Zeitschrift: Schweizerische Bauzeitung

Herausgeber: Verlags-AG der akademischen technischen Vereine

Band: 73/74 (1919)

Heft: 23

Artikel: Universal-Regulierung System Sewer für Hochdruck-Pelton-Turbinen

Autor: Prášil, Franz

DOI: https://doi.org/10.5169/seals-35637

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 02.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Band 73.

INHALT: Universal-Regulierung System Seewer für Hochdruck-Pelton-Turbinen. Von der mittelalterlichen Ornamentik des Basler Münsters. - Zugspannungen des Betons im Eisenbetonbau. — Ein Schweizerischer Normalien-Bund. Schweizerisches Starkstrominspektorat. Ausbau der Wasserkraftwerke in den West-Ghats bei Bombay. Schweizerische wirtschaftliche Studienreise nach Nordamerika. Eine Eisenbetonbrückee von 90,7 m Spannweite über den Öerläv in Schweden. Wiederaufbau von Loewen. — Konkurrenzen: Ueberbauung des Obmannamt-Areals in Zürich. — Literatur. — Vereinsnachrichten: Schweizerischer Ingenieur- und Architekten-Verein. Gesellschaft ehemaliger Studierender.

Tafel 23 und 24: Aus dem Basler Münster-Photographienwerk.

Nachdruck von Text oder Abbildungen ist nur mit Zustimmung der Redaktion und nur mit genauer Quellenangabe gestattet.

Nr. 23.

Universal-Regulierung System Seewer für Hochdruck-Pelton-Turbinen.1)

Von Prof. Dr. Franz Prášil, Zürich.

(Schluss von Seite 254)

e) Die Versuche.

Der nachstehende Bericht bezieht sich auf die am 19. März 1919 vorgenommenen Prüfungsversuche.

Versuchsanordnung und Organisation.

Die Anordnung war die gleiche, wie bei den Studien-Versuchen; die Belastung erfolgte durch den Bremsgenerator, die Leistungsmessung mittels Wattmeter, die Messung des Druckgefälles mittels Manometer, jene der Umlaufzahl mittels des Maschinentachometers und in Beharrungszuständen mittels mechanischem Zählwerk, jene der Schwankung der Drehzahl bei Reguliervorgängen mittels Horn'schen Tachographen, die Wassermessung mittels geeichtem Ueberfall.

Bei diesen Versuchen waren anwesend die Herren Prof. Dr. F. Prášil als Versuchsleiter; Dipl. Masch.-Ing. E. Müller als Protokollführer; Dipl. Masch.-Ing. P. W. Seewer als Erfinder; C. Krebser als Maschinist. Unter den genannten wurden die Arbeiten der Beobachtung und Messung nach Bedarf verteilt; die zur Durchführung der verschiedenen Programm-Nummern nötigen Umänderungen wurden von Herrn Seewer geleitet und von ihm und Herrn Krebser durchgeführt.

Programm.

1. Plötzliche Entlastungen auf Leerlauf bei verschiedenen Belastungen mit Aufnahme der Tachogramme und Messung der Drucksteigerungen verursacht durch die kombinierte Lenkplatten- und Nadelbewegung.

2. Plötzliche Zuschaltungen verschiedener Belastungen von Leerlauf ab mit Aufnahme der Tachogramme und

Messung des Druckabfalles.

1) Dieser Bericht wird auch als Sonderabdruck erscheinen.

3. Aufnahme von Tachogrammen bei verschiedenen Entlastungen: a) bei Regulierung mit Lenkplatten,

b) ohne

- 4. Messung der Ueberdrücke bei verschiedenen Entlastungen, herrührend von der plötzlichen Lenkplatten-Verstellung allein.
- 5. Messung der den verschiedenen Belastungen im Beharrungszustand zukommenden Umdrehungszahlen (Bestimmung der normalen Ungleichförmigkeit).

6. Bremsversuch zur Bestimmung des Wirkungsgrades

der Turbine:

a) mit - b) ohne Zuschaltung des Regulators.

7. Versuch zur Beurteilung der Grösse des Lenkplatten-Widerstandes.

Zu diesem Versuch-Programm ist folgendes zu bemerken:

Die Programm-Nummern 1 und 2 wurden vereinigt, indem jedem Entlastungsversuch der entsprechende Belastungsversuch folgte.

Programm-Nummer 3 ermöglicht den Vergleich der Wirksamkeit der Maschinengruppe unter dem Einfluss der neuen Regulierung mit Lenkplatten, gegenüber einer Regulierung ohne Lenkplatten.

