Zeitschrift: Schweizerische Bauzeitung

Herausgeber: Verlags-AG der akademischen technischen Vereine

Band: 73/74 (1919)

Heft: 7

Artikel: Versuchsfahrten einer Wechselstromlokomotive mit elektrischer

Nutzbremsung

Autor: Behn-Eschenburg, Hans

DOI: https://doi.org/10.5169/seals-35675

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 11.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Uebermauerung, bis in die Brüstungen hinauf, zusammenarbeiten; wir werden daher erst dann wirklich befriedigende Berechnungsverfahren für gewölbte Brücken besitzen, wenn sie uns auch über den Einfluss der Uebermauerung Auf-

schluss zu geben vermögen.

Das Projekt für die neue Linthbrücke in Schwanden wurde im Brückenbaubureau des Oberingenieurs bei der Generaldirektion der S.B.B. aufgestellt und unter der Leitung des Oberingenieurs des Kreises III, Herrn Grünhut, und des Bahningenieurs, Herrn Blaser, durch die Firma J. J. Rüegg, Ingenieurbureau und Bau-Unternehmung in Zürich und Weinfelden, ausgeführt.

Versuchsfahrten einer Wechselstromlokomotive mit elektrischer Nutzbremsung.

Von Dr. Hans Behn-Eschenburg, Oerlikon. (Mit Doppeltafel 10.)

In einem frühern Aufsatz erschienen Ende 1918 Mitteilungen über eine neue Methode für die Nutzbremsung von Wechselstrom-Seriemotoren, die auf dem Versuchstand der Maschinenfabrik Oerlikon entstanden und ausprobiert worden war.1) Inzwischen ist es gelungen, diese Methode auch im praktischen Fahrbetriebe mit einer Wechselstrom-Lokomotive der Schweizerischen Bundesbahnen auf der Lötschberg-Linie zu erproben, und es darf behauptet werden, dass schon die erste Versuchsfahrt in überraschender Weise die ausserordentliche Anpassungsfähigkeit, Beständigkeit und Einfachheit der neuen Bremsung dargetan hat. Aus diesen ersten praktischen Versuchen sollen nun in Ergänzung der früheren theoretischen Mitteilungen einige Angaben veröffentlicht werden, da von verschiedenen Seiten dem Gegenstand ernsthafte Aufmerksamkeit geschenkt wird; es wird dabei zugleich Gelegenheit geboten, eine Reihe bemerkenswerter öffentlicher und privater Aeusserungen und Anfragen zu dem Thema in der sachlichsten und einfachsten Weise zu beantworten.

Die zahlenmässigen Beobachtungsergebnisse sind in guter Uebereinstimmung mit den einfachen Diagrammen der Theorie. Die Versuchsfahrten wurden zwar nicht gerade in der Absicht unternommen, genaue Messungen über die Oekonomie der Methode auszuführen, sondern vielmehr um die praktische Handhabung und Bewährung im Betriebe, die Zweckmässigkeit und Sicherheit der Regulierung, ihre Anpassung und Entwicklung für weitergehende Anforderungen und Wünsche zu übersehen und die Einrichtungen soweit als nötig richtigzustellen und zu verbessern. Es wurden keine besonderen Messinstrumente vorbereitet, man begnügte sich mit Ablesungen auf den in den Führerständen angebrachten ungeeichten elektromagnetischen Instrumenten, deren Ungenauigkeit auf etwa 5% zu schätzen ist. Wattmeter und Registrierapparate wurden nicht verwendet. Nichtsdestoweniger zeigte die Zusammen-

Nergl. die Besprechung jener Arbeit in Band LXXIII, S. 13
 Red.

Red.

stellung und Auswertung der Aufzeichnungen verhältnismässig gute Uebereinstimmung einiger der zu vergleichenden Werte, sodass sie auch zu einer überschlägigen Beurteilung der theoretischen und ökonomischen Seite des Problems verwendet werden dürfen.

Die Versuche wurden Ende Juni ausgeführt auf der Nordrampe der Lötschberglinie, wo grössere Strecken ein Gefälle von 27 % 000 besitzen, mit der zweiten von der Maschinenfabrik Oerlikon zusammen mit der Lokomotivfabrik Winterthur gebauten Probelokomotive der Schweiz. Bundesbahnen, die seit Mai 1919 auf der ersten für Wechsel-

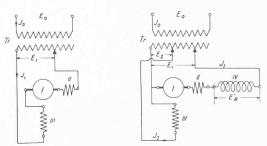
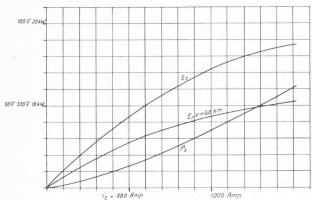


Abb. 6 und 7. Schaltung der Moloren für Fahrt und für Bremsung.

Tr Transformator; I Motor-Rotor; II Kompensations- und HilfspolWicklung; III Magnetwicklung; IV Drosselspule.


strom elektrifizierten Bundesbahnstrecke Bern-Thun im Betriebe steht. Diese Lokomotive ist schon andernorts kurz beschrieben worden!). Wir sind in der Lage, hier eine ausführliche Zusammenstellungszeichnung aus den Konstruktionsbureaux der Lokomotivfabrik Winterthur und der Maschinenfabrik Oerlikon, sowie eine photographische Abbildung dieser Lokomotive beizufügen (Abb. 1 bis 5).

Die Leistungsfähigkeit der Lokomotive ist bei der Bestellung gemäss dem Fahrdienst auf der Gotthardbahn vorgeschrieben worden; sie soll insbesondere ein angehängtes Zuggewicht von 300 t auf einer Steigung von 26 0 / $_{00}$ mit 50 km/h Geschwindigkeit führen und eine maximale Geschwindigkeit von 75 km/h einhalten können.

