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Ueber die Bestimmung der Ortskurven in der
graphischen Wechselstromtechnik.

Dr. Ing. Otto Bloch, Bern.

I. Teil.

Einleitung.
In Nr. 11 dieses Bandes vom 9. September 1916 der

„Schweiz. Bauzeitung" wurde im Hinblick auf die Frage
der „Berücksichtigung des Wicklungssinnes in der
theoretischen Elektrotechnik" ein Beispiel gegeben. Im Verlauf
der im übrigen rein graphischen Untersuchung jenes Motors
sahen wir uns gezwungen, einen Vektor rechnerisch zu
bestimmen, um die Vektordiagramme richtig aufzeichnen zu
können. Es wurde zwar in einer Fussnote erwähnt, dass die
Rechnung durch die Konstruktion des geometrischen Ortes
jenes Vektors ersetzt werden könnte. Die Durchführung
dieses Verfahrens müssten wir uns aber in jenem Zusammenhang

versagen. Hier soll diese Lücke ausgefüllt werden.
Es ist nun aber von allgemeiner Bedeutung für die

graphische Wechselstromtechnik, ein Verfahren zur Bestimmung

der Ortskurven zu kennen. Wir wollen deshalb hier
das Problem gleich in seiner allgemeinen Form anpacken.
Indem wir uns gestatten werden, im folgenden wiederholt
auf das erwähnte Beispiel hinzuweisen, wird es uns möglich
sein, die Vorstellungen zu präzisieren und die Darstellung
kürzer zu gestalten, während wir gleichzeitig den Vorteil
geniessen, die Anwendung der zu entwickelnden Methode
auf einen bestimmten Fall zeigen zu können. Der Leser
ist also ersucht, beim Lesen des Folgenden sich den
besagten Artikel vor Augen zu halten.

Wir beschränken unsere Betrachtungen hier
ausschliesslich auf solche Wechselstromprobleme, bei denen die
Wechselgrössen als seitlich rein sinusförmig veränderlich
angesehen werden dürfen. Für solche Aufgaben können
die den zu untersuchenden Vorgang beherrschenden
Grundgleichungen durch vektorielle Schreibweise äusserlich stets
auf die Form einer reinen algebraischen Gleichung ohne
transzendente Glieder gebracht werden. Diese Gleichungen
werden nun tatsächlich zu algebraischen Gleichungen,
wenn wir die einzelnen Vektoren als komplexe Zahlen
auffassen, die ihre unmittelbare Abbildung als Vektoren
in der Gauss'schen Zahlenebene finden.1) Dieser Weg
ist auch in unserem Beispiel eingeschlagen worden.
In der Tat haben wir dort mit Hilfe der Kirch-
hoff'schen Regeln und der Grundgesetze des Elektro-
Magnetismus und der Induktion 13 Bedingungsgleichungen
aufgestellt, die sämtliche rein linear in den Amplituden

der in Frage stehenden Wechselgrössen sind.
Durch Elimination haben wir hierauf den Vektor Fy durch
Konstante des Problems und den als bekannt und konstant
angenommenen Vektor Fx ausgedrückt. Wir erhielten als
Quotienten der beiden Vektoren den Quotienten zweier
komplexer Zahlen, deren jede eine lineare Funktion des
Parameters v war.2). In unserem besondern Fall war der
Parameter v ein Mass für die Geschwindigkeit des Motors.
Aber wir können auch die Veränderung irgend einer andern
Grösse, wie z. B. des Widerstandes, der Kapazität, der
Streuung, der Spannung, der Periodenzahl usw. durch den
Parameter messen. Wir können daher allgemein sagen :

Da die Grundgleichungen der uns hier interessierenden
Probleme stets lineare algebraische Bedingungsgleichungen
zwischen den Amplituden der Wechselgrössen sind, deren
eine als bekannt vorausgesetzt ist, so ergibt die Berech-

>) Vergl. z.B. Strecker, Hilfsbuch für die Elektrotechnik, 8 Aufl S. 89.
*) Vergl, Seite 118 dieses Bandes, Gleichung (d).

