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Ueber Schüttelerscheinungen in Systemen mit
periodisch veränderlicher Elastizität.

Von Prof. Dr. E. Meissner in Zürich-Zollikon.

Im Stangengetriebe elektrischer Lokomotiven treten
bekanntlich bei gewissen Fahrgeschwindigkeiten Schüttel-
Erscheinungen auf, die sich u. U. sehr unangenehm bemerkbar
machen. Sie sind deshalb Gegenstand mehrerer technischer
(z. T. noch im Erscheinen begriffener) Arbeiten geworden.
Dabei zeigt es sich, dass mit der üblichen Schwingungs-
Theorie nicht mehr auszukommen ist, und es soll Zweck
dieser Zeilen sein, die neuen Begriffe, die dort gelten,
auseinander zu setzen.

Man denke sich bei einer elektrischen Lokomotive
die mit dem elastischen Getriebe verbundene Ankermasse
des Motors um die Motorwelle bei festgestelltem Getriebe
elastische Schwingungen ausführend. Je nach der Stellung
des Getriebes wird die Schwingungszahl eine andere sein,
weil die Stärke der Elastizität (die Nachgiebigkeit) von
jener Stellung abhängt. Was geschieht nun aber, wenn
das Getriebe nicht feststeht, sondern etwa gleichförmig
umläuft? Von einer eigentlichen Schwingungszahl kann
jetzt offenbar gar nicht mehr gesprochen werden, ja der
Schwingungsvorgang wird gar nicht mehr streng periodisch
sein. Bleiben überhaupt die auftretenden Schwingungen
in endlichen Grenzen, und wie verhält sich ein solches
System gegenüber störenden Kräften (Erzwungene Schwingungen,

Resonanz)?
Dies sind die Fragen, die im folgenden am einfachsten

Fall eines ungedämpften Systems mit einem Freiheitsgrad
erörtert werden sollen.1)

1. Die Differential-Gleichung.
An Stelle der gewöhnlichen Gleichung der erzwungenen

Schwingung
y" + k2y P 2)

{k2 Elastizitätstärke, P störende Kraft) tritt die folgende :

y"mp{t)-y P{t) \ (1)
Es ist die Konstante k2 durch die periodisch veränderliche,
„pulsierende" Elastizitätstärke p(t) ersetzt, für welche

P(t + T)=p(t) P(t)>o (2)
gilt. T soll Pulsationsperiode der elastischen Kraft heissen. •

P(f) ist auch hier die störende Kraft, von der wir annehmen,
dass sie ebenfalls die Periode T habe.

p(tmT) p(t) _.' ||
Ist P o, so sprechen wir von Eigenschwingungen des
Systems. Für sie gilt also

y"+p(t)y o (3)

2. Struktur der Lösung.
Das Integral von (1) setzt sich, wie man weiss, aus

einer Partikularlösung von (1), y E (t), der sog. erzwungenen
Schwingung und aus der allgemeinen Lösung von (3), der
Eigenschwingung additiv zusammen.

Es seien jetzt r\x (f), rjz (t) die zwei Lösungen von (3),
welche die Anfangsbedingungen

Vi (°) I Vi (°) ° Vi (°) ° Vi. (°) J (4)
erfüllen. Das allgemeine Integral von (3) ist

j/ ax t]i -7 a? % • j • • • ¦ ; (5)
wobei a, a2 Integrationskonstanten sind mit der mechanischen
Bedeutung

«1=^1(0) «2 /1 (°) ¦ • • • (5')

') Das vorliegende mathematische Problem ist zunächst in der sog.
Störungstheorie der Planetenbewegungen aufgetreten. Die hier gegebene

Darstellung sucht sich technischen Bedürfnissen anzupassen.

2) Akzente bedeuten Ableitungen nach der Zeit.

