Zeitschrift: Schweizerische Bauzeitung

Herausgeber: Verlags-AG der akademischen technischen Vereine

Band: 67/68 (1916)

Heft: 17

Artikel: Die Korrektion der Pierre-Pertuis-Strasse

Autor: [s.n.]

DOI: https://doi.org/10.5169/seals-33000

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 02.10.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Abb. 2. Abzweigung der neuen von der alten Strasse.

festigkeit nach 45 Tagen 245 kg/cm^2 überschreitet; die obere Grenze für $\sigma_{\delta d}$ ist dann 50 kg/cm^2 . — An den Unterseiten der Schrägen und Kehlen von Plattenbalken, wo diese an die Mittelstützen anschliessen, kann $\sigma_{\delta d}$ um $^1/_3$, jedoch nicht über 50 kg/cm^2 erhöht werden. — Werden bei Brücken sämtliche möglichen Einwirkungen berücksichtigt, so dürfen die Spannungen unter 1., 2. und 3. um $30^{0}/_{0}$ überschritten werden, wobei für σ_{ε} 1200 kg/cm^2 und für $\sigma_{\delta d}$ 60 kg/cm^2 als äusserste Grenzen einzuhalten sind. — Beim Vergleich mit den in der Schweiz zulässigen Spannungen auf Biegung beanspruchter Platten ist zu beachten, dass für gewöhnliche Verhältnisse mit n=15 $\sigma_{\delta d}$ um 3 bis 5 kg/cm^2 höher ermittelt wird als wie mit n=20. — Da in der Praxis der Nachweis höherer Würfelfestigkeit des Beton vor der Aufstellung der statischen Berechnung etwas schwer zu beschaffen sein wird, werden die Erhöhungen für $\sigma_{\delta d}$ eher Ausnahmen bilden.

Aus diesen Auszügen und Erörterungen kann der Schluss gezogen werden, dass zur Zeit die Dimensionierung von Eisenbetonbauwerken nach den "Bestimmungen" oder nach der schweizerischen Verordnung von 1915 nur geringfügige Unterschiede zeigen wird. Die günstigen Ergebnisse der umfassenden Untersuchungen sind von dem deutschen Betonausschuss nur mit grosser Vorsicht in die Bestimmungen eingeführt worden. Es entsteht hieraus nur eine erhöhte Sicherheit der Bauwerke. Der Zukunft bleibt es vorbehalten, im Eisenbetonbau dem Wesen dieses Verbundmaterials noch besser zu entsprechen und mit Rücksicht auf die Unbestimmtheiten in der Qualität des Beton die Berechnungsmethoden zu vereinfachen, ohne den wissenschaftlichen Boden zu verlassen, z.B. durch intensivere Verwertung des Begriffes des Armie-

rungsprozents.

Die Aufstellung von Vorschriften an Hand eines umfangreichen Versuchsund Erfahrungsmaterials war keine leichte Sache. Zu der gelungenen Lösung dieser Aufgabe kann der deutsche Ausschuss für Eisenbeton beglückwünscht werden.

Zürich, März 1916. F. Schüle.

Abb. 3. Neue und alte Strasse an der Pierre-Pertuis.

Die Korrektion der Pierre-Pertuis-Strasse.

Der schon von den Römern benutzte Jura-Uebergang der Hauptstrasse Biel-Basel überschreitet die Wasserscheide zwischen Schüss- und Birstal mit einer Scheitelhöhe von 830 m ü. M. südlich von Tavannes. Die Strasse hat auf der Südrampe Steigungen von 12 bis 14%, auf der Nordrampe solche bis 180/0, dazu stellenweise sehr ungünstige Krümmungsverhältnisse. Gleich nördlich der Passhöhe benützt der alte Weg ein natürliches Felsentor, Pierre-Pertuis genannt, das auf nebenstehendem Uebersichtsplan, sowie auf Abb. 3 sichtbar ist. Seit langem bestand das Bedürfnis, diese Strasse zu verbessern. Während des gegenwärtigen Grenzdienstes unserer Armee ist nun nach einem Projekt der bernischen Baudirektion die Korrektion der Nordrampe dieser Strasse ausgeführt worden und zwar von Punkt 825 bis 770 auf nebenstehendem Uebersichtsplan. Mit Erlaubnis der Genie-Abteilung des Armeestabes geben wir hier einige Bilder dieses unter aussergewöhnlichen Umständen durchgeführten Strassenbaues wieder, um damit eines der zahlreichen Beispiele produktiver Arbeit, der Schaffung von bleibenden Friedenswerken durch unsere Armee vorzuführen.1)