nung notwendig jeden Vektor als ein von den Konstanten
des Problems abhängiges Vielfaches des bekannten Vektors.
Da ferner sämtliche Konstanten des Problems komplexe
Grössen sein können, so wird im allgemeinen auch dieser
Proportionalitätsfaktor P zwischen den beiden Vektoren
eine komplexe Zahl sein. Verändern wir nun irgend eine
der Konstanten der Bedingungsgleichungen, indem wir
einen sie messenden Parameter verschiedene Werte durchlaufen

lassen, so wird die den berechneten Vektor
darstellende komplexe Zahl als Funktion dieses Parameters
erscheinen und in der Gauss'schen Zahlenebene einen
geometrischen Ort durchlaufen. Ist im besondern, was
wir voraussetzen wollen, die zu messende' Grösse eine
rationale Funktion des Parameters, so wird auch der
berechnete Vektor eine rationale, im allgemeinen gebrochene
Funktion desselben sein.

Bezeichnen wir allgemein ¦ den berechneten Vektor
mit V, den als bekannt vorausgesetzten Vektor mit U und
konstante komplexe Zahlen mit A, B, C usw., ferner mit
v einen beliebigen Parameter, so werden wir, nach dem
Gesagten, durch unsere Probleme immer auf Ausdrücke
geführt werden müssen, die sich auf folgende Form bringen
lassen :

v=prr=A + Bv + Cv* + + Mvm (r\
D + Ev-\-Fv^+ + Nv" " ^ '

Tatsächlich sind wir dieser Form auch in dem behandelten
Beispiel begegnet. Zähler und Nenner waren dabei lineare
Funktionen des Parameters.

Es wird nun unsere Aufgabe sein, zu untersuchen,
was für geometrische Oerter durch Ausdrücke von der Art
der Gleichung (1) dargestellt werden.

Wir werden das uns gesteckte Ziel auf synthetischem
Wege zu erreichen suchen. Dabei entspricht es dem Zwecke
dieser Darlegung, unser Augenmerk vor allem auf grösste
Einfachheit und Anschaulichkeit der Darstellung zu richten
und nur unmittelbar praktisch wichtige Konsequenzen zu
ziehen. Vollständigkeit soll in diesem Zusammenhang nicht
angestrebt werden.

Gerade und Kreise.
Die Gauss'sche Zahlenebene ist bekanntlich das

rechtwinklige Koordinatensystem, dessen horizontale Axe die
rein reelle Zahlenreihe und dessen vertikale Axe die rein
'imaginäre Zahlenreihe darstellt. Alle andern Geraden durch
den Axenschnittpunkt stellen irgendwelche komplexe Zahlenreihen

dar.
Eine willkürliche komplexe Zahl A lässt sich in

verschiedenen Formen schreiben. Es ist:
A Ae>a A (cos a -f-/sin a) aY -\-j • a8

Die Grösse e^a stellt die komplexe Einheit dar. Ihr
absoluter Wert ist immer y/ c s8 a + sm2 a 1, ihre Richtung
die der betreffenden komplexen Zahlenreihe in der Gauss'schen

Ebene, nämlich um den Winkel a verdreht gegenüber

der rein reellen Halbaxe. Sind die positiv reellen
Zahlen vom Koordinatenursprung nach rechts, die positiv
imaginären vom Koordinatenursprung nach oben aufgetragen,
so sind positive Winkel a gegen den Uhrzeigersinn
aufzutragen.

Eine beliebige komplexe Zahl bestimmt also einen
gewissen Punkt in der Gauss'schen Ebene ; aber ebenso
natürlich auch den Radius-Vektor vom Ursprung des
Koordinatensystems nach diesem Punkte hin.

7. Die Gerade.

Wir fragen uns zuerst nach der Bedeutung eines
Ausdruckes von der Form

V=A + Bv (I)
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B ist eine beliebige komplexe Zahl und Bv ein mit
v veränderliches Vielfache derselben. Geben wir v alle

möglichen reellen Zahlenwerte, so ändert sich dadurch
natürlich die Richtung ß der Zahl Bv Bv eJti nicht. Bv
ist daher die komplexe Zahlenreihe, deren Richtung
diejenige von B und deren Einheit die absolute Grösse von
B ist. Mit andern Worten: Bv ist eine Gerade durch den

Ursprung des Koordinatensystems. Der Ursprung entspricht
dem Wert v 0.

