Zeitschrift: Schweizerische Bauzeitung

Herausgeber: Verlags-AG der akademischen technischen Vereine

Band: 73/74 (1919)

Heft: 20

Inhaltsverzeichnis

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

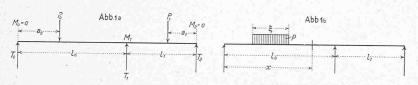
Download PDF: 10.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

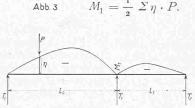
INHALT: Die Einflusslinien des kontinuierlichen Trägers auf drei Stützen. -Die Geländedarstellung auf Karten. - Die Lutherkirche in Freiburg i. B. - Weitere Untersuchungen über Rostschutz. - Förderung des Ausbaus der schweizerischen Wasserkräfte. – Der schweizerische Standpunkt zur internationalen Binnenschiffahrt. – Die schweizerischen Eisenbahnen im Jahre 1918. — Miscellanea: Holzbauweise System Landshut. Elektrifizierung der Schweizer, Bundesbahnen. Temperaturempfindliche Farbanstriche. Ausstellung "Sparsame Baustoffe" in Berlin. Zum 400. Geburtstag Leonardo da Vincis. Unterirdische und oberirdische Wechselstrom-Höchstleistungskabel. Städtische Strassenbahn. - Nekrologie: E. de Stockalper. - Konkurrenzen: Erweiterung der Kantonalen Krankenanstalt in Aarau. Dekorativer Schmuck für den Museum-Neubau in St. Gallen. - Literatur. - Vereinsnachrichten: Gesellschaft ehem. Studierender. Tafeln 20 und 21: Die Lutherkirche in Freiburg i. B.

Band 73.

Nachdruck von Text oder Abbildungen ist nur mit Zustimmung der Redaktion und nur mit genauer Quellenangabe gestattet.


Nr. 20.

Die Einflusslinien des kontinuierlichen Trägers auf drei Stützen.¹)


Von Dipl.-Ing. Ernst Laube, Zurzach.

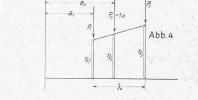
Im Folgenden soll ein einfaches Verfahren zur Aufzeichnung der Einflusslinien des kontinuierlichen Trägers auf drei Stützen bei verschiedenen Spannweiten lo und l gezeigt werden. Die in der Praxis in den meisten Fällen zulässigen Annahmen werden auch hier gemacht, nämlich: Trägheitsmoment J konstant; die Stützen liegen auf gleicher Höhe und die Momente über den Endauflagern seien Null. Bei diesen Voraussetzungen ergibt die Clapeyronsche Gleichung²) für das Mittelstützenmoment M_1 den Wert:

$$M_{1} = \frac{-1}{2(l_{0} + l_{1})} \left[\frac{\sum P_{0} \cdot \alpha_{0} (l_{0}^{2} - a_{0}^{2})}{l_{0}} + \frac{\sum P_{1} \cdot a_{1} (l_{1}^{2} - a_{1}^{3})}{l_{1}} \right]$$

Konstruktion der Einflusslinie für M1.

Die Einzellast P = 1,0 sei auf der Strecke l_0 . Es gilt also die Beziehung

$$M_1 = -\frac{1}{2(l_0 + l_1)} \left[\frac{a_0}{l_0} (l_0^2 - a_0^2) \right]$$


 $M_1 = -\frac{1}{2\left(l_0 + l_1\right)} \left[\frac{a_0}{l_0} \left(l_0^2 - a_0^2\right) \right]$ Nach Abbildung 2 lässt sich diese Gleichung folgender-

$$M_{1} = \frac{1}{2} \cdot \frac{1}{(l_{0} + l_{1})} \cdot \frac{a_{0}}{l_{0}} z^{2} = \frac{a_{0} \cdot a' \cdot l_{0}}{2 \cdot l_{0} \cdot (l_{0} + l_{1})} = \frac{a_{0} \cdot a'}{2 \cdot (l_{0} + l_{1})} = \frac{1}{2} \eta = C_{1} \eta$$

$$Multiplikator \quad C_{1} = \frac{1}{2}; \quad \eta : a_{0} = a' : (l_{0} + l_{1}).$$

Die graphische Ermittlung der Kurvenpunkte geht aus der Abbildung 2 hervor. Ganz analog werden die Punkte für das Teilstück der Einflusslinie über der Oeffnung /1 bestimmt.