Programm-Nummer 4 wurde in folgender Weise erledigt: Es wurde die automatische Steuerung des Nadel-Servomotors ausgeschaltet und die Nadel von Hand eingestellt; nach erfolgter entsprechender Belastung auf normale Drehzahl wurde die Steuerung des Lenkplatten-Servomotors rasch gehoben und hiermit die Lenkplatten-Verstellung herbeigeführt; dabei konnte die Druckänderung gemessen werden.

Die Programm-Nummer 5 wurde durch Ablesung am mechanischen Zählwerk und am Maschinentachometer bei verschiedenen Belastungen im Beharrungszustand erledigt.

Programm-Nummer 6 hatte den Zweck, durch Messung der Leistung und des Wasserkonsums der Einheit bei ver-

Tabelle I. Versuche mit der Universal-Regulierung System Seewer am 19. März 1919.

	Totale Entlastungen								Totale Belastungen								
Entlast	ang von	Belast.	Max. Unglei	chförmigkeit	Leerlauf-	Druc	kschwankı	ingen	Belast	ung auf	Leerlauf-	Max. Unglei	chförmigkeit	Belast.	Druc	kschwank	ungen
Generat.	Turbine kWTurb.	Drehzahl nbel.	Anfang δAnf. %	Ende δEnde ⁰ / ₀	Drehzahl nLeerl.	von	auf m	Total AH m	Generat.	Turbine kWTurb.	Drehzahl nLeerl.	Anfang δAnf. %	Ende δ Ende $^{0}\!/_{0}$	Drehzahl nbel.	von m	auf m	Total ΔH m
4,0	4,85	551	3,3	3,0	553	43,6	45,1	1,5	4,0	4,85	553	3,3	3,0	551	43,6	41,2	2,4
4,0	4,85	551	3,3	3,0	553	43,6	45,1	1,5	4,0	4,85	553	3,3		551	43,8	41,0	2,8
6,0	7,1	551	3,3	3,2	553	43,5	45,2	1,7	6,0	7,1	553	5,0	4,8	551	43,8	39,8	4,0
6,0	7,1	551	3,7	3,4	553	43,5	45,2	1,7	6,0	7,1	553	5,0	4,8	551	43,8		—
8,0	9,35	550,5	4,15	3,8	553	43,2	45,7	2,5	8,0	9,35	553	6,8	6,7	550,5	43,7	39,0	4,7
8,0	9,35	550,5	4,15	3,8	553	43,2	45,7	2,5	8,0	9,35	553	6,7	6,5	550,5	43,7	39,2	4,5
10,0	11,6	550	4,3	4,15	553	43,0	45,1	2,1	10,0	11,6	553	8,3	8,2	550	43,8	38,5	5,3
10,0	11,6	550	4,7	4,5	553	43,0	45,7	2,7	10,0	11,6	553	8,3	8,2	550	43,7	38,6	5,1
12,0	13,8	550	4,3	4,15	553	42,8	44,9	2,1	12,0	13,8	553	10,0	9,8	550	43,7	38,2	5,5
12,0	13,8	550	5,0	4,7	553	42,8	45,1	2,3	12,0	13,8	553	10,0	9,8	550	43,7	38,2	5,5
14,0	16,05	550	4,3	4,0	553	42,3	44,0 ?	1,7	15,2	17,4	553	13,3	13,3	550	43,7	38,1	5,6
14,0	16,05	550	5,0	4,8	553	42,3	44,9	2,6	14,0	16,05	553	11,8	11,7	550	43,7	38,1	5,6
14,0	16,05	550	5,0	4,8	553	42,3	44,9	2,6	14,0	16,05	553	11,7	11,7	550	43,7	38,1	5,6
16,0	18,3	549,5	5,5	5,3	553	42,0	44,1	2,1	16,0	18,3	553	13,8	13,7	549,5	43,7	38,1	5,6
16,0	18,3	549,5	4,7	4,5	553	42,0, 43	3,8, 45,0	3,0	16,0	18,3	553	13,8	13,7	549,5	43,7	38,1	5,6
16,0	18,3	549,5	6,7	6,5	553	42,0, 44	4,9, 45,1	3,1	16,0	18,3	553	13,7	13,7	549,5	43,7	38,1	5,6
17,2 17,2 17,2	19,65 19,65 19,65	549,5 549,5 549,5	5,2 5,0 6,0	5,0 4,8 5,8	553 553 553	41,8, 44 41,8, 44 41,8, 44	, 45,2	3,2 3,4 3,2	17,2 17,2	19,65 19,65	553 553	15,3 15,8	15,2 15,6	549,5 549,5	43,7 43,7	38,1 38,1	5,6 5,6