Wie der Abb. 1 zu entnehmen, zweigt die neue Strasse etwa 100 m nördlich des Scheitelpunktes auf der westlichen Seite von der alten ab (Abb. 2). Sie folgt mit $6,8^{0}/_{0}$ fallend einem felsigen Hang, überschreitet den Felsriegel der Pierre-Pertuis (Abb. 3), biegt um einen weiteren Felsvorsprung in scharfer Krümmung gegen Nordwesten (Abb. 4), um dann ohne weitere Geländeschwierigkeiten mit 6 bis $4^{0}/_{0}$ fallend (Abb. 5) die alte Strasse südlich des Dorfes

Tavannes wieder zu erreichen. Die Strasse hat eine minimale Fahrbahnbreite von 5,6 m und in den Kehren Verbreiterungen bis zu 3 m, samt entsprechender Gefällsverminderung. Von der Gediegenheit der Ausführung zeugen die Kunstbauten beim Felsvorsprung der "Nase" (Abb. 4). Von der

1) Vergl. auch: «Die hölzernen Birsbrücken bei Münchenstein» in Band LXV, Seite 199 und 244 (Mai 1915).

Abb. 8. "Ende Arbeit!"

Schwierigkeit der Bauausführung, bei der Maschinen-bohrung zu Hilfe genommen wurde, geben die Abb. 6 und 7 einen Begriff. Die Hauptkubaturen der geleisteten Arbeiten sind: Aushub und Material-Transport 11 152 m3, Aushub in gewachsenem Fels 4432 m³, Humusanlegen der Böschungen

6450 m², 20 cm Steinbett starkes 5962 m2, 10 cm Bekiesung 6280 m2, Mörtel-Mauerwerk für Stützmauern, Viadukte, Gewölbe, Brüstungen, Durchlässe 311 m³ u.s.f. Der zu sprengende Fels beanspruchte pro m3 rund 0,65 m Bohrloch und 0,15 kg Gelatine-Telsit. Am 11. Januar vorigen Jahres begannen die eigentlichen Bauarbeiten und am 22. April 1915 war die 1200 m lange Korrektionsstrecke für alle Kriegsfahrzeuge fahrbar. Diese Arbeiten an der

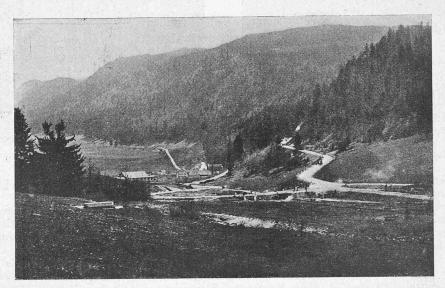


Abb. 5. Kehre der neuen Pierre-Pertuis-Strasse, von Nordwesten.

Pierre-Pertuis zeigen, dass auch durch Infanterie-Truppen regelrechte Kunstbauten mit vollem Erfolg ausgeführt werden können, wenn durch Zuteilung geeigneter Genie-Offiziere für eine gute Bauleitung gesorgt wird.

Baubudget der Schweiz. Bundesbahnen für 1916.