Ist e {}) irgend eine Lösung von (1), so ist die allgemeine
Lösung von der Form

\ > «W +ai%(H«2%(0 • •' • (6)
Wenn man in den Gleichungen (1), (3) überall statt t nun
t-\-T setzt, so ändern sie sich-wegen (2), (2') nicht. Es
sind daher auch ^(tmT) und r]2 (t 7 T) Integrale von
(3), also von der Form (5). Somit gelten die Gleichungen

fìlit^T) arìl{t)mbm{,t)\ M
Vt(t+T) c »h (0+ «*%(') I ' ' ' "'

wobei
a Vl(T) b=v\(T) c v,(T) d ri'(T) (7')

Die vier Konstanten a, b, c, d können angegeben werden,
sobald man die Integrale ^ rj2 im Intervall o <C / 7 T
ermittelt hat. Das ist durch Annäherung, z. B. mittels eines
graphischen Verfahrens*) stets möglich. Alsdann lehren
die Formeln (7) aus den Werten der Lösung im Intervall
(o T) den Verlauf im folgenden Intervall (T.. zT)
berechnen, und da sich das Verfahren beliebig oft wiederholen

lässt, so wird es grundsätzlich möglich, den Verlauf
der Lösung ganz zu überblicken. Bevor dies ausgeführt
wird, erledigen wir

die erzwungene Schwingung
durch folgenden Satz:

Ist a -4- d
1, so existiert stets eine rein periodische

erzwungene Schwingung mit der Periode T der Pulsation.
In der Form (6) wird freilich e (t) nicht gerade diese

Lösung sein. Wir suchen durch Verfügen über a1 und a% in
E{t) e (t) -7 ßi i?i -f a2 ??2

E (t) periodisch zu machen. Dies ist schon der Fall, wenn
nur E(T) E(o) E'{T) E'{o) (8)
gemacht wird, weil dann aus Gleichung (i)- und deren
Ableitungen folgt, dass auch alle höhern Ableitungen von
E in t o, T übereinstimmen. Aber

E (/ + T) e (/ + T) 7- «j Vl (/ + T) + o, r,% (/+ T)
somit

E(T) e (T) 4- a1 a + «2 b

E' CT) e (T) m^ema^d
Bedingung (8) erfordert

— e (T) m e (o) <*! (a — 1) -f- a2 b

— é (T) -7 e (o) ax c + a2 (d — 1)

Diese Gleichungen geben eindeutig

«1 -^ {(<* - 0 [< (°) - « (T)] - b [e (o) - é (7-)]}

il (9)
«2 "J j - c[e (o) - e (T)\ + (a-1) [e (o)

A (a — 1) (d — 1) — bc

sobald nur A dp o ausfällt. Nun folgt aus

vî'+Pvi °hi nï — Vj. vi' °
fj2" -\- p rjz o J oder r\x r\2 — rj2 rj^ konst.

und für t — o, T
Vivi—%n1'=l=v 1 (T)vi(T)—v2(T)Vi <T) ad— bc(IO)
daher ist

A (a — i) (d — 1) — b c 2 — (a + d)
und es ist A dp o wenn

-^— * I (IO)
ausfällt.

Die so gefundene Schwingung E (f) bleibt, weil
periodisch, in endlichen Schranken. Ob dies auch für
den Schwingungsvorgang (1) der Fall ist, wird davon
abhängen, ob es für die zu E hinzutretende Eigenschwingung
zutrifft.

') Vergi, hierüber des Verfassers Aufsati : Ueber graph, Integration.
Diese Zeitschrift Bd. LXII, Nr. 15/16 (n./18. Oktober 1913).
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Immerhin lässt sich einsehen, dass wegen des Nenners

A in (9) die erzwungene Schwingung E (t) beträchtlich

gross wird, wenn ——— in die Nähe von 1 rückt. Für

mil— 1 tritt der Fall der Resonanz ein, ganz analog
2

wie bei der gewöhnlichen Resonanztheorie.

Die Eigenschwingung.
Sie ist bei konstanter Elastizitätstärke rein periodisch.

Ganz anders gestalten sich aber hier die Verhältnisse. Da
die Schwingungen jetzt in einem zeitlich veränderlichen
Feld erfolgen, ist die Möglichkeit da, dass sie mit wachsender
Zeit ins Unendliche zunehmen, gerade wie im bekannten
Fall der Resonanz es die erzwungene Schwingung tut. Ist
das der Fall, so sollen sie instabil heissen, wenn sie sich
stets in endlichen Schranken halten, sollen sie stabil genannt
werden. Welches von beiden der Fall ist, wird von den
Grössen (7') abhängen, die nach (7) den Verlauf der
Schwingungen für spätere Zeiten bestimmen.