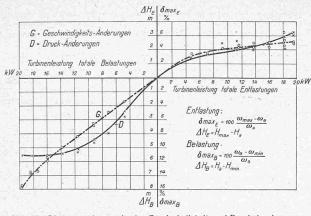


Abb. 10. Diagramm der maximalen Geschwindigkeit- und Druck-Aenderungen. (In den Formeln für die maximale Ungleichförmigkeit bedeutet oor die Winkel-Geschwindigkeit, in jenen für die Druckänderung Ho, den Druck in m Wassersäule, je vor Entlastung bezw. Belastung).

schiedenen Belastungen und normaler Drehzahl einmal bei wirksamen, dann bei festgestelltem Regulator den Leistungs-Aufwand und Wasserkonsum für den Betrieb des Regulators und dessen Einfluss auf den Wirkungsgrad der Maschinen-Gruppe zu bestimmen.

Programm-Nummer 7 erforderte entsprechende Demontage zur Demonstration der leichten Beweglichkeit von Hand der Lenkflügel unter Wasserdruck.

Die Schwungmasse des ganzen Aggregates, also Generator und Turbine zusammengenommen, betrug 105 kgm^2 für alle Versuche.

Die Versuchsergebnisse.

Die bei den Versuchen nach den Programm-Nummern 1 und 2 erhaltenen quantitativen Resultate sind in der Tabelle I auf S. 263 zusammengestellt; die photographisch reproduzierten Tachogramme Abb. 9 (S. 266) veranschaulichen den qualitativen Verlauf der Reguliervorgänge. Das Diagramm Abbildung 10 fasst die Ergebnisse der Tabelle graphisch zusammen; aus diesem ist bereits deutlich der energische Einfluss der Lenkplatten-Verstellung bei Entlastung zu erkennen. Die Tachogramme der Entlastungs-Versuche von 4,0 kW weisen diesen Einfluss noch undeutlich auf; in den Tachogrammen entsprechend 6, 8, 10 und 12 kW Entlastung aber ist durch das erste scharf gekennzeichnete Maximum der Geschwindigkeitsteigerung die durch die Lenkplattenverstellung hervorgerufene Energie-Vernichtung deutlich ausgeprägt; diese tritt hierbei nur einmal auf; bei Entlastungen von 15,2, 16 und 17,2 kW kommt die Lenkplatten-Verstellung mehrmals in Aktion, doch wird das erste Maximum niemals mehr überschritten. Die Belastungs-Tachogramme zeigen normalen Verlauf, da hierbei die Lenkplatten keinen Einfluss ausüben.

Besonders deutlich tritt die erhebliche Verminderung der Geschwindigkeitsteigerung beim Vergleich der aus den Versuchen Programm-Nummer 3 erhaltenen Tachogramme in Abbildung 11 hervor, in der solche Tachogramme übereinander kopiert sind, und im Vergleichs-Diagramm Abbildung 12. Es ist dabei zu beachten, dass, wie schon erwähnt, bei allen Versuchen die gleichen Schwungmassen in Bewegung waren.

Das den Versuchen nach Programm-Nummer 4 auf Abbildung 13 entsprechende Diagramm zeigt die geringe Drucksteigerung durch die Lenkplatten-Verstellung allein; im Maximum 0,7 m Wassersäule bei grösstem Wasser-Durchfluss entsprechend 18,4 kW Belastung und 42 m Betriebsdruck.

Das Diagramm Abbildung 14 zeigt die Beharrungs-Umlaufzahlen bei verschiedenen Belastungen. Die Ungleichförmigkeit zwischen Leerlauf und Vollast beträgt, gemessen mit mechanischem Zählwerk oder am Maschinentachometer, 0,54 % bezw. 0,46 % im Mittel 0,5 % hierbei ist zu erwähnen, dass der verwendete Fliehkraftregler für die in Betracht kommenden Endstellungen der Hülse eine totale Ungleichförmigkeit von 4,18% obesitzt, dass daher die Steuerungen und Rückführungen nahezu Isodromeinstellung bewirken.