Gleichung (I) sagt, dass um V zu erhalten, zu jedem
Wert von Bv noch eine konstante komplexe Zahl A zu
addieren sei. Wir werden dasselbe erreichen, wenn wir
gleich vom Ursprung aus den Wert A auftragen und durch
dessen Endpunkt eine Parallele zu Bv legen. Wir sehen:

Der geometrische Ort des Vektors V= A-{-Bv ist eine
Gerade durch den Punkt A von der Richtung des Vektors B.

Auf dieser Geraden entsprechen gleichen Wertunterschieden

des Parameters v gleich grosse Strecken. Der
Nullpunkt der Wertreihe liegt in A ', der Punkt für v 00
ist der unendlich ferne Punkt der Geraden. Dies ist durch
Abbildung 1 veranschaulicht.

XT*

reell

Abb.1

Tritt der Sonderfall ein, dass die Koeffizienten A und
B gleiches Argument haben, mit andern Worten, dass der

Quotient ¦= rein reell wird, so wird für einen bestimmten

Wert v0 von v A — Bv„ und wir können schreiben
V B (v — v0). Das ist wieder eine Gerade durch den
Ursprung. Letzterer entspricht in diesem Fall statt dem
Wert v o dem Wert v v„.

2. Der Kreis durch den Ursprung.
Gehen wir einen Schritt weiter und fragen uns nach

der Bedeutung der Gleichung

V -dTW W
Der Ausdruck V D -\- Ev bedeutet, wie wir soeben

gesehen haben, eine beliebige Gerade der Ebene. Nehmen
wir an, diese Gerade sei gezeichnet, so sind die Radien-
Vektoren des gesuchten Ortes V reziprok zu den Radien
an diese Gerade. Die Verwandtschaft nach reziproken Radien
ist bekannt unter den Namen „Inversion11. Das Inversionszentrum

ist in unserem Fall der Ursprung des Koordinatensystems.

Im besondern ist die inverse Figur zu einer
Geraden von allgemeiner Lage bekanntlich ein Kreis durch
das Inversionszentrum. Der Kreis-Mittelpunkt liegt dabei
auf dem vom Inversionszentrum aus auf die Gerade
gefällten Lot.1)

Der geometrische Ort des Vektors V= ist alsoD-E*
ein Kreis durch den Koordinatenursprung.

Beim Aufzeichnen des zu einem gegebenen PunktA invers

zugeordneten Punktes -r- darf aber die Eigentümlichkeit

komplexer Zahlen nicht ausser acht gelassen werden, die
darin besteht, dass reziproke Werte von komplexen Zahlen
nicht derselben Zahlenreihe angehören. Tatsächlich ist

1 1 1

A AeJ" A

Die Richtungen reziproker Vektoren sind demnach spiegelbildlich

inbesug auf die reelle Koordinatenaxe.
Um dennoch entsprechende Punkte zweier reziprok

verwandter Figuren der komplexen Ebene durch Strahlen durch
das Inversionszentrum miteinander verbinden zu können,
muss man demnach eine der Figuren spiegelbildlich
aufzeichnen. Geschieht dies inbezug auf die reelle Axe,
so wird die Inversionspotenz positiv (einander entsprechende
Punkte liegen auf demselben Halbstrahl durch das
Inversionszentrum). Zeichnet man dagegen das Spiegelbild
inbezug auf die imaginäre Axe, so ist die Inversionspotenz
negativ (entsprechende Punkte liegen auf verschiedenen
Seiten des Inversionszentrums). Letztere Darstellungsweise
ist gelegentlich vorzuziehen, weil sich dabei die Linien
verwandter Figuren weniger verwirren.

In Abbildung 2 ist die Konstruktion des Kreises
V 1 : (D -\- Ev) durchgeführt. Zuerst wurde die Gerade

\<ß
^•X*

*i\3

tî rV D+Ev
'?3

«9i
f6Y\

reell

S-T!

^v-5

,.0
V.