Die Normalihtegrale.
Wir suchen jetzt eine Eigenschwingung N (t), die nach

Ablauf einer Pulsation T sich bis auf einen multiplikativen
Faktor o reproduziert, also der Forderung

N(t + T) oN(t) (n)
genügt. Wie jede Lösung von (3) hat sie die Form

N(t) Vi -r «2 Vz

«i Vi {i +T)+ a2 ?;2 (t - T)

-dVz)

¦ o)

Es ist
IfiÉP

und wegen (7)
N(l + T) a1 {a ??j + b t]2) -4- a2 (c §§

Die Forderung (11) bchreibt sich
a a —\- a, c= o ax

ax b -\- a2 d o a2

hieraus j^i_ e (7
<x2 a — a

und mit Rücksicht auf (10)
o2— o (a m d) -\- 1 o (13)

Die Wurzeln ot o2 dieser Gleichung sollen die Multiplikatoren
der Eigenscliwingung (j) heissen. Für jedes der o erhält
man aus (12) das Verhältnis at : a2) * und damit das
zugehörige Normalintegral Nt (t) resp. N2 (/), das natürlich nur
bis auf einen willkürlichen Faktor bestimmt ist. Es ist nun

N1(t+T) o1N1(t) N2(t+t) o2N2(i) (14)
und das allgemeine Integral von (3) wird jetzt zweckmässig
in der Form

y ïi Ni Ê 72 N2 (7i ti Integr. Kraft)
dargestellt.

1. Fall. Reelle Multiplikatoren.
Da nach (13)

_____ — a + d
_[_ 1/V'a + dy

so ist dann a + d

Wegen a, ö2 1 ist von den Wurzeln eine, z. B. ox absolut
grösser, die andere a2 absolut kleiner als 1. Weil ferner

Nx (t-^nT) =^^(0 N2{t7-nT) on2N2(t)
(« =_ ganze Zahl)

so wächst N* ins Unendliche an, und zwar um so rascher,
je grösser | o1 | ist ; dagegen geht N% nach Null.

Für reelle Multiplikatoren ist somit die allgemeine
Eigenschwingung instabil. \ oì | ist Mass der Instabilität.
Praktisch hat dies Schüttelerscheinungen zur Folge.

2. Fall. Komplexe Multiplikatoren.

<^ 1. Man setze

a + d
±—¦— ==*. cos w

2 T

wo <p reell ist. Es wird ax e'f o2 <>. N,

¦ (15)

und N.,

') Eine Ausnahme tritt ein, wenn a — d— o, t o, wo % und

<x2 ganz willkürlich sind. Dann ist aber nach (t3) o +i und es liegt

der später erörterte Grenzfall "*"
1 vor.

werden konjugent komplex, sodass
Nt (t7-nT) ei'"PN1(t) N2{t7~nT) e-inf N2 (/).
Setzt man

^1 <Pi -+¦ * <Pz Nz <Pi — i 9>2

wo Q.J (t), cp2 (t) reell sind, so sind auch q>lt <pz Integrale von
(3) und es ist

9?j (t -\-nT) cos n <p • <Pi(i) ¦— sin n 9. • q>2 (t)
cp2{t 7~ nT) sin n q: • cpx (t) -\- cos n <p • (p2(f)

Deutet man (q.^ cp2) resp. 9.1 {t^- nT), cp2(t~\-nT) als
Koordinaten zweier Punkte P, P„ in der Ebene, so entsteht
P„ aus P, indem man die Ebene um den Anfangspunkt
herum um den Winkel ncp dreht. Die zwei Integrale <pv <p2

und damit die allgemeine Eigenschwingung (3) bleiben
sonach innerhalb endlicher Schranken. Die Eigenschwingung
ist bei komplexen Multiplikatoren stabil.

Aber sie ist im allgemeinen keineswegs periodisch.
Eine Periode hat sie nur dann, wenn <p und 2 n sich
verhalten, wie zwei ganze (teilerfremde) Zahlen p und q,

l(p 2:rt — J. In der Tat fallen dann für n q die Punkte

P und Pn zusammen und es sind beide Integrale <px, <p2

also auch das allgemeine Integral von (3) periodisch1.
Jedoch ist die Periode Tx nicht gleich T, sondern gleich
dem ^-fachen der Pulsationsperiode.

3. Der Grenzfall ——— 1.J ' 2

Er vermittelt den Uebergang zwischen reellen und
komplexen Multiplikatoren, also zwischen instabilen und
stabilen Schwingungen.

Die zwei Wurzeln o von (13) fallen zusammen, ebenso
die in (14) angegebenen Lösungen.