Das totale Gewicht der Lokomotive beträgt 113 t; davon entfallen auf den mechanischen Teil 58,5 t und auf den elektrischen Teil 54,5 t. Die für die Nutzbremsung erforderlichen besonderen Zutaten beanspruchen ein Gewicht von weniger als 4 t. Sie bestehen in der Hauptsache aus vier Drosselspulen, jede mit einer Leistungsfähigkeit von etwa 500 Volt und 1000 Amp., deren charakteristische Daten in dem Diagramm Abbildung 9 enthalten sind. Von diesen Spulen sind zwei unter dem Dach und zwei in den kleinen Vorbauten des Kastens untergebracht.

Die Umschaltung der Motoren vom eigentlichen Motorbetrieb auf den Bremsbetrieb geschieht nach den beiden

¹⁾ Siehe "Periodische Mitteilungen Oerlikon" Nr. 97, April 1919, sowie die Bilder auf den Seiten 150 und 151 von Band LXXIII der Schweiz. Bauzeitung (29. März 1919). Red.

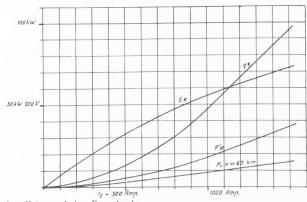


Abb. 8 und 9. Charakteristische Kurven eines Motors und einer Drosselspule.

LEGENDE: E_2 Spannung der Erregung; E_r Rotations-Ankerspannung bei 60 km/h Fahrgeschwindigkeit; E_R Impedanzspannung; $E'R = 0.94 \, E_R$ Spannung der Drosselspule; P_2 Verlust der Erregung; P_r Verlust im Rotoreisen bei 60 km/h Fahrgeschwindigkeit; P_R Verlust in der Impedanz R; P'R Verlust in der Drosselspule allein.

in Abbildungen 6 und 7 veranschaulichten vereinfachten Schemata. Der Fahrtwender besitzt vier Stellungen, je eine Stellung vorwärts, rückwärts und zwei Bremsstellungen, die sich durch die verschiedene Stärke der Erregung der Hauptmagnetwicklung der Motoren unterscheiden. Die Abstufungen der Zugkraft und Geschwindigkeit werden für jede Stellung des Fahrtwenders in bekannter Weise mittels des Stufenschalters in 24 Stellungen durch entsprechende An-

sekundäre Spannung angegeben werden kann. Bei der zweiten Fahrt wurde der Lokomotive ein Wagen-Zug mit einem Gewicht von 197t angehängt und bei gleicher Fahrt die Beobachtungen wiederholt. Die Beobachtungspunkte sind in der Tabelle A auf Seite 87 zusammengestellt, die daneben stehende Tabelle B gibt die aus A abgeleiteten Wirkungsgrade und Leistungsfaktoren. Wir kommen auf diese Tabellen noch zurück.

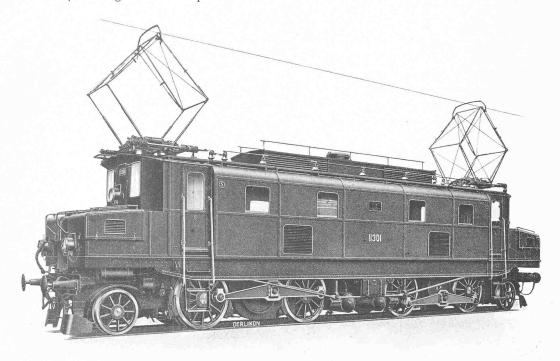


Abb. 1. Wechselstrom-Schnellzuglokomotive von 2250 PS Normalleistung für die Gotthardlinie der Schweiz. Bundesbahnen.

zapfungen des Transformators vollzogen. Für den Motorbetrieb sind im Nebenschluss zu den Hilfspol-Spulen ein induktionsloser, im Bremsbetrieb ein induktiver Widerstand eingeschaltet.

In Zukunft sind für die neuen Lokomotiven noch weitere Vereinfachungen der Schaltungen und ihrer Handhabung geplant. Eine wesentliche Eigenschaft der neuen Bremsmethode besteht bekanntlich in dem Vermeiden von jeglicher besonderer Hilfsmaschine und von Stromverkettungen, die eine Selbsterregung der Motoren veranlassen könnten. Es wird spätern, jetzt schon naheliegenden Verfeinerungen vorbehalten sein, den Leistungsfaktor zu erhöhen, soweit sich hierbei ein Kompromiss mit der Einfachheit der Schaltung verträgt. Für die Oekonomie der Methode im Rahmen des gesamten Fahrdienstes ist nicht zu übersehen, dass der Strombedarf für den Leerlauf des Transformators und der Hilfsbetriebe der Lokomotive auch bei Stillstand und bei der Talfahrt mit rein mechanischer Bremsung zu decken ist und dass die elektrische Bremsung von den Schweiz. Bundesbahnen in erster Linie gewünscht und eingeführt wurde, um die Abnutzung der Bremsbacken und Radbandagen der Lokomotive zu vermindern.

Die Versuchsfahrten wurden so eingerichtet, dass zunächst mit der leeren Lokomotive die Strecke Frutigen-Kandersteg berg- und talwärts durchfahren wurde und an einzelnen Stellen, wo sich angenähert stationäre Geschwindigkeiten einstellten, die Steigung, Geschwindigkeit, primäre Spannung und Stromstärke und die sekundäre Stromstärke abgelesen wurden, ferner die Stellung der Kontrollerkurbel und die Einstellung der Erregung notiert wurde. Jeder Stellung des Kontrollers entspricht eine bestimmte Transformer-Uebersetzung, sodass unter Berücksichtigung eines mittleren Spannungsabfalles für jede Kontrollerstellung die

Ausser den während der Fahrt beobachteten Werten stehen zur Verfügung die in den Laboratorien der Maschinenfabrik Oerlikon ermittelten charakteristischen Werte der Motoren, des Transformators und der Drosselspulen, die in den Abbildungen 8 und 9 angenähert aufgeführt sind. Dabei ist zu bemerken, dass diese Kurven einen einzelnen Motor und eine einzelne Drosselspule betreffen, während auf der Lokomotive vier Motoren und vier Drosselspulen in der Schaltung des Schemas arbeiten; ferner sind die Kurven bei 14,3 Perioden aufgenommen worden, während der Lokomotivstrom 15 Perioden besitzt. Es sind deshalb die Werte der Kurven für die Anwendung auf die Versuchsfahrt in bekannter Weise zu korrigieren. Im übrigen dürfte die beigegebene Legende über die verschiedenen Zeichen und ihre Bedeutung genügend Auskunft geben. Die greifbaren Verluste im elektrischen Teil lassen sich zerlegen in die Leerlauf- und Kurzschlussverluste des Transformators, die Leerlauf- und Kurzschlussverluste der Motoren, wobei die Erregungsverluste getrennt behandelt werden, und die Verluste der Drosselspulen. Ausser diesen Verlusten sind keine wesentlichen Energiebeträge ersichtlich, die bei der Bilanz der mechanischen und elektrischen Energien in Betracht kommen könnten, und es darf in der Annäherung, die dieser ganzen Untersuchung zugrunde liegt, davon ausgegangen werden, dass diese Verluste allein für die Beurteilung der Oekonomie massgebend seien. Eine gleiche Ueberlegung trifft zu für den Aufwand an sogenanntem wattlosem Strom, dessen Komponenten aus den angeführten Kurven und Tabellen ebenfalls mit der wünschenswerten Genauigkeit zu ermitteln sind.

Für die Versuchsfahrten wurden bei der elektrischen Bremsung zunächst nur zwei Einstellungen der Erregung der Hauptmotoren ausprobiert, die sich in bequemster Weise aus den vorhandenen Anzapfpunkten des Transformers ergaben. Die erste erfolgte von der Transformatoranzapfung von 72 V aus über eine vorgeschaltete Drosselspule mit etwa 620 Amp Erregerstrom für jeden Motor und erforderte für vier Motoren einen Aufwand von etwa 20 kW und 160 kVA, die zweite von der Anzapfung von 78 V

wird ein Rollwiderstand von $6,5\,^0/_{00}$ bei etwa 40 km/h Geschwindigkeit und $7\,^0/_{00}$ bei etwa 60 km/h, für einen Zug mit 200 t Anhängegewicht ein totaler Rollwiderstand von $4,5\,^0/_{00}$ bei 40 und $5\,^0/_{00}$ bei 60 km/h eingesetzt. In diesem Rollwiderstand sind die Reibungsverluste des Lokomotivgetriebes und der Motoren inbegriffen.

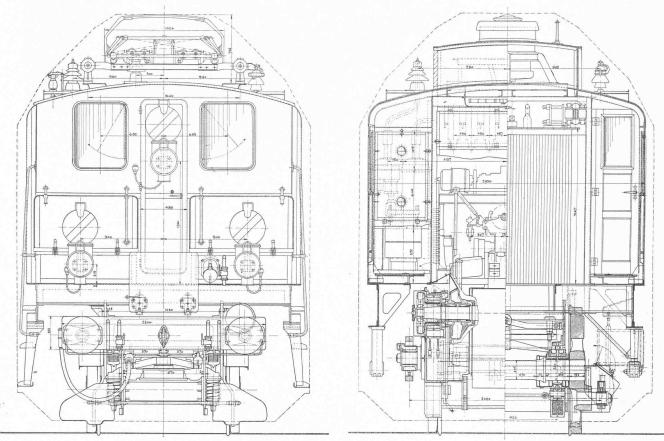


Abb. 4 und 5. Stirnansicht und Querschnitte durch Antriebritzel und Triebrad. — Masstab 1:35.

aus mit 1000 Amp und erforderte 31 kW und 310 kVA. Diese Einstellungen könnten künftig sorgfältiger ausgelesen werden, um für die vorkommenden Belastungen den günstigsten Leistungsfaktor zu erwirken. Für diese Erregungen lassen sich aus den bestehenden Kurven (Abbildung 8) die durch die Rotation erzeugten Ankerspannungen Er und Ankerverluste P_r ableiten. Die Verluste P_R , die der Durchgang des Stromes J1 durch den Stromkreis des Rotors mit Kompensationswicklung und Hilfspolen und der zugeschalteten Drosselspule bewirkt, wurden aus den einzelnen Kurzschluss-Verlusten bestimmt. (Vergl. die Kurve in Abbildung 9.) Der Wert der Impedanz dieses Stromkreises ist etwa 6% grösser als die Impedanz der Drosselspule allein. In der Tabelle A ist für die Impedanz der Verbindungsleitungen ein Zuschlag von 5% gemacht worden. Die Verluste des Haupttransformators sind bekannt aus den gemessenen Leerlauf-Verlusten, die bei normaler Spannung 12 kW und 110 kVA betragen und den Kurzschluss-Verlusten, die bei 100 Amp Primärstrom 20 kW mit 4,5 % Kurzschluss-Spannung betragen. Dazu tritt auf der Lokomotive im normalen Betrieb noch der Energieaufwand der Hilfsmotoren, die zwei Kompressoren, drei Ventilatoren und einen Umformer antreiben; diese Energie ist im Mittel auf 20 kW und 30 kVA zu schätzen. Die mittlern Rollwiderstände r können mit guter Annäherung der ausgezeichneten Arbeit des Herrn Ingenieur L. Thormann über den Energieverbrauch der elektrischen Traktion der Berner-Alpenbahn¹) entnommen werden; für die Lokomotive allein