Werden auf diese Weise eine genügende Anzahl Punkte ermittelt, so

Um zur Einflusslinien-Gleichung für das Stützenmoment M_1 zu kommen, werden die Werte P_0 bezw. P_1 durch eine wandernde Einzellast P=1 ersetzt. Dadurch entstehen dann zwei Gleichungen, nämlich für P = 1 im Felde lo

$$\begin{split} M_1 = & -\frac{\mathrm{I}}{\frac{1}{2\left(l_0 + l_1\right)}} \left[\frac{a_0 \, (l_0^2 - a_0^2)}{l_0} \right] \\ \mathrm{und} \ P = \mathrm{I} \ \mathrm{zwischen} \ T_1 \ \mathrm{und} \ T_2 \, ; \\ M_1 = & -\frac{\mathrm{I}}{\frac{1}{2\left(l_0 + l_1\right)}} \left[\frac{a_1 \, (l_1^2 - a_1^2)}{l_1} \right] \end{split}$$

$$M_1 = -\frac{1}{2(l_0 + l_1)} \left[\frac{a_1(l_1^2 - a_1^2)}{l_1} \right]$$

Für die Stützendrücke ergeben sich folgende Relationen:

$$\begin{split} T_0 &= A_0 + \frac{M_1}{l_0} \,; \\ T_1 &= B_0 + A_1 - M_1 \left(\frac{\mathbf{I}}{l_1} + \frac{\mathbf{I}}{l_0} \right); \\ T_2 &= B_1 + \frac{M_1}{l_1}. \end{split}$$

Hierin bedeuten A_0 , A_1 die linken und B_0 , B_1 die rechten Auflagerdrücke der mit den Spannweiten l_0 bezw l_1 frei aufliegenden Balken.

Aus den obigen Gleichungen ist ersichtlich, dass ein mathematischer Zusammenhang besteht zwischen den Auflagerreaktionen und dem Mittelstützenmoment M1. [Analog auch zwischen Feldmomenten bezw. Querkräften.] Diese Gleichungen lassen eine graphische Deutung zu, die ihrer Einfachheit wegen nicht nur bei bewegten Lasten, sondern auch bei ruhenden Einzel- oder Teillasten mit Vorteil angewendet werden kann, indem in Verbindung mit der M1-Linie alle andern Einflusskurven durch Hinzufügung von Geraden entstehen.

ergibt sich die in Abbildung 3 dargestellte Einflusslinie bezw. -Fläche für M_1 .

Findet die Lastübertragung durch Querträger statt, so geht die Einflusskurve in ein Polygon über, dessen Eckpunkte senkrecht über den Querträgern liegen. Es ist nach der Abbildung 4:

Die Teilreaktionen P_1 und P_2 ergeben sich zu:

$$P_1^r = (a_2 - a_0) \frac{P_0}{\lambda}; \qquad P_2 = (a_0 - a_1) \frac{P_0}{\lambda}.$$

Diese Werte in Gl. (1) eingesetzt unter Berücksichtigung von $P_0 = 1$ erhält man:

$$\eta_0 = \left[a_1 \left(l_0{}^2 - a_1{}^2 \right) \frac{(a_2 - a_0)}{\lambda} + a_2 \left(l_0{}^2 - a_2{}^2 \right) \cdot \binom{a_0 - a_1}{\lambda} \right] C'.$$

Diese Gleichung mit η_0 und a_0 als veränderliche Grössen hat Gültigkeit auf der Strecke λ und stellt, da a_0 auch nur in der ersten Potenz vorkommt, eine Gerade dar (w. z. b. w.).

Falls Querträger vorhanden sind, so sind die Kurven-Punkte der M1-Linie so zu ermitteln, dass der Endpunkt von ao (Abbildung 2) jeweils mit einem Querträger zusammenfällt; dadurch werden die genauen Polygonpunkte

²⁾ Vergl. "Hütte", Teil I, Festigkeitslehre.

¹⁾ Diese Arbeit wird auch als Sonderabdruck erscheinen. Red.