Für

(I2) Für

a + d
2

a cjf d
+ I ist a, o9

i ist a.

i N (t + T) N (0

— 1 N{t 4- T) — N (/)1 "2
also N(t-7 2.T) N(t).
Es existiert im Grenzfall also eine periodische Eigenschwingung

mit der Periode T der Pulsation oder eine solche von
der doppellen Periode, die nach Ablauf der Zeit T das
Zeichen wechselt [halbperiodische Lösung].

Umgekehrt kann aus dem Bestehen solcher Lösungen
auch gefolgert werden, dass der Grenzfall vorliegt.1)

Das Resonanzproblem. '

Es ist jetzt die Stabilität der Eigenschwingung in
ihrer Abhängigkeit von der Pulsationszeit T zu
untersuchen.2)

Wir führen die neue Veränderliche

ein ; ändert sich / um T, so ändert sich r um 2 n.
P(t)

Setze

wir 4?r» ?w
so bedeutet #(t) eine periodische Funktion mit der Periode 2n.

q (t + 2 .-r) q (t)
und mit

X T2 > o

geht die Gleichung (3) in folgende über
d"-y
dx*

X q (z) • y o (3*)
Das Resonanzproblem lautet jetzt:

Für welche (positiven) Werte von X sind die Integrale
von (j*) instabil?

Die Gesamtheit dieser Werte X soll der Resonanz-
Bereich heissen.

In (3*) ist an Stelle von p nun X q getreten. Infolgedessen

hängen die Grössen (7) alle von X ab, und es ist

') Im Grenzfall ist die zweite Lösung instabil, ausser wenn der Fall
o' _= d + 1, 6 c o vorliegt.

') Im Fall der elektrischen Lokomotiven ist T meist '
4 der Umlauf-

zeit des Getriebes ; es wird also jetat diese letztere variiert.
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also auch

ja

Abb.l

——— J (X) eine Funktion von X. Der

Resonanzbereich ist durch die Ungleichung
b(A)|>i

bestimmt, die ja reelle Multiplikatoren zur Folge hat. Denkt

man sich f(X) als Schaubild aufgezeichnet (Abb. 1), so wird
der Resonanzbereich aus

denjenigen Intervallen von
X bestehen, in denen die
Kurve aus dem Streifen

/ + 1 heraustritt. Das
Resonanzgebiet besteht also
nicht aus einzelnen Punkten

(krit. Geschwindigkeiten),
sondern aus einer Reihe

von Intervallen (Schüttelgebieten). Nach vorigem findet
man die Grenzen X X{ dieser Intervalle und damit den
Resonanzbereich aus der Forderung, dass für X—X, eine

periodische Eigenschwingung existieren soll mit der Pulsa-

tionsperiode t T resp. t 2 n oder eine halbperiodische
Eigenschwingung.

Es stellt sich jetzt die Frage nach der Zahl der

Werte Xi. Die Theorie der sog. Integralgleichungen gibt
darüber erschöpfenden Aufschluss.1) Danach hat Gleichung
(3*) unter der hier zutreffenden Voraussetzung q (r) ^> o

für eine unendliche Reihe positiver Grössen

X?<X(imW<XP< ad inf. (16')

periodische Lösungen von der Periode r 2 n, und für
eine zweite ebensolche Reihe

X? £ Xf < Xf < A» < ad inf.

halb-periodische Lösungen von der Periode 4 n. (16")

Der Resonanzbereich setzt sich also stets aus unendlich

vielen Schüttelgebieten zusammen, von denen sich bei
speziellen Verhältnissen einige (oder sogar alle) auf einzelne

Punkte reduzieren können. 'Nur für Pulsationsperioden
ausserhalb dieser'Intervalle sind diese Schwingungen stabil.

Wie können nun die kritischen Randwerte (16', 16")
berechnet werden? Darüber gestattet der Raum hier nur
eine Andeutung.

Man kann z. B. für die periodische Lösung in (3*)
eine Fourier-Reihe ansetzen und bei linearen Gleichungen
für ihre Koeffizienten weiter behandeln.

Wenn q (t) in (3*), wie im Fall der elektrischen
Lokomotiven, einen kleinen Parameter e enthält, und in der Form

q (t) H i (t) + qx (t) • e 4- ?2 W «2 + • • •

entwickelbar ist, so kann man auch für y und X Potenzreihen

in s ansetzen und aus der Periodizitätsforderung
die Koeffizienten in der Reihe für X zu bestimmen suchen.