Es erhält nun für die Beobachtung bei der Bremsprobe folgender Umstand eine besondere Bedeutung. Wie schon aus dem früheren Bericht hervorgeht, ist die von den Motoren ausgeübte Bremszugkraft bei einem gegebenen Impedanzwert des Ankerstromkreises proportional dem Produkt aus der Erregungspannung, die den magnetischen Flux bestimmt, und der Transformer-Klemmenspannung, die dem Ankerstromkreis aufgedrückt wird. Diese Bremszugkraft ist also bei einer gegebenen Einstellung dieser Spannungen konstant und unabhängig von der Geschwindigkeit, solange wenigstens die primäre Spannung konstant gehalten ist. Mit jeder Variation der primären Spannung wird jene der sekundären Spannung proportional und die Zugkraft also im quadratischen Verhältnis schwanken. Umgekehrt ist diese Zugkraft proportional dem Impedanzwert, also auch der Periodenzahl des Ankerstromkreises. Wenn nun für einen Fahrzustand diese elektrische Zugkraft genau gleich ist der von dem fallenden Zuggewicht ausgeübten Zugkraft, so wird die Geschwindigkeit einen konstanten Wert annehmen und behalten; jede Differenz der beiden Zugkräfte muss aber zu einer Verzögerung oder Beschleunigung der Bewegung führen. Bei der Bergfahrt anderseits stellt sich infolge der Serie-Charakteristik der Motoren für jede mechanische Zugkraft von selbst eine bestimmte Geschwindigkeit ein, für welche die elektrische und die mechanische Zugkraft sich das Gleichgewicht halten und bei der die Geschwindigkeit also konstant bleiben kann, solange die Klemmenspannung und die mechanische Zugkraft konstant bleiben. Mit der Klemmenspannung variiert nur der Wert dieser konstanten Geschwindigkeit.

¹⁾ Vergleiche Band LXVIII, Seite 9 (8. Juli 1916), sowie Seite 63 (5. August 1916).

SCHWEIZERISCHE BAUZEITUNG

Wechselstrom-Schnellzuglokomotive 1B+B1 von 2250 PS Normalleistung für die Gotthardlinie der Schweiz. Bundesbahnen.

Gebaut von der Maschinenfabrik Oerlikon für den elektrischen und der Schweiz. Lokomotiv- und Maschinenfabrik Winterthur für den mechanischen Teil.

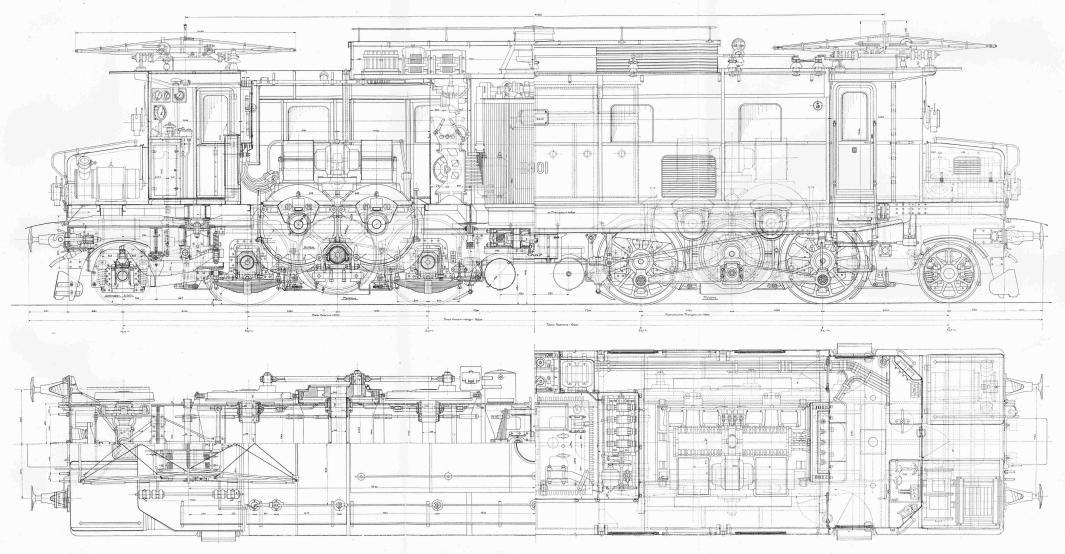


Abb. 2 und 3. Längsschnitt und Ansicht, Draufsicht und Horizontalschnitte. — Masstab 1:35.

Seite / page

86 (3)

leer / vide / blank

Bei unseren Beobachtungen wird daher bei der Bergfahrt das sich selbst überlassene Fahrzeug auf einer konstanten Steigung stets einer konstanten Geschwindigkeit zustreben, während bei der Talfahrt nur dann die Geschwindigkeit konstant bleiben kann, wenn der Führer zufällig genau diejenigen Einstellungen der Spannungen und damit der elektrischen Zugkraft getroffen hat, die der mechanischen Zugkraft das Gleichgewicht hält. Abgesehen von Schwankungen der primären Spannung und Periodenzahl, die ein Schwanken der Geschwindigkeit bewirken, wird diese Einstellung der elektrischen Bremszugkraft eine gewisse Uebung und ein Tasten erfordern, die auffallend an die übliche, durch Anziehen und Lockern des Bremsdruckes bewirkte Regulierung der mechanischen Bremsung erinnert. So kommt es, dass der Beobachter bei seinen gelegentlichen Ablesungen der Geschwindigkeit leicht langsame Verzögerungen oder Beschleunigungen übersieht, die dem Bewegungszustand anhaften, und erst bei längerem aufmerksamen Verfolgen der Instrumente hervortreten.

