühlung und Kondensation hervor, der Restdampf steigt aus dem Abscheider A zur obersten Schlange, wo das ankommende kalte Wasser die kräftigste Wirkung ausübt.

Das Diagramm dieses Prozesses (Abbildung 7) gilt für Ammoniak, und zwar soll das Kühlwasser eine Unterkühlung von 40° auf 30° zustande bringen (AA_u) . Nach der Drosselung (A_uB_u) auf den Druck p_o in V_h erzeugt ein Teil der Flüssigkeit die Kälteleistung (B_uC) :

$$Q_{2h} = 271,8 \ Cal;$$

der andere Teil der Flüssigkeit geht durch das zweite Ventil (A'B', Abbildung 7) und erzeugt in V_n die Kälteleistung (B'C') $Q_{2n}=287,35$ Cal. Bei der Verdichtung im N.-D.-

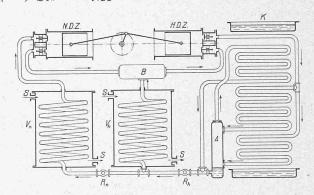


Abbildung 6.

Zylinder überhitzt sich der Dampf auf 70,5° (C'D') und kommt im Behälter mit dem Dampf aus V_h zusammen (+100); dadurch entsteht eine Mischtemperatur, die wir vorerst zu $t_m=30^{\circ}$ schätzen, um das Diagramm mit der Linie C_mD schliessen zu können. Die beiden Arbeitsflächen betragen

 $AL_h = 353 - 316 = 37 \text{ Cal}$ und $AL_n = 337.3 - 298.7 = 38.6 \text{ Cal}$

Nehmen wir eine geforderte Kälteleistung von 500 000 Cal/h an, die sich zu 200000 auf V_n und zu 300000 auf V_h ververteilen soll, so betragen die Gewichte des umlaufenden Stoffes

$$G_h = \frac{300000}{271,8} = 1104 \ kg/h$$
 $G_n = \frac{200000}{287,35} = 696 \ kg/h,$

zusammen 1800 kg/h. Damit ergibt sich der Energiebedarf, abgesehen von Nebenverlusten

$$N_h = \frac{1800 \cdot 37}{632} = 105,5 \ PS$$
 $N_n = \frac{696 \cdot 38,6}{632} = 42,5 \ PS$

oder zusammen 148 PS. Für die Anlage beträgt die

Kälteleistung auf 1 PSh: $q_2 = 3380$ Cal. Im Idealprozess sind zwei Rechtecke AL_h und

AL, zu unterscheiden, aus denen die Gleichung entwickelt werden kann

$$q_0 = 632 \frac{G_h \cdot Q_{2h} + G_n Q_{2n}}{(G_n + G_h) AL_h + G_n AL_n}$$

$$= 632 \frac{G_h \cdot T_0 + G_n T_2}{(G_n + G_h) (T_1 - T_0) + G_n (T_0 - T_2)}$$

Für unser Beispiel ist damit $q_0 = 4120$ Cal pro 1 PSh, was im vorliegenden Prozess einen Wirkungsgrad von 0,82 ergibt, abgesehen von Nebenverlusten.

Im Behälter entsteht eine Mischtemperatur

$$t_m = \frac{696 \cdot 70.5 + 1104 \cdot 10}{1800} = 33.4^0 C$$

Es muss demnach im Behälter eine Abkühlung um 3,40 erfolgen, wenn die anfangs geschätzte Mischtemperatur

richtig sein soll. Für die Abmessungen der Zylinder sind die spezifischen Volumen v in den Punkten C' und C_m massgebend. Man findet

N.-D.-Z.: $v = 0.637 \, m^3/kg$ Ans.-Vol. $0.637 \cdot 696 = 444 \, m^3/h$ H.-D.-Z.: v = 0,24 $0,24 \cdot 1800 = 432$ " Beide Zylinder erhalten somit nahezu gleiche Abmessungen.

Die zweistufige Kompression kann bei grossen Anlagen dazu benützt werden, tiefe Temperaturen zu erzeugen, oder die Wirkung zu erhöhen, wenn warmes Kühlwasser zur Verfügung steht. Der Unterkühler U wird als Neben-

verdampfer ausgebildet, in dem ein kleiner Teil der Kälteflüssigkeit durch das Drosselventil Ru (Abbildung 8) geht, während der Hauptteil den geschlossenen Kessel U unter Druck setzt. Die Unterkühlung erfolgt demnach mit der eigenen Kälteflüssigkeit. Ihre Wirkung ist unabhängig vom Kühlwasser und wird durch Ru so eingestellt, dass dem H.-D.-Zylinder nur Dampf zufliesst.

0,25

Entwicklungsformen des Dampf-Kälteprozesses.

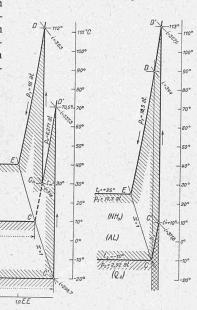
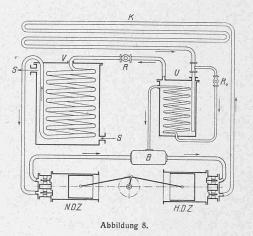


Abbildung 9.


In der heutigen Zeit der Brennstoffnot darf schliesslich an die schon von Lord Kelvin 1852 erwähnte Tatsache erinnert werden, dass die Kältemaschine als Heiz-

Landesausstellung Bern 1914 im Betrieb (siehe Schweizer.