Ist endlich q (t) unregelmässig verlaufend, oder sogar
mit Sprüngen behaftet (Lagerspiel, Stichmassfehler), so

kann man q (r) angenähert durch eine stückweise konstante
Funktion ersetzen, für welche (3*) elementar lösbar wird.
Da es für den Techniker von Wert sein dürfte, an einem

Beispiel die allgemein erörterten Verhältnisse entwickelt zu

sehen, so soll dieser Fall hier noch behandelt werden.

Beispiel, q (r) stückweise konstant.
Man teile das Pulsationsintervall 2 n in « beliebige

Abschnitte Tj t2 • t«, so dass tx 4" T2 4 • 4"T» — 2 n wird,
und setze fest, dass in der Gleichung

^L+T*.q(T).y o (3*)

q (t) —; konst. im iua Teilstück ri
4JT*

dann sind die Integrale r\x yj^ dort von der Form

\ ^cos(^)4-i?sin(^)
Die Integrationskonstanten A, B bestimmen sich für das

erste Teilstück aus (4), für alle folgenden aus der Bedingung,
dass an der Grenze zweier Teilstücke Ordinaten und

Tangenten der dort zusammenstossenden Teilkurven über-

') Z. B. D. Hilbtrt, Grundzüge etc. Göttinger Nachr. 1904 (zweite

Mitteilung) und M. Mason, Randwertaufgaben bei gewöhnl. Diff. -Glchg.

Diss. Göttingen 1903 (Seite 59).

einstimmen müssen. Eine leichte aber umständliche Rechnung

gibt so den Verlauf der Integrale jj1( r\2, insbesondere

die wichtigen Endwerte
a Vi (2 n) d — 7]2 (2 n)

und hieraus den Wert von
a-frf _J 2

Für n 4 wird

Ji —ì— Ci C2 Cs C4 + A'S1 S2 S3 S4 — Eva SiSt C. Cm

TvìTj N

iklni

I tv, V,

2 \r, v.
_+ pg

2 "4 "l Vl

wobei

c<=cos(Sr); 8||
Vik — (—-—1—-1 bedeuten', und

2 \vk vt)
wobei die letzte Summe über alle 6 Permutationen

1234 2314
iklm =1324 2413

1423 34 t 2

zu erstrecken ist.
Für 11 — 3 wird

J3 Cj C2 C3 vi2 Oj o2 C3 1'13 Oj o3 C2 r23 o2 os Cj

und für n 2 noch einfacher
J2 Ci C2 t>i2 Oj o2

Nimmt man noch der Uebersichtlichkeit wegen %^ r2 — n,
so wird

11 c„, m - §§ - g gmig IH
Tv. Tv*

übergeht in

J% V*î 1 X2l mmm sin xx sin x2

Man deute (x1} #2) als rechtwinklige Koordinaten eines

.Punktes A. Bei gegebenem vv v2 gehört zu jedem T ein

Punkt A, und wenn T sich ändert, läuft A auf dem Strahl

— — konstant
*i n

durch den Anfangspunkt O. Der Abstand O A yVn2 + V

ist zu T proportional.
Das Stabilitätsgebiet der Perioden T wird vom

Resonanzbereich getrennt durch die Kurven

/ (.xi<xi) 4-1 J(.xixi)= — $?

Abb.2

In Abb. 2 sind sie aufgezeichnet, und zwar nur für den

ersten Oktanten, da sich alles zur 45 ° Linie xx x%

symmetrisch verhält. Die Resonanzgebiete sind schraffiert. Auf
jedem Strahl (k2 : kt — geg. Konst.) schneiden sie die
Instabilitätsintervalle heraus, deren Anzahl stets unendlich gross
ist. Für vt Vi, den Fall gewöhnlicher harmonischer

Schwingungen, reduzieren sich diese sämtlich auf Punkte. Denn

es ist alsdann

/ cos («j 4" *a) cos (v^')

also \J\ 1 für T — — n w 1, 2, 3

Für kz o (#„ o) ergibt sich der Fall einer periodisch
aussetzenden elastischen Kraft. Die Abbildung zeigt, dass

dann die Instabilitätsintervalle sehr breit werden.
Diese Resultate werden, wenn Dämpfung vorhanden

ist, modifiziert. Wirkt sie proportional der Geschwindigkeit

gemäss der Gleichung
y" 4- 2 03y' -\-p (t)y o,
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Wohlfahrtshaus der Vereinigten Drahtwerke A.-G. Biel.
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Zum Wettbewerb für eine Strassenbrücke
über die Reuss bei Gisikon.