Abb.2

V D -j- Ev in der durch Abschnitt 1. gelehrten Art
aufgezeichnet, dann wurde die zu ihr inbezug auf die reelle
Axe spiegelbildliche Gerade V" eingetragen und auf ihr
die Wertreihe der v markiert. Der Einheitskreis um den
Ursprung als Zentrum schneidet diese Gerade in zwei
Punkten, die zu sich selbst invers sind. Durch diese beiden
Punkte und den Ursprung ist der zur Geraden inverse
Kreis bestimmt. Durch Strahlen nach den verschiedenen
Werten von v auf der Geraden V" werden die diesen
Werten entsprechenden Punkte des Kreises V
herausgeschnitten. Dem unendlich fernen Punkt der Geraden
ist der Ursprung zugeordnet. Es entspricht also dem Wert
v -j— 00.

In dem Sonderfall, wo D — o ist und V" daher eine
Gerade durch den Ursprung bedeutet, wird der Ausdruck

V-
1 1

e-J'

*) Vergl. Arnold, Wechselstromtechnik Bd. i. TL, Auflage, S. 70.

Ev : e
Das ist eine zu V inbezug auf die reelle Axe

spiegelbildliche Gerade, bei der dem Ursprung der Wert v — 00
und dem unendlich fernen Punkt v o entspricht.

Tritt der andere Sonderfall ein, dass -=* rein reell

wird, so geht wiederum die Gerade V* durch den Ursprung
und hat in ihm den Wert v v0. Die zu ihr inverse
Gerade V hat also im Ursprung den Wert v 00, im
Unendlichen aber nicht wie vorhin den Wert v o, sondern
den Wert v v„.

3. Der Kreis von allgemeiner Lage.
Erhalten wir für V eine Gleichung von der Form

y=iTF' W
so können wir einige Eigenschaften der Kurve schon von
vornherein aus dem Aufbau des Ausdruckes erkennen.
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Erstens sieht man, dass, insofern D und E Vektoren

von verschiedener Richtung sind I
—^- nicht reell I, der Nenner

für keine reellen Werte von V verschwinden kann.
V wird also für keinen Wert von v unendlich. Die Kurve

AFür v- wird V — fürverläuft ganz im Endlichen.

v 00 wird V=—=-¦
L

Aber wir können darüber hinaus sagen, dass die
Kurve durch Inversion ihren Charakter nicht ändert. In der
Tat haben Zähler und Nenner vollständig gleichartige
Form. Wir wissen, dass Kreise durch Inversion wieder
in Kreise verwandelt werden, wenn sie nicht selbst durch
das Inversionszentrum hindurchgehen. (In jenem Falle,
haben wir soeben gesehen, entsprechen sich Kreis und
Gerade). Die Vermutung liegt also nahe, dass die Gleichung
(III) einen allgemeinen Kreis der Ebene darstelle. Wir
werden diese Vermutung sofort bestätigt finden.

Führen wir nämlich die durch die rechte Seite
geforderte Division teilweise aus, so ergibt sich:

+ (a--4d) ^^ (III')v= E 'V E J D + Ev
Dieser Ausdruck ist nun leicht geometrisch zu deuten.

Setzen wir

JhG' |S^ wUêê
wobei K(v) „Funktion K von v" bedeutet, so wird

V=G-\-HK(v) (IB")
Wie wir wissen, stellt K(v) einen Kreis durch den

Ursprung dar. Durch Multiplikation der Radien-Vektoren
nach K(v) mit der konstanten komplexen Zahl H werden
diese Vektoren in ihrer Grösse verändert und um den
bestimmten konstanten Winkel r\ (das Argument der
komplexen Zahl H^Hen) verdreht. Ist K=KeJX, so ist
HK= HKe'fr+ii. Das zweite Glied der rechten Seite der
Gleichung (Hl") stellt also wieder einen Kreis durch den
Ursprung dar. Es ergibt sich durch Grössenänderung und
Verdrehung um den Ursprung aus dem Kreis K(v).

Um V zu erhalten ist nun zu allen Radien-Vektoren
nach K(v) noch der konstante Vektor G zu addieren. Dies
ist gleichbedeutend mit einer Parallelverschiebung des
Kreises um den Wert G oder mit einer Verschiebung des

Ursprungs gegenüber dem Kreis um den Wert — G.