Uebungsgemäss entnehmen wir dem Baubudget für das Jahr 1916 der Schweizer. Bundesbahnen die sich auf den Bau neuer Linien oder auf Neu- und Ergänzungsbauten an den im Betrieb stehenden Linien beziehenden wichtigsten Ausgabeposten¹). Bau neuer Linien:

Simplon-Tunnel II	4500000 Fr.
Brienzerseebahn	1 300 000 "
Genfer Verbindungsbahn	170 000 "
Neu- und Ergänzungsbauten an fertigen Linien	Star Challen
Hauensteinlinie	2000000 "
Einführung des elektrischen Betriebs	365 000 "
Kreis I	1789000 "
Kreis II	2282500 "
Kreis III	1 222 000 "
Kreis IV	423 000 "
Kreis V	853 000 "
Rollmaterial	6 937 600 "
Mobiliar und Gerätschaften	329 300 "
Hülfsbetriebe	2600300 "
Total	24 771 700 Fr.

Zu dieser Gesamtsumme ist noch der die Betriebsrechnung belastende Anteil von 3166090 Fr. hinzuzuzählen, durch die sie sich bei gleichzeitigem Abzug eines unter "Verwendungen auf Nebengeschäfte" aufgeführten aktiven Postens von 97250 Fr. auf 27840540 Fr. erhöht. Bei der Vergleichung dieser Zahl mit dem Budgetbetrage für das Vorjahr2) ist zu berücksichtigen, dass letzterer nachträglich um 5250000 Fr. auf 26077740 Fr. erhöht worden ist. Die Vermehrung der Bauausgaben für 1916 gegenüber jenen für 1915 beträgt daher 1762 800 Fr., was auf die beabsichtigte Anhandnahme der Arbeiten für die Einführung der elektrischen Zugförderung zurückzuführen ist3). So enthält der Posten "Hülfsbetriebe" ausser den unter "Betrieb" aufgeführten jährlichen Wasserzinsen 90000 Fr. als Konzessionsgebühr für neu zu erwerbende Wasserkräfte, ferner 1300000 Fr. bezw. 1100000 Fr. für den Bau

der Kraftwerke Ritom und Amsteg, während im Posten "Einführung des elektrischen Betriebs" 300 000 Fr. für die Erstellung einer Versuchsstrecke mit Messtation und Energiebeschaffung und unter "Rollmaterial", als I. Rate, eine gleichhohe Summe für die Anschaffung von Probelokomotiven für die Gotthardlinie figurieren. Was den Simplontunnel an-

betrifft, so erreichten die Ausgaben Ende 1915 rund 14500000 Fr., d.h. 42°/0 des bewilligten Kredits von 34600000 Fr. Durch die für die Brienzerseebahn veranschlagte Summe wird der sich als ungenügend erweisende Kredit vorläufig um 177000 Fr. überschritten. Die für die Hauensteinlinie vorausgesehenen Ausgaben im Betrage von 2000000 Fr. stellen eine Ueberschreitung des im Januar 1912 von 24 000 000 Fr. auf 26 000 000 Fr. erhöhten Kredits um weitere 1500 000 Fr. dar. Der

grösste Teil der Mehrkosten entfällt auf den Tunnel, so unter anderem auf die Ventilationsanlage mit Schacht und auf die Blockstation im Tunnel, die im Voranschlag nicht1) vorgesehen waren. Die für die fünf Kreise aufgeführten Bauausgaben enthalten die folgenden wichtigeren Posten (über 200 000 Fr.): im Kreis I Umbau und Erweiterung der Bahnhöfe Lausanne und Brig 200 000 Fr., bezw. 430 000 Fr., zweite Geleise Visp-Brig 480 000 Fr. und St. Blaise-Neuenstadt 320 000 Fr., im Kreis II Erweiterung der Bahnhöfe Pratteln und Biel 200 000 Fr., bezw. 1 090 000 (event. 1 390 000) Fr., Stellwerk im Bahnhof Basel eventuell 200 000 Fr., zweites Geleise Aarburg-Luzern 480 000 Fr., zweite Geleise Bern-Thun eventuell 370 000 (statt nur wie vorgesehen 150 000) Fr., und Olten-Biel eventuell 230 000 (statt nur 40 000) Fr.; im Kreis III Erweiterung der Geleiseanlage des Bahnhofs Baden 250 000 Fr., Umbau der linksufrigen Zürichseebahn im Gebiete der Stadt 400 000 (event, 900 000) Fr., zweites Geleise Thalwil-Richterswil event. 200 000 Fr., Ersatz der untern Limmatbrücke bei Wettingen und der Linthbrücke bei Schwanden zusammen event. 340 000 Fr.; im Kreis IV event. 459000 (statt nur 59000) Fr. für das zweite Geleise Winterthur-St. Margrethen; im Kreis V event. 400 000 (statt nur 50 000) Fr. für die Erweiterung des Bahnhofs Chiasso und 220 000 (event, 360 000) Fr. für Arbeiten am zweiten Geleise der Stecke Giubiasco-Chiasso.

An Rollmaterial ist in der angegebenen Summe, in der die Vergütung für auszurangierendes Material berücksichtigt ist, die Anschaffung von 21 Dampflokomotiven, 71 Personenwagen, 22 Gepäckwagen und 490 Güterwagen vorgesehen, dazu noch die erwähnten elektrischen Probelokomotiven.

Nekrologie.

† H. Baur. Mitten aus voller Berufstätigkeit ist Architekt Hans Baur-Widmer in Zürich am 31. März d. Jahres im Alter von erst 53 Jahren plötzlich abberufen worden. Wir entnehmen dem Nachruf, mit dem ein Freund in der "Zürcher Wochenchronik" sein Bild begleitet, nachstehende Angaben.

Am 3. Nov. 1863 geboren, verbrachte der Verstorbene eine fröhliche, durch nichts getrübte Jugendzeit. Sein Vater war der weitumher bekannte und geachtete Baumeister Johannes Baur, der sich vom einfachen Maurermeister zum Chef der grossen und angesehenen Baufirma, die seinen Namen trägt, heraufgearbeitet hatte. Hans Baur besuchte die Volksschule und nachher das zürcherische Realgymnasium. Er erwählte dann als Lebensberuf das Baufach. Die erste Ausbildung empfing er an der Bauschule des kantonalen

¹⁾ Aus verschiedenen Gründen hat sich diese kurze Berichterstattung verzögert, was unsere Leser entschuldigen wollen. Redaktion.

²⁾ Vergl. Band LXIV, Seite 233 (21. November 1914).

³⁾ Vergl. Seite 98 dieses Bandes (19. Februar 1916).

¹⁾ Vergl. Band LVIII, Seite 238 (28. Oktober 1911) und 343 (16. Dezember 1911).

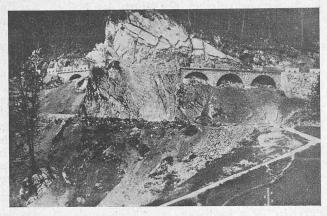


Abb. 4. Lehnenviadukte der neuen Strasse an der "Nase".

Platten sind mindestens 8 cm dick zu bemessen; bei Rippendecken bis zu 0,6 m Axabstand muss die Platte mindestens 5 cm stark sein. Es sind Querrippen von Stärke und Bewehrung von Tragrippen anzuordnen und zwar bei 4 bis 6 m Spannweite mindestens eine, über 6 m mindestens zwei. - Für Einzellasten gilt als Verteilungsbreite quer zu den Trageisen 2/3 der Stützweite, mit oder ohne verteilende Deckschicht, parallel zu den Trageisen die Breite der Einzellast plus zweimal die Deckschichtdicke.

Für die Berechnung der Schubspannungen am Auflager kommt die Breite der Einzellast vergrössert um das Zweifache von Deckschicht plus Plattendicke in Betracht. Geht die Schubspannung τ_0 bei Balken über 14 kg/cm², so ist die Rippenstärke zu vergrössern, in den Balkenteilen mit $\tau_0 > 4 \, kg/cm^2$ sind die Schubspannungen durch das Eisen vollkommen aufzunehmen. — Haftspannungen brauchen nicht berechnet zu werden, wenn die Enden der Eisen mit runden oder spitzwinkligen Haken versehen und die Eisen nicht stärker als 26 mm sind. — Betonzugspannungen sind zu ermitteln bei Brücken unter Geleisen, die von Hauptbahn-Lokomotiven befahren werden; zur Vermeidung von Rissen (?) sind die Spannungen $\sigma_0 = 750 \ kg/cm^2$, $\sigma_{bz} = 24 \ kg/cm^2$ einzuhalten.