Die nachstehende Tabelle II zeigt die Ergebnisse der entsprechend Programm-Nummer 6 durchgeführten Brems-Versuche, Abbildung 15 die zugehörige graphische Zusammenstellung. Es ist zu erkennen, dass der Turbinen-Wirkungsgrad von $^{1}/_{1}$ bis $^{1}/_{2}$ Vollast über 80 $^{0}/_{0}$, also mit Rücksicht auf die Grössenordnung der Maschineneinheit und der sehr hohen spezifischen Drehzahl von $n_{s}=28$ für Vollast ein guter ist. Wie natürlich, ist der Wirkungsgrad der Einheit bei Betrieb mit Regulator kleiner als bei solchem ohne Regulator; die Versuchsergebnisse weisen auf einen Leistungsbedarf für den Betrieb der Regulierung von im Mittel 0,45 kW hin.

Die Demonstration entsprechend Programm-Nummer 7 zeigte, dass bei verschiedenen Durchflussmengen die Lenkplatten leicht von Hand verstellt werden können.

Theoretische Kontrolle und Diskussion.

In den Tachogrammen ist bekanntlich die Geschwindigkeitsänderung auf einem von der Turbine aus bewegten Papierstreifen registriert; deren Werte $\delta = \frac{\omega - \omega_a}{\omega_a}$ können an dem aufgedruckten Masstab abgelesen werden, die Kurven stellen den Verlauf dieser Werte in Funktion des Papierweges dar; da der Papierstreifen zwangläufig von der Turbine aus bewegt wird, ist die Papiergeschwindigkeit proportional der Winkelgeschwindigkeit der Turbine

Tabelle II. Bremsversuche an der Peltonturbine mit Universal-Regulierung System Seewer am 19. März 1919.

Zeit nachm.	Gefälle H m	Ueber- falls- höhe h	Wasser- menge Q I sek	Dreh- zahl n Uml/min	Hy- draul. Leistg. Nhydr. kW	Wirk.gr. Generat. $\eta_{\text{gen.}}$	Elektr. Leistg. Nel. kW	Turbinen Leistg. NTurb. kW	Wirk.gr Turbine $\eta_{\text{Turb.}}$
	1		1870	mit Re	egulato	r			
2 ¹⁵	41,1	168,3	62,0	550	25,0	87,5	18,0	20,6	82,4
2 ¹⁷	41,7	168,4	62,0	550	25,35	87,5	18,0	20,6	81,3
2^{21} 2^{22}	42,0	157,7	56,0	550	23,05	87,4	16,0	18,3	79,4
	42,0	157,0	55,5	552	22,85	87,4	16,0	18,3	80,1
2 ²⁶	42,9	132,5	43,0	552,5	18,1	87,0	12,2	14,0	77,4
2 ²⁹	42,9	131,3	42,5	552	17,9	87,0	12,2	14,0	78,2
2 ³²	43,4	103,2	30,0	553	12,76	85,5	8,0	9,36	73,3
2 ³⁴	43,4	102,9	30,0	553	12,76	85,5	8,0	9,36	73,3
2 ³⁶ 2 ³⁸	43,8 43,9	39,6 32,6	7,7 5,9	554 554	3,31 2,54	Leerlauf erregt Leerlauf unerregt			
				ohne R	egulate	or			
2^{45} 2^{46}	41,8 41,8	168,6 168,6	62,0 62,0	549 549,5	25,4 25,4	87,5 87,5	18,0 18,0	20,6 20,6	81,1
2^{50} 2^{52}	42,05	156,6	55,4	?	23,0	87,4	16,12	18,45	80,2
	42,05	154,8	54,5	551	22,5	87,4	16,12	18,45	82,0
2 ⁵³	42,5	143,3	48,5	551,5	20,2	87,2	14,36	16,45	81,4
2 ⁵⁷	42,6	143,0	48,4	552	20,25	87,2	14,36	16,45	81,2
300	42,9	129,2	41,5	549	17,5	87,0	12,12	13,93	79,6
	42,9	129,2	41,5	549,5	17,5	87,0	12,12	13,93	79,6
3 ⁰⁵	43,1	112,8	34,0	552	14,4	86,4	9,96	11,5	79,9
3 ⁰⁷	43,1	112,6	34,0	552	14,4	86,4	9,96	11,5	79,9
3 ¹⁰	43,4	100,0	28,7	551,5	12,2	85,5	8,0	9,36	76,7
3 ¹²	43,4	99,8	28,7	550	12,2	85,5	8,0	9,36	76,7
3 ¹⁴	43,7	82,7	21,5	546	9,2	84,4	6,0	7,1	77,2
3 ¹⁵	43,7	83,4	22,0	545	9,4	84,4	6,0	7,1	75,5
3 ¹⁸	43,8	67,2	16,0	550,5	6,9	82,3	3,96	4,8	69,6
3 ²⁰	43,8	67,3	16,0	551	6,9	82,3		4,8	69,6
3 ²² 3 ²⁵	43,9 43,9	36,4 27,0	6,8 4,5	559 559	2,93 1,94		uf erregt f unerregt		