Wir sehen also, die Gleichung (III) ist die Gleichung
eines Kreises in allgemeiner Lage. Seine Konstruktion
entspricht genau derjenigen, die im vorhergehenden
Abschnitt gezeigt wurde.

Es können nun zwei besondere Fälle eintreten. Erstens
T- Ader Fall, wo —5- rein reell wird. Der Zähler unserer

Gleichung wird dann für einen bestimmten Wert v v„ zu
Null. Aus Gleichung (IH') erkennt man, dass der Charakter
der Kurve in diesem Sonderfall nicht geändert wird. Das
Besondere liegt nur darin, dass der Kreis wieder durch den
Ursprung geht. Letzterem entspricht aber nicht, wie im
vorhergehenden Abschnitt, der Wert v 00, sondern v v0.

Der zweite Sonderfall tritt ein, wenn — rein reell
ist. In diesem Fall wird für einen Wert v v0 der Nenner
der rechten Seite von Gleichung (III) verschwinden. Vwird
dann unendlich. Aus Gleichung (HF) erbalten wir die
Bedeutung dieser Gleichung.

Da nach Voraussetzung D — Ev0, so wird

K(V) —^ r.E (v — v„)
Setzen wir -=^ //' und (— — 1 v so erhalten wirE \v — v0

V=0-\-H'v'.
Das ist aber wieder die Gleichung einer allgemeinen

Geraden. Daraus ergibt sich :

Haben die komplexen Konstanten des Nenners einer
¦Kreisgleichung dasselbe Argument, so degeneriert der Kreis
zu einer Geraden von allgemeiner Lage inbezug auf den
Ursprung. Auf dieser Geraden entsprechen jedoch gleichen
Differenzen von v nicht mehr gleiche Strecken. Dem Wert

v 00 entspricht der Vektor V== G, dem Wert v v0 der
unendlich ferne Punkt der Geraden.

Der weitere Fall, wo D o wird, ist nur ein Unterfall

des soeben behandelten. Es wird dann v„ o.

Anwendung auf einen bestimmten Fall.
Es möge an dieser Stelle als Beispiel die graphische

Lösung jener Aufgabe vervollständigt werden, die in dem
erwähnten Artikel über den Wicklungssinn behandelt wurde.
Wir stiessen dort1) für die erste Schaltung auf die
Hauptgleichung (D). Wir entnehmen ihr durch Vergleichung
mit dem Ausdruck (III) die Werte :

n
4 26—j-3; Ä=/.36; G -£- 4,5

ö=-36+y-12; E=J-S; H=(a |-Z)) 188-/.57
Nun beachten wir, dass die Gerade D -+- Ev in E rein

imaginär ist. Es handelt sich also um .eine Gerade parallel
zur imaginären Axe. Der reelle Teil von D ist —36. In
diesem Punkt wird also die reelle Axe von der Geraden und
somit auch von ihrem Spiegelbild zur reellen Axe geschnitten.
Der zu der Geraden inverse Kreis hat also den Durchmesser

~ und somit sein Zentrum im Punkte
36 72

Dieses Zentrum ist nun mit der komplexen Zahl ff
zu multiplizieren, um den Mittelpunkt des Kreises H~K(v)
zu erhalten. Es ist

— ^7 (188 —j • 57) — 2,61 +/ • 0,79
der Wert dieses Mittelpunktes. In Abbildung 32) haben wir
ihn aufgetragen. Der gesuchte Ortskreis V geht aber nicht
durch den Koordinatennullpunkt. Vielmehr ist zu jedem

Abb. 3
JrtskreisKd. erste Schalfung

3.25

0,50
O.W

mrßi

Punkt des gezeichneten Kreises noch die komplexe Zahl G
zu addieren ; d. h. der Kreis ist um diesen Wert parallel
zu sich selbst zu verschieben. Statt dessen verschieben
wir den Koordinatenursprung von N aus in den Punkt
— G — 4,5 und betrachten diesen neuen Punkt O fortan
als Koordinatenursprung.