Daraus erklären sich gewisse Widersprüche in einer oberflächlichen Bilanz der beobachteten mechanischen und elektrischen Energien, und es liegt nahe, gerade aus der Differenz dieser Beobachtungen rückwärts auf verborgen gebliebene Verzögerungen oder Beschleunigungen zu schliessen, die in dem Zeitpunkt der Beobachtung tatsächlich vorhanden waren. Wenn z.B. bei einem Zuggewicht von Z Tonnen, das auf einem Gefälle von 27 00 00 mit einem Rollwiderstand von 5 0 00 eine mechanische Zugkraft von Z (27 bis 5) kg ausübt, bei einer Geschwindigkeit von 60 km/h eine gleichförmige Verzögerung von 0,025 m/sek eintritt, so kann der Beobachter erst nach Ablauf von einer Minute eine Abnahme der Geschwindigkeit von 10 % gewahr werden. Dabei wurde aber aut der elektrischen Seite eine Zugkraft von $Z\! >\! 2,5~kg$ zurückgewonnen, was etwa 11 $^0/_0$ der mechanischen Zugkraft ausmacht.

Dieser Umstand ist für die Ausrechnung der Wirkungsgrade von grösster Bedeutung; denn es ist im all-gemeinen und besonders bei einer ersten Versuchsfahrt trotz der grossen Zahl der Fahrkontakte, die bei der Wechselstromregulierung zur Verfügung stehen, unwahrscheinlich, dass das Gleichgewicht zwischen elektrischer und mechanischer Zugkraft vom Führer stets so genau getroffen werde, dass keine langsamen Veränderungen der Geschwindigkeit erfolgen könnten. Auf die praktische Ausübung der Bremsung und den Eindruck der vollständigen Sicherheit und Beständigkeit haben diese Verhältnisse ebenso wenig Einfluss, wie die entsprechenden Verhältnisse der üblichen mechanischen Bremsen. Es dient

vielmehr zur Beruhigung des Führers, dass er durch kleine Verschiebungen seiner Kontroller-Einstellung jederzeit die sofortige Wirkung der Verzögerung und Beschleunigung ganz unabhängig von der vorhandenen Geschwindigkeit bis zum völligen Stillstand in der Hand hält. Daraus erklärt sich auch die ausgesprochene Sympathie, welche die neue Bremsung unmittelbar bei anwesenden Praktikern des Fahrdienstes ausgelöst hat. Schwankungen oder Pendelungen, die etwa durch die Schwankungen der primären Spannung und Periodenzahl hervorgerufen wären, wurden bei der Probefahrt nicht festgestellt, obgleich für die Regulierung der Zentrale keine Uebung und Vorbereitung vorausgehen konnte, und doch bei dem spärlichen Verkehr bergwärts fahrender Züge die Turbinen infolge der elektrischen Bremsung verhältnismässig sehr grossen Belastungschwankungen unterworfen wurden.

Die Tabelle A enthält die in der geschilderten Weise

gewonnenen Beobachtungsresultate. Dabei ist:

das totale Zuggewicht in Tonnen.

die Steigung in ⁰/₀₀.

der Rollwiderstand in 0/00.

die Geschwindigkeit in km/h.

die Fahrleitungspannung.

die Fahrleitungstromstärke.

die sekundäre Transformerspannung für zwei in Reihe geschaltete Motorgruppen.

der sekundäre Strom in zwei parallel geschalteten

die sekundäre Transformerspannung für die Erregung.

die Erregungstromstärke für vier Motoren.

die Rotationspannung von zwei in Reihe geschalteten Motorgruppen (vergl. Abb. 8).

die resultierende Spannung an dem Impedanzstromkreis der Motoren und Drosselspulen (vergl. Abb. 9).

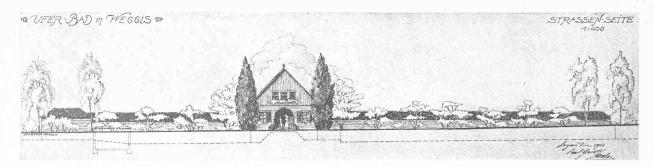
der Verlust in kW in vier Motorankern durch Rotation in erregtem Feld (vergl. Abb. 9).

der Verlust in kW im Stromkreis von vier Motoren mit Drosselspulen (vergl. Abb. 9).

der Verlust in der Transformerwicklung.

der Verlust für die Erregung von vier Motoren (Abb. 8). Die Punkte 1 bis 7 lassen erkennen, dass die Instrumentenangaben E_0J_0 wahrscheinlich etwa 5 $^0/_0$ zu hoch liegen, was in der Tabelle B berücksichtigt wurde.

Aus diesen Werten werden nun die Werte der Ta-


belle B wie folgt berechnet:

Die mechanische Leistung A_m des Zuges in kW, wobei gesetzt wird $A_m = Z(s \pm r) v^{\frac{2.72}{1000}}$

Tabelle A. Beobachtete Werte.

Tabelle B. Berechnete Werte.