und es kann die jedem Verschub zukommende Zeitdauer leicht berechnet werden; es ist:

$$\Delta s = v_a \cdot \frac{\omega}{\omega_a} \Delta t =$$

$$= v_a (\mathbf{1} + \delta) \Delta t.$$

In diesen Ausdrükken bedeuten ω die Winkelgeschwindigkeit zur Zeit t, ω_a die anfängliche Winkelgeschwindigkeit während des Beharrungszustandes vor der Belastungs-Aenderung, va die durch ωa bestimmte Geschwindigkeit der Papierbahn,

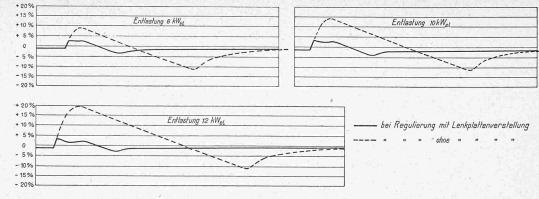


Abb. 11. Vergleichende Zusammenstellung der Reguliervorgänge bei gleichwertiger Entlastung, bei Regulierung mit und ohne Lenkplatten-Verstellung (nach den Original-Tachogrammen Abb. 9 auf Seite 266). - Zeitmasstab 2,5 mm = 1 sek.

die bei den Versuchen mit 5 mm in der Sekunde eingestellt war1); s den von der Papierbahn in der Zeit t zurückgelegten Weg. Durch entsprechende Umrechnung erhält man somit aus den Tachogrammen den zeitlichen Verlauf der Geschwindigkeitsänderung, für den die bekannten Beziehungen gelten

$$\begin{split} \Theta \frac{d\omega}{dt} &= M_t - M_w \,, \text{ oder } \Theta \frac{d\delta}{dt} = M_t - M_w \quad. \quad \text{(I)} \\ \Theta \frac{\omega^2 - \omega_a^2}{2} &= \int_0^t (L_t - L_w) \, dt \text{ oder } \Theta \Big[(\mathbf{I} + \delta)^2 - \mathbf{I} \Big] \frac{\omega_a^2}{2} = A \quad \text{(II)} \\ \text{Hierin bedeuten:} \end{split}$$

Θ das Massenträgheitsmoment der rotierenden Teile in mkg sek2,

 M_t das von der Turbine abgegebene,

Mw das überwundene Kraftmoment in mkg zur Zeit t, $L_t = M_t \omega$ bezw. $L_w = M_w \omega$ die entsprechenden Leis-

tungen in mkg sek, $A = \int_0^t (L_t - L_w) dt$ die von der rotierenden Masse in

1) Die Tachogramme in Abb. 9 sind auf die Hälfte verkleinert, sodass einer Sekunde 2,5 mm Weg der Papierbahn entsprechen. Red.

der Zeit t aufgenommene Arbeit. Es können diese Formeln als Grundlage für die Kontrolle und Diskussion der Tachogramme verwendet werden.

Die Tachogramme Abbildung 12 geben den Vergleich der Wirksamkeit der Regulierung

a) ohne Lenkflügel (gestrichelte Kurve in Abb. 11),

b) mit Lenkflügel, für Entlastungen von 8, 10 und 12 kW (ausgezogene Kurve).

Im Falle a) erfolgt nach eingetretener Entlastung die Verminderung der Energiezufuhr lediglich durch das Schliessen der Düse mittels der Nadel. Der Maximalwert δ_{\max} von δ tritt bei voller Entlastung dann ein, wenn die Leistungsabgabe der Turbine auf denjenigen Wert gesunken ist, der für die Ueberwindung der Eigenwiderstände nötig ist. Bezeichnet man mit τ die Zeit vom Beginn der Entlastung bis zum Eintreten von δ_{\max} , mit τ' jedoch die Unempfindlichkeit, während der unmittelbar nach Entlastung eine Verstellung des Reguliermechanismus und somit auch eine Aenderung in der Energiezufuhr nicht eintritt, so kann die aufgenommene Arbeit auch nach der