Es bleibt noch die Aufgabe, für die verschiedenen
Werte von v die entsprechenden Punkte auf dem Ortskreis
zu finden. Wir haben also grundsätzlich die in Abb. 2
gegebene Konstruktion durchzuführen. Der normale
Abstand der Geraden V" vom Punkte N ist in unserm Fall,
wie oben erwähnt, — 36. Der Abstand der gegenüber
dem Kreis H ¦ K (v) ähnlich gelegenen Geraden also — 36
(188 —j • 57). Das ist ein sehr grosser Wert und che
Konstruktion würde über unsere Zeichenfläche hinausfallen.
Wir brauchen aber auch nicht die Gerade selbst zu zeichnen.
Jede zu ihr parallele Gerade mit in bezug auf*den Punkt N
projektivischer Skala zu derjenigen des Spiegelbildes von
D -\- Ev versieht uns den gleichen Dienst. Bedeutet p
irgend einen reellen Proportionalitätsfaktor, so tragen wir
also auf dem Durchmesser NM als reelle Axe von N aus
die Strecke (— 36 p) ab. In diesem Punkt errichten wir
das Lot und tragen darauf die Strecke (—j • izp) ab, weil

') Siehe Seite 118 dieses Bandes (9. September 1916).
2) Der Masstab der Abbildungen 3 und 4 ist halb so gross, wie

jener der entsprechenden Zustandsdiagramme auf den Seiten Il6 und 118

dieses Bandes (9. September 1916).
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es sich ja um das Spiegelbild der Geraden D +- Ev handelt,
in dem die imaginären Grössen das entgegengesetzte
Vorzeichen annehmen. Der Punkt, den wir so erhalten,
entspricht dem Wert v — o. Für den Werti>= 1 addiert sich
dazu noch die Strecke (—j'.8p). Die Punkte —jp (12,
14, 16, 18, 20) entsprechen also den Werten v o, 1j^,

V21 8A> I> die in ^em Beispiel verwendet wurden.
Die projizierenden Strahlen aus N durch diese Punkte

schneiden aus dem Kreis die entsprechenden Endpunkte
des Vektors Fy heraus. Dies für den Fall, dass wir Fx 1

gesetzt haben, was wir bei entsprechender Wahl des
Massstabes immer tun können. Für die Genauigkeit der
Konstruktion wird es vorteilhaft sein, p so zu wählen,
dass die Punkte und ihre Projektion möglichst nahe aneinander

zu liegen kommen.
' Für den Fall der zweiten Schaltung ist der Gang der

Konstruktion selbstverständlich genau derselbe.
Aus Gleichung (D') (a. a. O.) entnehmen wir die Werte:

A 6 +/. 3 B j ¦ 28 G — 3.5
Z)=—28-)-_/• 12 £=—/ • 8 //=—92+y>45

Die Gerade D +- Ev ist wiederum parallel zur
imaginären Axe. Sie und ihr Spiegelbild in bezug auf die
reelle Axe schneiden die letztere im Punkt (— 28). Der

Mittelpunkt des Kreises K(v) ist somit der Punkt 1. Das

Zentrum M des Kreises H • K(v) ist demnach

§4 92 4-7-45 + ï-64— y

?^/skrels

Abb.4
Ortskreis F.d. zweite Schaltung

12s

7,o0

In Abbildung 4
ist dieser Kreis
gezeichnet. Der Null-

fx : punkt für die Vek¬
toren Fy liegt gegenüber

dem Punkte
N um den Betrag
— G 3,5 verschoben.

Wir gelangen
auf diese Art zum
Punkte O. Auf dem
Durchmesser NM
errichten wir hierauf
im Abstand (28 p)
ein Lot und tragen
darauf die Strecke

(j-12p) auf. Ihr Endpunkt entspricht dem Wert V o der
Geschwindigkeitsskala auf der Geraden. Dem Wert d=bi
entspricht der Punkt jp (12—8). Den Werten v o, !/4,
Vz. SA> * entsprechen also die Punkte jp (12, 10, 8, 6, 4).
Projizieren wir endlich diese Punkte von N aus auf den
Kreis, so sind damit die Endpunkte der entsprechenden
Vektoren Fy gefunden, wenn wieder Fx 1 gesetzt
worden ist.