Bauzeitung, Band LXV, Nr. 26, vom 26. Juni 1915, S. 290).

mittel mit hoher Wirtschaftlichkeit verwendbar ist. Diese "Wärmepumpe" verwandelt nicht nur die vom Motor eingeleitete Arbeit (L) in Wärme (632 Cal auf 1 PSh), sondern gibt noch dazu die Kälteleistung (Q_2) an das warme Kühlwasser. Eine solche Anlage könnte demnach im Sommer

zur Kühlung und im Winter zur Erwärmung der Räume ausgenützt werden. Vom thermodynamischen Standpunkt aus ist überhaupt die direkte Heizung mit Wärme von hoher Temperatur (Kohlenfeuer) als eine Verschleuderung anzusehen, ganz abgesehen von den grossen Wärmemengen, die unbenützt durch das Kamin entweichen. Setzt man aber eine solche Wärme in einem Motor in

In neuerer Zeit entsteht die Notwendigkeit, verschiedene von einander entfernte Keller von einer zentral gelegenen Maschinenanlage aus zu bedienen. Diese Aufgabe ist leichter zu lösen und ist mit kleineren Verlusten verbunden, als die Anlage von Fernheizwerken.

1000

AL.

0,5

Abbildung 7.

Das Fern-Kühlwerk verlangt keine Isolierung der Leitungen, die unmittelbar in den Erdboden verlegt werden dürfen. Der vom Kondensator kommende Kälteträger fliesst zum entfernten Verdampfer an der Verbrauchstelle und wird erst dort gedrosselt. Er kann sich dabei höchstens auf die Temperatur im Boden erwärmen. Im Sommer tritt leicht der Fall ein, dass die Bodentemperatur tiefer ist als das Kühlwasser, dann wirkt die Zuleitung sogar günstig, nämlich als Unterkühler. Am Eintritt in die Rückleitung ist der Flüssigkeitsabscheider anzubringen, damit nur kalter Dampf angesaugt wird, der sich nun auf die Bodentemperatur erwärmt. Der Dampf überhitzt sich in der Rückleitung auf diese Temperatur und behält sie bis zum Zylinder bei, wie lange auch die Leitung sei. Im Diagramm Abbildung 9 stellt CC' diese Ueberhitzung dar (einfallende Wärme-Flächenstreifen unter CC'). Die Kälteleistung auf 1 kg wird nicht geändert, dagegen erhöht sich der Arbeitsbedarf um den Streifen CC'D'D. Ferner ist das spezifische Volumen in C grösser als in C; in dem gleichen Verhältnis muss das Hubvolumen des Kompressors vermehrt werden, um dieselbe Kälteleistung zu erzielen.

Mit den in Abbildung 9 eingeschriebenen Zahlen vermehrt sich der Arbeitsbedarf um 7 %, abgesehen von Druckverlusten, und das Zylindervolumen um 12%. Hat einmal der Kälteträger die Temperatur der Erde erreicht, so ist die Länge der nackten Leitung ohne Einfluss auf den Wärmeaustausch.

Ein derartiges Fernkühlwerk, gebaut von der Firma Gebrüder Sulzer, A.-G., Winterthur, war an der Schweiz. mechanische Energie um und treibt damit eine Wärmepumpe (Kältemaschine), so ist diese imstande, eine weit grössere Wärmemenge von der Temperatur der Umgebung auf die mässig hohe Temperatur des zu heizenden Raumes zu heben. Noch wichtiger ist für unser Land natürlich der, unmittelbare oder mittelbare, Antrieb durch Wasserkraft.

"Arbeiter-Wohnungen".

Unter diesem Titel macht Dr. H. Bloesch im Dezember-Bulletin des "Werk" darauf aufmerksam, dass durch die Prägung des Begriffs Arbeiterwohnung, Arbeiterhäuser, Arbeitermöbel u. drgl. die lobenswerten Bestrebungen, die man mit diesen Dingen bezweckt, unbewusstermassen gefährdet würden. "Was der Heimatschutz auf dem Gewissen hat, nur dank seinem Namen, ohne jeden innern Zusammenhang mit der eigentlichen Bestrebung, ist noch Allen gegenwärtig; es scheint uns nicht zu früh, einen ernsten Mahnruf ergehen zu lassen, dass nicht unter dem Begriff der Arbeiterfürsorge eine ähnliche Modeströmung einreisse." "Die Grenze zwischen dem bürgerlichen Mittelstand, dem Beamten, dem Angestellten, dem Handwerker einerseits und dem Arbeiter anderseits ist bei uns schwer zu ziehen. Sie besteht mehr in der Art der Tätigkeit, als in den ökonomischen Bedingungen und den wirtschaftlichen Bedürfnissen" usw. Wir sind mit Dr. Bloesch ganz einverstanden und vermeiden deshalb auch den Ausdruck Arbeiterwohnung, wo es sich nicht um ausgesprochene Fabrik-Kolonien u. drgl. handelt. Insbesondere sind wir auch einverstanden mit der am Schluss der nachfolgenden Sätze gemachten Anregung betreffend die mehr dörflichen Siedelungs- und Wohnformen. In dieser Hinsicht verweisen wir auf das von uns zum Vorschlag M. Haefeli zu einem "Kleinhaus für naturgemässe Lebensweise" auf Seite 68 letzten Bandes (am 24. August 1918) Gesagte. Auch dort dachten weder Haefeli noch wir lediglich an "Arbeiter", sondern an Alle, die einfach leben müssen oder wollen. Dr. Bloesch schliesst wie folgt: