Zeitschrift: Schweizerische Bauzeitung

Herausgeber: Verlags-AG der akademischen technischen Vereine

Band: 73/74 (1919)

Heft: 15

Artikel: Schweizerischer Werkbundkalender 1919

Autor: [s.n.]

DOI: https://doi.org/10.5169/seals-35609

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 02.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Der Wasserzufluss erfolgt auch bei der Bauart S_{h2} infolge der diagonalen Leiträder vollständig frei und ungezwungen. Auch hier gibt also, im Gegensatz zur Bauart F_{h4} , der Wasserzufluss im ganzen Bereich der Leiträder keinerlei Anlass zu Störungen oder Wirbelungen.

Als Axenabstand ergibt sich hier E=6,50~m und der Faktor $E:D_1=3,10~$ gegen 4,85 bei F_{h4} (Abbildung 3), d. h. geringere Länge des Maschinensaales. Hierfür genügen 32 m, ebenso 10 m für die Breite, wobei noch genügend Platz frei bleibt für genannte Zwecke. Die Länge dieses Maschinenhauses beträgt also kaum die Hälfte desjenigen für Francisturbinen nach Bauart F_{v1} (Abbildung 2).

Die besondere Bauart der Doppelkrümmer in Beton erlaubt auch wegen der solideren Lagerung der Welle grössere Durchmesser der Turbinen, sodass wir in diesem Fall ganz gut auch mit drei Einheiten von je 6700 PS auskommen können, entsprechend $67 \, m^3/sek$ pro Turbine oder $Q_1=21,20 \, m^3/sek$, daher $D_1=2,43 \, m$, $n_1=49,2$ und $n=n_1 \, \sqrt{H}=155$ bezw. $150 \, Uml/min$. Für die Generatoren ergibt sich dann ein äusserer Durchmesser $D_s=3,90 \, m$ und ein Preis von $3\times 200\,000=600\,000$ Fr. d. h. $52\,^0/_0$ von demjenigen für Francisturbinen nach Abbildung 2, die man für vorliegenden Fall wegen des grossen Durchmessers der Generatoren nicht in drei Einheiten einteilen könnte. Der Axenabstand ergibt sich mit drei Einheiten zu $E=7,50 \, m$ und der Maschinensaal zu $37\times 11,50=425 \, m^2$, d h. rd. $40\,^0/_0$ der Grundfläche von Bauart F_{v_1} .

Die Bauart S_{h2} eignet sich auch vorzüglich für kleinere und mittlere Kräfte mit Riemenantrieb. So lassen sich z. B. 500 PS bei 3 m Gefälle mit zwei Zwillingsturbinen von $^2/_3$ und $^1/_3$ Q und Durchmessern $D_1=1,35/0,95$ m mit 154/218 Uml/min mittels Lenixtrieb bequem auf zwei Generatoren von 500/750 Uml/min übertragen, mit einem so kleinen Raumbedarf, wie dies mit Francisturbinen niemals

möglich wäre.

Vergleich der behandelten Bauarten.

Folgende Tabelle gibt eine Uebersicht der Hauptdaten des behandelten Kraftwerkes für 20000 PS nach den verschiedenen Bauarten.

	Francisturbinen			Schraubenturbinen		
Laufradtyp (Abb. 1, S. 157)	I	II	I	III	III	1111
Turbinentyp	F_{v_1}	F_{v_1}	Fh	Svi	Sho	Sho
Anordnung nach	Abb. 2		Abb. 3	Abb. 4	Abb. 5	- 20
Welle	vertik.	vertik.	horiz.	vertik.	horiz.	horiz.
Anzahl Einheiten	4	4	4	4	4	3
Leistung pro Einheit PS	5000	5000	5000	5000	5000	6700
Laufräder pro Einheit	1	1	4	ı	2	2
Spez. Drehzahl ns	275	407	550	510	720	720
Laufraddurchm. D ₁ m	3,10	3,40	1,55	3,00	2,10	2,43
Umlaufzahl Uml/min	68	100	136	125	187	150
Aeuss. Durchm.d. Gen. Ds m	8,60	5,85	4,30	4,70	3,15	3,90
Kosten der Generatoren Fr.	1 150 000	7.0	820 000	1 000 000	750 000	600 000
Axenabstand E m	11	12	7,50	7,50	6,50	7,50
Maschinensaal Länge ,,	67	54	37	37	32	37
,, Breite ,,	16	17,50	15	15	10	11,50
" Fläche m²	1072	945	444	555	320	425

Aus diesem Vergleich geht hervor, dass die grössere Einfachheit der Francisturbine in vertikaler Bauart gegenüber den horizontalen Bauarten F_{h4} und S_{h2} mit Zwillings-Turbinen, teuer erkauft ist. Gewiss bieten nur ein Laufrad und nur ein Reguliermechanismus grössere Betriebsicherheit als mehrrädrige Turbinen. Dieser Vorteil soll aber, namentlich unter den heutigen Verhältnissen nicht überschätzt werden, umsoweniger als die grosse Belastung des Spurzapfens in Kauf genommen werden muss, was die Konstruktion dieser Turbinen verteuert und den Betrieb auch nicht vereinfacht.

Dazu kommt, dass wegen der sehr schweren Stücke und der ersorderlichen grossen Saalbreite der Laufkran bei Bauart F_{v_1} bedeutend stärker sein muss als bei F_{h_1} oder S_{h3} . Bei allen Turbinen von grossen Abmessungen besteht ferner ein ziemlich grosses Risiko in der Herstellung, namentlich in der Giesserei. So grosse und schwere Stücke erfordern grosse Lieferzeit und es kann die ganze Ablieferung infolge eines Fehlgusses wesentlich verzögert werden. Bei den viel kleineren Turbinen nach Bauart F_{h4} und S_{h2} besteht dieser Nachteil nicht; die wichtigen Teile können sogar auf Lager gehalten und daher die Lieferzeit bedeutend verkürzt werden. Sodann liegt für den Konstrukteur ein schwerwiegender Punkt im Gewicht der Turbine, sei es bezüglich der Kosten pro PS, sei es bei Lieferung in fremde Länder mit hohem Eingangszoll. In dieser Beziehung ist jedenfalls der Unterschied gross zu Gunsten der Bauart S_{v_1} und S_{h_2} gegenüber F_{v_1} und F_{h_4} .

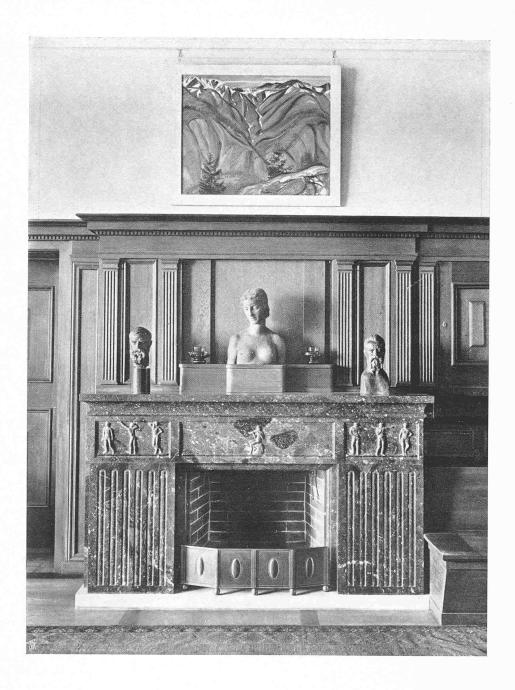
Damit glaube ich den Beweis erbracht zu haben, dass die Schraubenturbine "in wirtschaftlicher Hinsicht" einen wesentlichen Fortschritt bedeutet gegenüber der Francis-Turbine; ich bedaure nur, dass es mir nicht möglich war, den Kostenpunkt auch für die Turbinen und die Bauwerke genauer zu untersuchen. Der Einführung solcher Neuerungen speziell im Wasser-Turbinenbau stehen aber meist Vorurteile und besonders auch gewisse persönliche Interessen im Wege.

Schweizerischer Werkbundkalender 1919.

(Mit Tafeln 13 bis 16.)

Mit der heutigen Tafelbeilage wollen wir unsern Lesern den im III. Jahrgang erschienenen Abreisskalender des Schweiz. Werkbundes durch einige Bildproben vorführen, bezw. in empfehlende Erinnerung rufen. Der S. W. B. bezweckt mit der Herausgabe dieses Bilderwerkes zunächst im Familienkreis, dann auch in Schulen, namentlich in Handwerker-, Gewerbe- und Fortbildungsschulen Freude, Zuversicht und Stolz am tüchtigen handwerklichen Schaffen zu wecken und zu stärken. Dazu bietet er hier eine Fülle wohlgelungener und durch den Verlag des Art. Institut Orell Füssli in Zürich vorzüglich gedruckter Bilder aus den verschiedensten Gebieten seines Arbeitsfeldes. Das Zustandekommen dieses sehr verdienstlichen Unternehmens des S. W. B. ist jeweilen nur möglich durch Aufbringen erheblicher Subventionen und Opfer; der niedere Preis von Fr. 1,50 rechtfertigt auch heute noch durchaus die Anschaffung des schönen Kalenders, der überall wo er binkommt Freude macht.

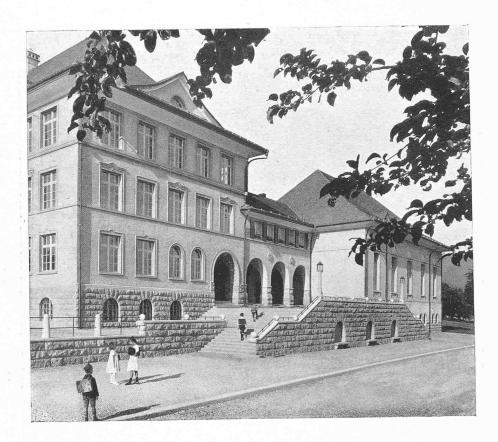
Die Elektrifizierung der Schweiz. Bundesbahnen.


Vortrag gehalten im Zürcher Ingenieur- und Architekten-Verein von Ingenieur E. Huber-Stockar, Zürich und Bern.

(Fortsetzung von Seite 143.)

Mit 1916 durfte also am Gotthard gebaut, überhaupt eigentlich angefangen und für Millionen elektrifiziert werden. Das wurde nicht erreicht. Grössere Vergebungen fanden erst vom August an statt; sie betrafen die Kraftwerke Amsteg und Ritom. Die Durchführung des Submissions-Verfahrens gestaltete sich langwierig. Es kam zu Verhandlungen mit dem Baumeisterverband. Die Vereinbarung betreffend die Berücksichtigung der fortschreitenden Teuerung der Materialen und Löhne kam nur mühsam zustande.

Budget und Ausgaben der Gotthard-Elektrifikation der verflossenen drei Jahre zeigen, neben einander gestellt, folgendes Bild:


Jahr Ausgabenprogramm im Baubudget 1916		Jahresbudget	Eff. Ausgaben	0/0
1916	Fr. 3000000	Fr. 2700000	Fr. 626000	23
1917	9 500 000	8 300 000	4 800 000	58
1918	13 500 000	19 200 000	18 200 000	95
1919	11 000 000	22 500 000		
1920	1 500 000			
Voranschlag 10	13: 38 500 000	bis und mit 1013	8: 23 620 000	

HAUS RICHARD KISSLING AM ZÜRICHBERG, ZÜRICH

KAMIN IN DER GROSSEN WOHNHALLE

ARCHITEKT PROF. KARL MOSER S. W. B. IN ZÜRICH

DAS ROTACHER-SCHULHAUS IN LIESTAL
FASSADE MIT DEM HAUPTEINGANG
ARCH. W. BRODTBECK B. S. A. IN LIESTAL

SCHWEIZ. WERKBUNDAUSSTELLUNG ZÜRICH 1919 — HAUSGARTEN

Entworfen und ausgeführt durch GEBR. MERTENS, Gartenarchitekten, S. W. B. in Zürich
Gartenbänke: Entwurf und Ausführung SUTER-STREHLER SÖHNE & CIE. S. W. B., Zürich

WOHNZIMMER aus der St. Galler-Gruppe an der Schweiz. Werkbund-Ausstellung Zürich 1919 — Entwürfe ZIEGLER & BALMER, Arch. S. W.B. in St. Gallen — Ausführung in poliertem Kirschbaumholz HEKTOR SCHLATTER, S. W.B., Schreinerei, St. Gallen