Damit ist die Lücke ausgefüllt, die wir in der graphischen
Lösung unserer Aufgabe in jener Studie über den Wicklungssinn

gelassen hatten. Die hier graphisch gefundenen
Endpunkte der Vektoren Fv stimmen tatsächlich mit den dort
berechneten Zahlenwerten überein. Das zeichnerische
Verfahren ist, wie man in der Durchführung sieht, um vieles
einfacher als die Zahlenrechnung, die hier auf das
unumgängliche Mindestmass zurückgeführt ist. Das Verfahren
hat stets den Vorteil der Anschaulichkeit und gibt daher
auch zu Fehlern weit seltener Anlass.1)

Bevor wir unser Beispiel verlassen, soll die darin
gestellte Aufgabe noch von einer andern Seite beleuchtet
werden. Es wird sich dadurch auch die Brauchbarkeit der
gewonnenen Kenntnisse unter einem neuen Aspekte zeigen.

Wir haben a. a. O. der Einfachheit halber Fx konst.
gesetzt, während in Wirklichkeit die Klemmenspannung als
konstant anzunehmen gewesen wäre. Wir müssten daher,
um die dort in den Abbildungen 6 und 9 gegebenen Kurven

Ein Vergleich der Abbildungen 3 und 4 zeigt wieder in auffälliger
Weise die grundsätzliche Bedeutung des Wicklungssinnes und die
Notwendigkeit, ihn IU berücksichtigen.

zeichnen zu können, die gefundenen Diagramme nachträglich
auf konstante Spannung reduzieren.

Wir wollen hier nun untersuchen, was für geometrische
Oerter sich für Fx und Fy ergeben, wenn wir von der Klemmenspannung

U als der gegebenen konstanten Grösse ausgehen.
Aus der Gleichung (2) a. a. O. ergibt sich unter

Berücksichtigung der Gleichungen (5) und (9)

-.ja>N(i—a^-)Fx.U

Der Wert -ff- ist uns durch die Gleichung (d) in der Form.

Fx
A + Bv

gegeben
Fx
U

D + Ev
Es ergibt sich also :

D + Ev

j œ N [x—a%L\ jcaN\[D — aA)-+{E—aB)v\

von Fy

Das ist aber wiederum die Form der allgemeinen
Kreisgleichung. Der geometrische Ort von Fx bei konstanter
Spannung und veränderlicher Umlaufzahl ist demnach ein
Kreis. Seine Konstruktion ist ebenso einfach, wie in den
angeführten Beispielen.

Nun fragen wir weiter nach dem geometrischen Ort
bei konstanter Klemmenspannung. Es ist