Formel berechnet werden:

$$A_r = L_0 \tau' + \frac{L_0}{2} (\tau - \tau') =$$

$$= \frac{L_0}{2} (\tau + \tau') . \quad (III)$$

$$= \frac{\pi}{2} (\tau + \tau) . \quad \text{(I)}$$
Mit den Werten
$$\omega_a = \frac{\pi}{30} n_a = \frac{\pi}{30} 549$$

$$= 57.5 \text{ sek}^{-1}$$
und

$$\Theta = \frac{GD^2}{40} = \frac{105}{40} = 2,625 \text{ mkg sek}^2,$$

d. i. der Wert des durch Ablaufversuche gefundenen Massenträgheitheitsmomentes, wurde nun

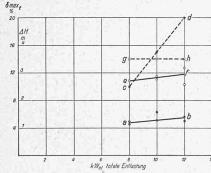


Abb. 12. Vergleich-Diagramme für die maximale Ungleichförmigkeit (ab mit, cd ohne Lenkplattenverstellung) und die Druckänderung (ef mit, gh ohne Lenkpl.-Verstellg.)

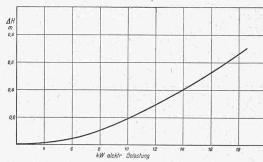


Abb. 13. Diagramme der Drucksteigerungen durch die Lenkplatten-Verstellung allein (zu Versuch-Programm-Nummer 4).

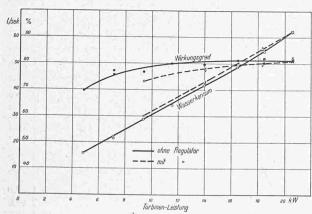


Abb. 15. Diagramme des Turbinen-Wirkungsgrades und des Wasser-Verbrauchs ohne und mit Regulator.

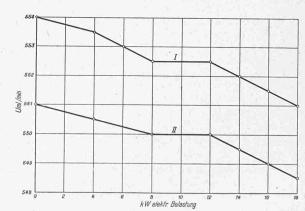
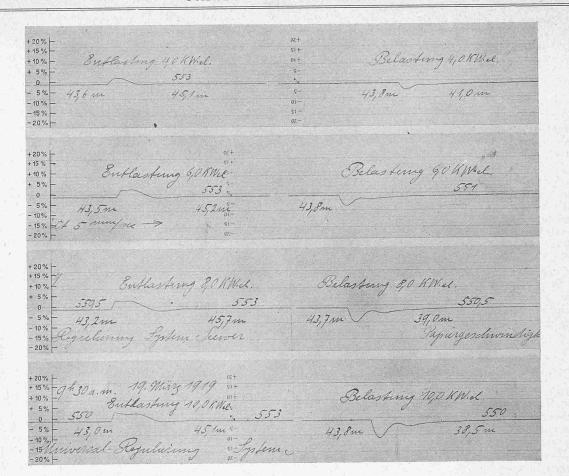



Abb. 14. Minutliche Umlaufzahlen bei Beharrung, I mit mechanischem Zählwerk, II mit Tachometer gemessen.

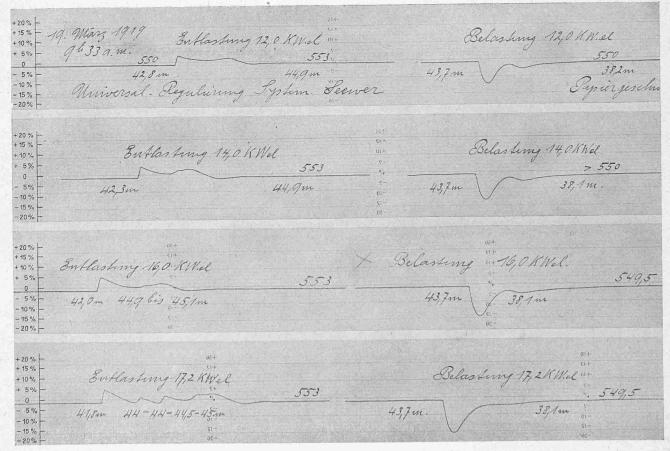


Abb 9. Tachogramme der Versuche mit der Lenkplatten-Regulierung System Seewer für Hochdruck-Pelton-Turbinen. (Vergleiche die Tabelle I auf Seite 263 dieser Nummer.) — Zeitmasstab in der vorliegenden Reduktion 2,5 mm = 1 sek.