	Tabolio II. Beobachtete Weite.															200000											
Nr.	Z	S	r	υ	E_0	J_0	E_1	J_1	E_2	J_2	E_r	E_R	P_r	P_R	P_t	P_2	Nr	A_m	cosq1	A_1	A_0	$\cos \varphi_0$	η_1	η_0	Þ		
							Ber	gfahrte	12									Bergfahrten									
1	113	27	6,5	42	16000	c 40	470	1130		1130			68	c 45	63	12	1	435	0,92	500	535	0,82	0,87	0,82	0,00		
2	113	27	6,5	50	16300	c 45	580	1130		1130			c 10	c 45	63	12	2	520	0,93	610	645	0,86	0,85	0,80	- 0,01		
3	113	27	7	62	16000	55	720	1180		1180			c12	c50	c5	13	3	650	0,94	790	825	0,90	0,83	0,79	-0,03		
4	310	15	4,5	39	16000	60	570	1580		1580			20	88	c7	20	4	640	0,92	830	870	0,88	0,77	0,74	-0,02		
5	310	15	4,5	45	16000	75	630	1580		1580			22	88	10	20	5	740	0,93	930	970	0,85	0,80	0,76	-0,015		
6	310	27	4,5	40	15500	105	670	2100		2100			30	150	20	28	6	1060	0,93	1310	1360	0,89	0,81	0,78	-0,01		
7	310	27	4,5	37	16000	90	620	2100		2100			30	150	16	28	7	980	0,92	1210	1260	0,92	0,81	0,78	- 0,005		
	Talfahrten																Talfahrten										
8	113	— 27	6,5	42	16000	c50	490	900	72	2500	450	700	14	45	5	20	8	265	0,60	265	210	0,28	0.74	0,66	- 0,05		
9	113	— 27	7	55	15700	c40	280	850	72	2500	570	660	16	40	3	20	9	340	0,79	190	130	0,22	0,70	0,55	+0,05		
10	113	— 27	6	27	15800	c50	480	700	72	2500	290	560	10	30	5	20	10	176	0,48	160	105	0,14	0,72	0,53	-0,04		
11	113	— 27	7	63	16000	c40	280	1000	72	2500	670	760	16	57	3	20	11	385	0,81	230	175	0,29	0,67	0,56	+0,04		
12	310	- 15	4,5	48,5	15000	c 45	280	950	78	4400	720	740	28	50	4	30	12	425	0,90	200	135	0,21	0,60	0,50	+0,04		
13	310	— 15	4,5	42	15300	c 50	470	830	72	2500	450	660	14	40	3	20	13	375	0,62	245	190	0,26	0,76	0,63	+0,04		
14	310	- · 27	5	60	15700	100	820	1450	72	2500	640	1040	16	110	20	20	14	1120	0,56	665	600	0,40	0,82	0,76	+0.06		
15	310	— 27	5	67	15500	122	930	1730	72	2500	710	1160	18	150	28	20	15	1260	0,56	900	825	0,46	0.82	0,77	+0,03		
16	310	- 27	4,5	44	15500	120	880	1600	78	4400	670	1100	26	130	28	30	16	850	0,56	790	700	0,40	0,80	0,74	- 0,03		
17	310	- 27	5	62	16000	80	550	1500	78	4400	950	1060	36	125	13	30	17	1160	0,82	685	610	0,50	0,78	0,72	+0,06		
18	310		5	66,5	16000	110	710	1800	78	4400	1020	1200	40	160	24	30	18	1240	0,78	1000	920	0,55	0,81	0,77	+0,01		

Die elektrische Leistung A_1 an den sekundären und Ao an den primären Transformer-Klemmen:

 $\begin{array}{ll} A_1=E_1J_1\cos\varphi_1 & A_0=E_0J_0\cos\varphi_0 \\ \text{Aus der Theorie folgt angenähert unter Berücksich-} \end{array}$ tigung der Widerstandsverluste für den Bremsbetrieb $\cos \, arphi_1 = \, ext{o,92} \, rac{E_r}{E_R} \, ext{(aus den Tabellen ist dabei zu ent-}$ nehmen, dass zwischen dem beobachteten Wert $E_{\mathcal{K}}$ und der resultierenden Spannung $\sqrt{E_r^2+E_1^2}$ eine gute Uebereinstimmung bis auf etwa 2 $^0/_0$ besteht). Für den Motorbetrieb bei der Bergfahrt wird $\cos \varphi_1$ aus den Motorkurven entnommen; diese Werte liegen für 40 bis 65 km/h Geschwindigkeit bei 162/3 Perioden zwischen 0,92 und 0,94.

Aus dem mittels E_1 J_1 und $\cos \varphi_1$ berechneten Wert von A_1 folgt nun A_0 durch Hinzufügung der Zwischenverluste. Bei der Bergfahrt enthält A_1 auch den Erregungsverlust P_2 . Hier muss nun $A_0 = A_1 + P_t + L$ sein, wobei L den gesamten Leerlaufverlust der Lokomotive für das Transformereisen und die Hilfsbetriebe bedeutet; L wurde zu 30 kW mit einer wattlosen Komponente L' = 150 kVA

eingesetzt.

Für die Talfahrt ergibt sich dagegen

 $A_0 = A_1 - P_2 - P_t - L$ Aus diesen Werten A_0 einerseits und E_0 und J_0 wird $\cos \varphi_0$ abgeleitet.

Die oben geschilderten Schwierigkeiten in der Erfassung genügend stationärer Geschwindigkeitszustände, namentlich bei der Talfahrt, drängen nun zu der Einführung eines zweiten Wertes der mechanischen Leistung Am, der die Veränderungen der Geschwindigkeiten bei der Ablesung enthalten soll. Es ist gemeint:

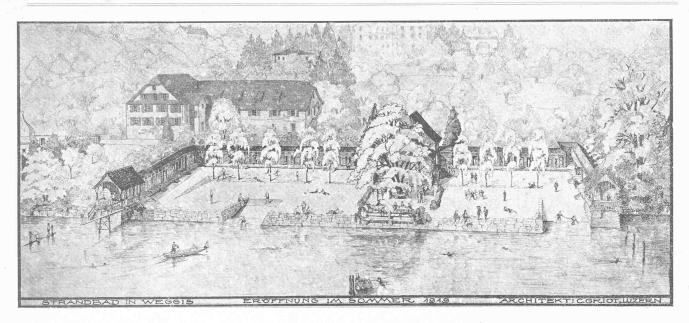
$$A'_{m} = Z_{v} (s \pm r \pm 100 p) \frac{2.72}{1000}$$

wobei p die Beschleunigung in m|sek angibt. Anderseits muss aber die Gleichung bestehen

für Bergfahrt: $A'_m = A_1 - P_R - P_r - P_2$ für Talfahrt: $A'_m = A_1 - P_R - P_r$ wobei P_R die Drosselspule nicht enthält.

Die beiden Gleichungen für A'm lassen eine Berechnung von p zu. Uebrigens enthält offenbar der so ermittelte Wert von p auch diejenigen Fehler, die in der Ermittlung der Verluste und des Rollwiderstandes, sowie der Instrumente liegen. Dies gilt besonders für die Bergfahrt, wo die kleinen Werte von p jedenfalls zum Teil auf derartige Fehlerquellen hinweisen.