Fv_=Fv_,Fx_ A + Bv
" U ~~ Fx' U

~~~
jiùN- [\D — a A) + (E — a B)v]'

Also auch in diesem Fall, wenn nicht Fx sondern U als
konstant vorausgesetzt ist, bleibt der geometrische Ort von Fy
ein Kreis.

Es ist nun naheliegend noch zu fragen, in welcher
Weise z. B. der Netsstrom Ixl bei konstanter Klemmenspannung

in Abhängigkeit von der Umlaufzahl sich ändert.
Die Gleichung (13) a. a. O. ergibt den Ausdruck:

—— FnN^ a IX1 -+ C /y2"

Ferner lautet dort die Gleichung (c)

Iy2=-jß-(cFy-{-bFx-\-jvcFx).
Setzen wir diesen Wert für Iyi in die vorhergehende
Gleichung ein, und bringen gleichzeitig Ixl allein auf die
linke Seite, so erhalten wir

Zur Erleichterung der Uebersicht setzen wir nun den durch
a dividierten Wert der eckigen Klammer identisch gleich
dem Ausdruck

A +BV

alx

[h+Jv+L%]-[h +-JV-+L-D + E
Setzen wir ferner den vorhin gefundenen Wert

Fx __ D + Ev
U — M + Nv>

so erhalten wir für
Ixt (&+ Jv) (D + Ev) + L (A + Bv)
U ' M + Nv

Ordnen wir den Zähler der
rechten Seite nach Potenzen
des Parameters v und
definieren :

{HD-+-LA) A'\
(JD-+ffE-\-LB) B';

JE—C,
so ergibt sich der Ausdruck

Ixi A' + B'v + C'v*
U M + Nv •

als Ort des Netzstromes bei
konstanter Spannung. Dieser

Ausdruck ist komplizierter
als die bisher

behandelten. Wir werden seine
geometrische Bedeutung im
II. Teil dieser Arbeit zu
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Abb. 1. Grundrisse Haus Oettli.
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untersuchen haben und finden, dass er eine zirkuläre
Kurve ß. Ordnung darstellt. *)

Kurven dieser Art sind nicht mehr so einfach zu
konstruieren wie Gerade und Kreise. Man wird deshalb,
wenn nicht besondere Gründe vorliegen, die
Vektordiagramme nicht auf solchen Ortskurven aufbauen, wenn
einfachere zur Verfügung stehen. Wir ziehen also aus
diesen Betrachtungen den Schluss, dass es in unserem
bestimmten Fall angezeigt gewesen wäre, die Vektordiagramme

Kleinwohnungsbauten
der Architekten Fritschi & Zangerl, Winterthur.

(Mit Tafeln 33 und 34.)

Vom volkswirtschaftlichen Standpunkt aus weit wichtiger

als architektonische Glanzleistungen in künstlerisch
interessanten Monumentalbauten ist die Pflege des
Kleinwohnungsbaues, die Schaffung guter Typen für die
Wohnbedürfnisse der erdrückend grossen Mehrheit der Bevölke-

^m^^f^'^t^^^f^^^^'^^i'.^^^^^^^-^^..^'^^^^
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Abb. 5. Dreifamilienhaus Thoma. — Südgiebel.
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Abb. 6. Dreifamilienhaus Thoma. — Nordgiebel.
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Abb. 4. Grundrisse des Dreifamilien-Wohnhauses Thoma, mit Laden- und Werkstatt-Anbau. — Masstab 1:400.

auf den Ortskreisen der Flüsse Fx und Fy aufzubauen.
Wir hätten uns dadurch die nachträgliche Reduktion der
Diagramme auf konstante Spannung ersparen können.2)
Dagegen würde es sich nicht empfohlen haben, direkt auf
das Netzstromdiagramm für konstante Spannung
hinzusteuern.8)

Nach dieser Anwendung der gewonnenen Kenntnisse
auf einen bestimmten Fall, werden wir zum weitern Ausbau
der entwickelten Methode zurückkehren. Der zweite Teil
wird uns zu den Kegelschnitten, sowie zu Kurven ß.
Ordnung führen, die alle bei Aufgaben aus der Alltags-Praxis
der Elektrotechnik eine Rolle spielen. (Schluss folgt.)

') Vergl. z. B. Algebraische Kurven, Sammlung Göschen, Nr. 435/36,
¦) In jenem Zusammenhang wurde dies aber unterlassen, um

möglichst alle Ueberlegungen auszuschalten, die sich nicht mit der Hauptfrage

des Wicklungssinnes berühren.

8) Diese Ueberlegungen werfen ein Licht auch auf die Frage nach
der Zweckmässigkeit der bisher ausschliesslich üblichen Verwendung der
Inversion für den Uebergang von Spannungsdiagrammen bei konstantem
Strom auf Stromdiagramme bei konstanter Spannung. Man kennt die
Denkweise, die durch erzwungene, der Natur der Probleme häufig fremde
Analogieschlüsse zu dieser einseitigen Entwicklung unserer Methoden
geführt hat. Die obigen Darlegungen setzen die Inversion gewissermassen
in ihre natürlichen Rechte ein und erhöhen dadurch ihre Leistungsfähigkeit
um ein Vielfaches.

rung. Als solche vorbildliche Typen hatten wir u. a. vor
etwas mehr als Jahresfrist1) die Häuser der Eisenbahnerkolonie

Vogelsang in Winterthur sowie einige ähnliche
gezeigt. Heute lassen wir aus dem Tätigkeitsgebiet der
gleichen Architekten einige weitere Beispiele folgen. Wie

') In Band LXVI, Seiten 42 und 52 (Juli 1915).
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Abb. 2. Typ 1. — Doppel-Einfamlllsnhauser Bernet. — Abb. 3. Typ II.
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