54.60

einmal A mittels der Formel (II) und dann A_r mittels (III) gerechnet, wobei sich nach einigen Versuchen gute Uebereinstimmung bei Einsatz von $\tau'=0,3$ sek ergab, wie aus nachfolgender Tabelle III zu ersehen ist.

Tal	- 1	1 -	T'
1 0	101	10	-1

Entlastung			den 4	A	τ	A_u	Differenz	
elektr.	a. d.	Turb.	δ_{max}	mkg	sek	mkg	A·Ar mkg	0/0
8	9,36	954.7	0,1040	949	1,685	947	+ 2	0,2
10	11,55	1178,1	0,1515	1413	2,088	1406	+7	0,5
12	13,78	1405,6	0,2020	1929	2,465	1942	— 13	0,7

In den selben Tachogrammen folgt auf die maximale Geschwindigkeitsteigerung ein fast lineares Verlaufen des Geschwindigkeitabfalls, entsprechend dem eben sich einstellenden Ablauf; die Neigung dieser Linie gegen die Papierbahn ergibt mit obigem Trägheitsmoment und mit $\omega=57.5~sek^{-1}$ das Moment der Eigenwiderstände der Maschinengruppe, bezw. die erforderliche Leistung zu

minengruppe, bezw. die erforderhehe Leistung zu
$$M_w = 2,625 \cdot \frac{0,1}{6,4} \cdot 57,5 = 2,35 \text{ mkg}$$
 bezw. $L_w = \frac{2,36 \cdot 57,5}{102} = 1,33 \text{ kW}.$ Diese Ergebnisse können nun zur Diskussion der

Diese Ergebnisse können nun zur Diskussion der Tachogramme im Fall b) benützt werden (vergl. Abb. 11, Seite 265). Diese zeigen nach der ersten, der Entlastung folgenden Geschwindigkeitszunahme durch die scharfen Ecken in den Kurven eine fast plötzlich eintretende Abnahme der Energiezufuhr zur Turbine an, die eben durch die zerstreuende Wirkung der Lenkflügel verursacht ist.

Tabelle IV

Entlastung				τ	A	A_{ii}	1 1	
elektr.	a. d.	Turb.	$\delta_{ m max}$	sek .	mkg	mkg	mkg	
8	9,36	954,7	0,0435	0,61	389	286	103	
10	11,55	1178,1	0,0440	0,38	393	353	40	
I 2	13,78	1405,6	0,0501	0,38	445	42 I	24	

In vorstehender Tabelle IV sind wieder die Werte der Entlastungen, diejenigen von δ_{max} und den entsprechenden Zeiten eingetragen und zudem die nach Formel (II) mittels δ_{max} gerechneten Werte A der wirklich in der Zeit au aufgenommenen Arbeiten und schliesslich die Arbeitswerte $A_u=L_0 au'$ gerechnet, die während der Unempfindlichkeitszeit $\tau=$ 0,3 sek überschüssig von der Turbine abgegeben werden. Die Differenzen $A - A_u$ sind in der Rubrik / eingetragen; deren kleine Werte zeigen deutlich, dass die Wirkung der Zerstreuung durch die Lenkflügel eine sehr rasche ist. A wird kleiner mit wachsender Entlastung, was darauf hinweist, dass die Verdrehung der Lenkplatten der Grösse der Entlastung angepasst wird; es kommt dies auch in den Werten von r zum Ausdruck. Der weitere Verlauf der Tachogramme im Fall b) zeigt, dass nach dem ersten Geschwindigkeitsmaximum rasch wieder eine Rückführung der Lenkflügel in die meridionale Lage eintritt, sodass der wieder glatte, aber durch den Nadelverschub reduzierte Strahl bezw. dessen Energie eine Erhebung zu einem zweiten Maximum verursacht, das jedoch das erste Maximum nicht überschreitet. Nach diesem zweiten Maximum reguliert die Nadel allein die richtige Energiezufuhr ein.

Aus den Tachogrammen Abbildung 9 ist nun zu ersehen, dass in geringem Mass bereits bei 14 und 16 kW Entlastung eine Wiederholung der Ablenkerwirkung nach dem ersten Maximum eintritt; bei der Entlastung um 17,2 kW tritt dies aber deutlich und zwar mehrfach hervor. Ein Ueberschreiten des ersten Maximums ist in keinem Falle vorhanden. Diese Wiederholungen sind durch die hohe Empfindlichkeit des intermittierenden Regulierventils für den Lenkflügel-Servomotor verursacht und weisen auf dessen energische Wirksamkeit hin.