Abb. 5. Aufgang vom Hof zur Küche.

Zum Ergebnis dieses Wettbewerbes und zum bezüglichen
Urteil des Preigerichts, veröffentlicht in Nr. 1 und 2 laufenden

Bandes unserer Zeitschrift (vom 6. und 13. Juli), sind uns

sieben, zum Teil ziemlich ausführlich begründete Beschwer-

den zugekommen über durch programmwidrige Prämiierung
verletzte Bewerber-Rechte. Wenn wir auch nach der

Erörterung des Falles der Solothurner Kirchenkonkurrenz
gehofft hatten, mit derartigen unerfreulichen Diskussionen von
Wettbewerb-Entscheiden unsere Leser für längere Zeit nicht
mehr behelligen zu müssen, so können wir angesichts der

betreffend Gisikon von Bewerbern geäusserten Bedenken

doch nicht umhin, ihnen Gehör zu verschaffen. Um aber

die unvermeidliche Aussprache zwischen den Bewerbern und

ihren Fachkollegen im Preisgericht möglichst kurz halten zu

können, bringen wir, im allseitigen Einverständnis, nur eine

redaktionelle Zusammenfassung der wichtigern der erhobenen

Einwände zum Abdruck. Wir beginnen gemäss „Programm"
mit den äussern Verhältnissen, um daran die innern anzu-

schliessen. Zum bessern Verständnis des Gesagten fügen

wir einige Zeichnungen und Bilder bei; um indessen jeden
Verdacht gekränkter Eitelkeit einzelner Verfasser von
vornherein zu vermeiden, lassen wir alle Namen weg. Es handelt

sich für sie wie für uns nur um die Sache.

A. Schmälerung des Durchfluss-Profils.

Das Programm bestimmte wörtlich: „Die
Brückenkonstruktion darf bei jedem Widerlager höchstens 6 /na

vom Durchflussprofil zwischen H.-W und Flussohle

beanspruchen." (Vergi, die anschliessenden Mitteilungen über die

Durchflussverhältnisse der Reuss bei Gisikon. Red.)

Im Urteil zum Entwurf Nr. 15 (I.Preis) steht: „Statt
6 m2 sind beidseitig je 8,5 m2 vom Durchfluss-Profil durch

so lautet die Bedingung für
Stabilität jetzt

d P x / i

Bei genügend starker Dämpfung
kann jede Instabilität verschwinden.

Das Anwachsen der
Eigenschwingungen kann natürlich
nur dadurch erfolgen, dass dem
System Energie zugeführt wird.
Im Fall der Lokomotive
entstammt sie der Bewegungsenergie
des fahrenden Lokomotivgestells,
die in dieser Theorie als
unbegrenzt gross vorausgesetzt ist
gegenüber der Energie des
schwingenden Systems. Will man
das nicht annehmen, so ist die Rückwirkung auf die
Lokomotive zu berücksichtigen, was dann auf

gekuppelte Schwingungsvorgänge führt.
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Das Wohlfahrtshaus der
Vereinigten Drahtwerke A.-G. Biel.

Arch. Moser, Schürch Sç v. Gunten, Biel.

(Mit Tafeln 7 und 8.)
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Dieses weiträumige und mit allem Nötigen sehr

reichlich ausgestattete Wohlfahrtshaus, das im

Obergeschoss und Dachgeschoss mehrere Angestellten-
und Arbeiter-Wohnungen enthält, ist vom Oktober

1916 bis zum 1. November 1917 mit einem
Kostenaufwand von rd. 600 000 Fr. (60 Fr.\m*), Umgebungs-
Arbeiten und Architektenhonorar inbegriffen, erbaut worden.
Unsere Grundrisse und Bilder geben jeden wünschbaren
Aufschluss, sodass weitere Erläuterungen entbehrlich erscheinen.
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Abb. 1 und 2, Grundrisse vom Keller und Erdgeschoss 1:600.

die Brückenkonstruktion beansprucht" (vergi. Abbildung 1, S. 100,

die horizontal schraffierte Fläche am linksufrigen Kämpfer), Der

Verfasser bestreitet zwar dieses Mass der Ueberschreitung, unter


	Ueber Schüttelerscheinungen in Systemen periodisch veränderlicher Elastizität