Es werden nun als Wirkungsgrade
$$\eta_1$$
 und η_0 definiert: für die Bergfahrt: $\eta_1 = \frac{A_m}{A_1}$; $\eta_0 = \frac{A_m}{A_0}$ für die Talfahrt: $\eta_1 = \frac{A_1 - I_2}{A'_m}$; $\eta_0 = \frac{A_0}{A'_m}$


Im allgemeinen bestätigen die Beobachtungen die Annahmen der Theorie.

Bei künftigen Versuchen wird der Beständigkeit der Geschwindigkeit besondere Aufmerksamkeit geschenkt werden, die Energien werden genauer dynamo- und wattmetrisch zu messen sein. Die Bergfahrten sollen mit den normalen Geschwindigkeiten und Zuggewichten ausgeführt werden.

Aus den Tabellen lassen sich vorläufig etwa folgende Beziehungen ableiten. Der Wirkungsgrad der Umwandlung der elektrischen und mechanischen Energie beträgt einschliesslich der elektrischen Verluste auf der Lokomotive für die Bergfahrt mit einer Zugkraft von rd. 10000 kg, bei der vollen Geschwindigkeit von rd. 50 km/h (in der Tabelle kommen verhältnismässig kleine Geschwindigkeiten vor), bezogen auf die Niederspannungseite 86 %, auf die Hochspannungseite 83 %; für die Talfahrt mit der entsprechenden, auf einem Gefälle von 27 % freiwerdenden, mechanischen Zugkraft von 6600 kg bei der Geschwindigkeit von etwa 62 km/h 82, bezw. 75%0.

Der Leistungsfaktor auf der Hochspannungseite kann dabei für die Bergfahrt mit 0,9, für die Talfahrt mit 0,53 angesetzt werden. Daraus ergeben sich nun die auf einer gegebenen Strecke von 1 km Länge aufzuwendenden und freiwerdenden Energie- und Strommengen für die Bergfahrt zu 33 kWh und 36,5 kVAh, für die Talfahrt zu 13,5 kWh und 25 kVAh. Es werden also etwa 40 % der auf der Steigung aufgewandten Energie bei der Talfahrt mit gleichem Zuggewicht zurückgewonnen. Der Aufwand an wattlosem Strom beträgt bei der Talfahrt 21 kVAh, bei der Bergfahrt 16,5 kVAh, also etwa 30 0/0 mehr bei der Talfahrt. Der momentane Wert der resultierenden Stromstärke in der Fahrleitung wird bei der Talfahrt mit rd. 60 km/h Geschwindigkeit etwa 10 % kleiner als bei der Bergfahrt mit 50 km/h, der sekundäre Strom der Motorstromkreise etwa 25 $^0/_0$ kleiner. Um die Wirkung der Nutzbremsung auf die Kraftzentrale und die Leitungsanlage zu beurteilen, sind die kombinierten Stromstärken eines bergfahrenden und eines talfahrenden Zuges von gleichem Zuggewicht auf der gleichen Strecke zu bestimmen, wobei einmal der talfahrende Zug mechanisch, das andere Mal elektrisch gebremst wird. Im ersten Falle tritt der elektrische Leerlauf der talfahrenden Lokomotive zum Verbrauch des bergfahrenden Zuges hinzu; dieser Leerlauf wurde oben angegeben zu 30 kW und 150 kVA. So erhält man für den ersten Fall 33,5 kWh|km; 19,9 kVAh wattlose und 39 kVAhresultierende Stromstärke der Fahrleitung; für den zweiten Fall 19,5 kWh/km, 37,5 kVAh wattlose und 42,2 kVAh resultierende Stromstärke, d. h. die Anlage ist durch die elektrische Nutzbremsung mit etwa 80/0 grösserer Stromstärke beansprucht, während nur 58% der Energie verbraucht werden. Um diese Mehrbeanspruchung zu vermeiden, sollte es gelingen, den wattlosen Strom bei der Nutzbrems-Schaltung zu vermindern; wenn der Leitungsfaktor der Nutzbremsung auf 0,6 gebracht wird, so werden die resultierenden Stromstärken in den beiden obigen Fällen gleich. Es lässt sich nun in erster Linie die wattlose Stromkomponente der Erregung durch sorgfältigere Einstellung verbessern, die Phase des Erregerstromes mit bekannten Mitteln nach rückwärts verschieben, auch der Wert der Impedanz R kann vorteilhafter abgeglichen werden. Dabei ist selbstverständlich jede Komplikation der Schaltung und Einrichtung zu vermeiden, welche die ausgezeichnete grundsätzliche Einfachheit und Sicherheit des Bremsverfahrens erheblich beeinträchtigen könnte.

Einzig die Einsichten und Rücksichten des praktischen Betriebes werden schliesslich entscheiden, wie weit in jedem einzelnen Falle die elektrische Bremsung Vorteile bietet und eingeführt werden soll, ob sie zum Abbremsen des vollen Zuggewichtes oder nur des Lokomotivgewichtes bei allen Zügen und Geschwindigkeiten und etwa auch zum

Anhalten Verwendung finden soll und wieviel wattloser Strom dabei verbraucht werden darf. Jedenfalls erhält mit der neuen Methode der Fahrdienst ein einfaches Mittel, um ohne Verschleiss von Bremsbacken, Radbandagen und Druckluft jeden Zug bei jeder Geschwindigkeit bis zum Stillstand zu bremsen und dabei dem Kraftwerk einen erheblichen Teil der für die Steigung und Beschleunigung aufgebrachten Energie zurückzuerstatten. Der Führer hat den Zug fester und bequemer in seiner Hand, als bei der üblichen mechanischen Bremsung, indem er in jeder einzelnen seiner Kontroller-Stellungen bei jeder Geschwindigkeit über einen untrüglichen festen Wert der Bremszugkraft verfügt und niemals Gefahr läuft, durch zu rasche Handhabung Stromstösse oder Kurzschlüsse zu verursachen, da die Stromstärke durch die eingefügte Impedanz fest begrenzt ist.