Die Ergebnisse der mit der Versuch-Gruppe durchgeführten Prüfungsversuche und deren anhand der Theorie erfolgten Diskussion ergeben, dass das Prinzip der Energie-Vernichtung durch Strahlzerstreuung in der von Ing. Seewer ausgebildeten Weise zur Anwendung für die Regulierung von Hochdruck-Pelton-Turbinen gut geeignet ist und dass bereits bei dieser ersten Ausführung von relativ niederer Grössenordnung Ergebnisse erzielt worden sind, die erwarten lassen, dass auch bei grössern Ausführungen der Praxis der angestrebte Erfolg erzielt werden wird.

Zürich, im Mai 1919.

Von der mittelalterlichen Ornamentik des Basler Münsters.

Dr. K. Escher, Zürich.1)
(Mit Tafeln 23 und 24.)

Jedes mittelalterliche Münster und jede Klosterkirche der Schweiz haben ihre eigenen architektur-geschichtlichen Werte und künstlerischen Vorzüge. Wir finden im Osten die schlichte, aber in den Verhältnissen so edle Schule von Hirsau, aber auch den gediegenen schweren Pfeilerbau der Lombardei mit Pfeilern, Emporen, Gewölben und ausgiebiger Dekoration. Wir finden Bauten des Cluniazenserund Cisterzienserordens, den romanischen Stil in seiner vollsten Reife, die zarte Frühgotik, die pompöse Hochgotik und nicht minder die Spätgotik mit ihrem eigenartigen Nebeneinander von Nüchternheit und dekorativem Aufwand. Die meisten Denkmäler haben, abgesehen von modernen Zutaten, die ursprüngliche Einheit zu bewahren gewusst; das Basler Münster dagegen zeigt eine grosse Mannigfaltigkeit von Stilen, und trotzdem wirkt es künstlerisch viel einheitlicher als manches Denkmal, das sich "altertümliche" Ergänzungen einer gelehrten aber ideenarmen Zeit gefallen lassen musste. Schon die denkbar herrlichste Lage auf der Pfalz hoch über dem mächtigen Bogen des Rheins bringt die baulichen Werte des Münsters in einer Weise zur Geltung, wie sie keinem andern Bauwerk der Schweiz gegönnt ist. Majestätisch, wie die universale Kirche des frühen Mittelalters, herrscht das romanische Langhaus (im Oberbau), das Querschiff mit seinen grossen ruhigen Flächen und edlen Verzierungen; eine seltene Raum- und Massen-Schönheit entfaltet der mehrseitige Chor, dessen plastische Verzierungen auch vom Prachtbedürfnis der Kirche eine Anschauung geben. Die gotischen Teile des XIV. Jahrhunderts (Kapellen an den Seitenschiffen, oberer Teil des Chors und Fassade) bringen die allmähliche Aufteilung der schweren Mauermasse und die Belebung der Fensterflächen durch das Linienspiel des Masswerkes. Und die schlanken Türme bieten in ihrem obern Abschluss trotz der ungleichwertigen Konstruktion doch den künstlerischen Reiz der eleganten Auflösung und der elastischen Bewegung. Allein ausser diesen stets anregenden Ansichten des Aeussern und der mit Anmut verbundenen ehrwürdigen Pracht des Innern bietet das Basler Münster auch eine Fülle von interessanten Skulpturen, figürlichen wie auch schmückenden; auf diese, die den künstlerischen Geist der Architektur im Kleinen wiederholen, soll in den folgenden Zeilen hingewiesen werden.

Da der zur Verfügung stehende Raum eine eingehende Würdigung aller in Betracht kommenden Objekte verbietet, seien einige allgemeine Gesichtspunkte hervorgehoben und dabei auf die beigefügten Illustrationen verwiesen.

Die romanische Dekoration haben wir einmal im Langhaus, als Gesimse an einzelnen Pfeilern und hauptsächlich an den Emporen, zu suchen, wo zwischen den Zwergpfeilern je zwei Säulchenpaare den Kämpfer und darüber die Bogen tragen (Abb. 1). Wir finden sie aber auch an den Friesen der Krypta (Abb. 2 und 3), an Friesen und Kapitellen im Chorumgang sowie an seiner Aussenseite. Das Musterwerk des romanischen Stils ist aber die Galluspforte (Tafel 23). Etwa 1180 als Hauptportal an der Westfront des Münsters errichtet, kam sie nachträglich,

¹⁾ Vergl. unter Literatur auf Seite 274 dieser Nummer. Re