Die Einrichtung erfordert ein Mehrgewicht, das etwa 1 % des vollen Zuggewichtes und etwa 7 % des Gewichtes der elektrischen Ausrüstung ausmacht. Besondere Hilfsmaschinen und Reguliervorrichtungen und neue Apparate werden vermieden. Ohne eine Voreingenommenheit für die elektrische Nutzbremsung überhaupt zu bekunden, darf behauptet werden, dass keine der bekannten Bremsmethoden bei Gleichstrom- und Drehstrombahnen mit ähnlichem wattmetrischen Wirkungsgrade sich in Beziehung auf die praktische Leistungsfähigkeit und Regulierbarkeit mit der neuen Methode der Wechselstromlokomotiven der Maschinenfabrik Oerlikon messen kann.

Miscellanea.

Stiftung zur Förderung schweiz. Volkswirtschaft durch wissenschaftliche Forschung an der E. T. H. Der schweiz. Bundesrat beantragt der Bundesversammlung, dieser von der G. e. P. errichteten Stiftung 1) aus den Erträgnissen der Abteilung für industrielle Kriegswirtschaft den Betrag von 1 Million Fr. zuzuwenden. In dem bezüglichen Gesuch des Stiftungsrates an den Bundesrat war zur Begründung auf den Umstand hingewiesen worden, dass die Ueberschüsse der kriegswirtschaftlichen Institutionen zum grössten Teil aus den Kreisen stammen, in deren Dienst sich unsere Stiftung stellt, dass somit eine Unterstützung der Stiftung aus diesen Mitteln in erster Linie den ursprünglichen Geldgebern, und damit mittelbar auch der Allgemeinheit wieder zugute kommen wird. Es handelt sich somit hierbei nicht um einen Beitrag à fonds perdu, sondern um eine Festlegung von Mitteln zum Zwecke dauernder Arbeit im Interesse unserer Volkswirtschaft. Als selbstverständlich darf wohl angenommen werden, dass die Bundesversammlung dem

¹) Ausführliche Berichterstattung siehe Band LXXIII, Seite 1, 8 und 111 (Januar und März 1919), sowie 52. Bulletin der G. e. P.

bundesrätlichen Antrag zustimmen und damit die Stiftung in den Stand setzen wird, sofort und ausgiebig mit der praktischen Arbeit im Sinne ihrer Gründer zu beginnen.

Strandbad in Weggis. Das in den beigegebenen Abbildungen dargestellte Strandbad in Weggis wurde letzten Monat als erste Anlage dieser Art in der Schweiz dem Betriebe übergeben. Es wurde ausgeführt nach den Plänen von Architekt Carl Griot in Luzern. Die architektonische Lösung musste mit den einfachsten Mitteln geschehen. Die Anlage gruppiert sich um einen mächtigen Nussbaum, der bei der Platzwahl ausschlaggebend war. Sie zerfällt in eine Männer- und eine Frauenabteilung, mit zusammen 100 Kabinen; in der Mitte sind Kasse und Lingerie, eine gemeinschaftliche Erfrischungshalle und unter dem Nussbaum ein Restaurations-Garten angeordnet. Die durch die Kabinen eingerahmten Plätze erhielten Sandauffüllung und dienen als Sonnenbad. Von ihnen vermitteln Rampen den Zugang in den See. Die ganze Linienführung in Verbindung mit einer leichten Birkenbepflanzung passt sich gut dem Gelände an und bildet einen ruhigen Rahmen für das farbige Leben, das sich darin abspielen soll. - Die Kosten der Anlage belaufen sich auf rund 60 000 Fr. ohne Terrain.

Schleifen des Pariser Festungsgürtels. Ein erster positiver Beschluss in der schon seit dem Jahre 1882 anhängigen Frage des Abbruches der die Stadt Paris einengenden Festungsmauern und der Aufhebung der daran anschliessenden Militärzone mit Bauverbot ist durch den Erlass eines am 19 April 1919 in Kraft getretenen bezüglichen Gesetzes gefasst worden. Nach diesem Gesetz überlässt der französische Staat der Hauptstadt von der gesamten, durch den 130 bis 135 m breiten und innen 34,5 km langen Festungsgürtel überdeckten Grundfläche von 444 ha eine Teilfläche von 306 ha gegen Entrichtung einer Summe von 100 Millionen Franken. Die von dieser Abtretung ausgeschlossenen 138 ha sind z. T. bereits mit staatlichen Gebäuden überbaut (12 ha), bezw. bleiben für solche vorbehalten (51 ha), oder betreffen öffentliche Verkehrstrassen, Kanäle und Bahnlinien (75 ha). Die Stadt verpflichtet sich, 25 % der ihr überlassenen 306 ha mit billigen Wohnhäusern für die weniger bemittelte Bevölkerung und kinderreiche Familien zu überbauen, zu welchem Zwecke sie bereits im Jahre 1913 eine erste Anleihe von 200 Mill. Fr. aufgenommen hat, Bezüglich der 777 ha umfassenden, 216 m breiten Militärzone ist im erwähnten Gesetz bestimmt, dass sie, mit Ausnahme der bereits bestehenden Schulen, Friedhöfe usw. und eines für ein Ausstellungs-Gebäude in Aussicht genommenes Gelände von 15 ha, ausschliesslich zur Erstellung von Gärten, Parkanlagen und Spielplätzen verwendet werden soll, unter Ueberbauung von höchstens 1/20 der Grundfläche mit den für die Ueberwachung der Anlagen erforderlichen Gebäuden. Da über die Hälfte der in der Zone gelegenen Grundstücke Privatbesitz sind, wird dieser Wald- und Wiesengürtel erst nach und nach und auf dem Expropriationswege erstellt werden können. Ueber dessen Anordnung sind bisher nur allgemeine Richtlinien