Es ist zu bedauern, dass in der graphischen Tabelle, welche die Ermittlung der Rippenbreite vereinfachen soll, der "Armierungsprozent" sich nicht wie allgemein üblich auf die Nutzhöhe mal Rippenbreite, sondern auf die Rippenhöhe allein (d. h. ohne Plattendicke) mal Rippenbreite bezieht. Der Armierungsprozent ist zur raschen Beurteilung der statischen Verhältnisse erfahrungsgemäss so wertvoll, dass, um Missverständnissen vorzubeugen, an seiner Ermittlung nach Ansicht des Referenten nichts geändert werden sollte.

Bei Brücken über Bahnanlagen wird ein besonderer Schutz (Anstrich oder aufgehängte Schutztafeln) gegen die Einwirkung der schwefligen Rauchgase empfohlen.

Bei Stützen gelten für die zulässige zentrische Belastung die folgenden Formeln: $P = \sigma_b (F_b + 15 F_e)$, wenn Längseisen (min. 0,8% max. 3%) und Bügel vorhanden sind, und $P = \sigma_b (F_k + 15 F_e + 45 F_s)$ bei umschnürten Säulen, wobei Fk der Querschnitt des umschnürten Kerns bedeutet. Der Ausdruck in Klammern darf höchstens gleich 2 Fb betragen. Die Längsbewehrung (Fe) soll mindestens 1/3 der Querbewehrung (Fs) sein. Umschnürte Säulen sind solche mit Querbewehrung nach der Schraubenlinie oder mit Ringbewehrung versehene Säulen von kreisförmigem Kernquerschnitt. Der Abstand der Ringe oder die Ganghöhe darf nicht grösser als 1/5 des Durchmessers des Kernquerschnittes oder über 8 cm betragen.

Auf Knickung ist eine zentrisch belastete Säule zu berechnen, wenn ihre Höhe mehr als das 15 fache der kleinsten Querschnittsabmessung beträgt; hierbei ist die Eulersche Formel anzuwenden mit $E_b=$ 140 $t|cm^2$ und $J = 70 P \cdot l^2$; P_o ist in t die Belastung der Stütze, l die volle Stablänge in m. Diese Berechnungsweise setzt eine 10 fache Sicherheit voraus; sie ergibt für kürzere Säulen, d. h. für solche, bei denen das Eulersche Gesetz nicht in

Frage kommen kann, wesentlich höhere Belastungen als die schweizerische Verordnung von 1915. Es geht dies aus folgendem Beispiel hervor: Querschnitt des Beton 20 × 20, Eiseneinlagen 4 Eisen à 20 mm:

4,00 m 6,00 m Säulenlänge . 12,81 9,61 Belastung nach der Schweiz. Verord. 1916 Belastung nach den deutsch. Bestimmungen 20,3

Solche Unterschiede rühren davon her, dass die Knickung von Eisenbetonstützen experimentell noch nicht genügend abgeklärt ist.

Die zulässigen Spannungen sind unter gewöhnlichen Verhältnissen aus nachfolgender Zusammenstellung ersichtlich, die einen Vergleich mit den Werten der schweizerischen Verordnung unmittelbar gestattet:

	Bahnbrücken kg/cm²	Strassenbrücken kg/cm²	Hochbauten
1. Zentrischer Druck. Beton	30	30	35 .
2. Biegung und exzentrischer Druck.			
Beton	30	35-40	40
3. Biegung und exzentrischer Druck.			
Eisen	750	900-1000	1200
4. Biegung und exzentrischer Druck.			
Beton auf Zug	5	5	5
5. Schubspannung τ_0 Beton	4 .	4	4
6. Haftspannung τ_1 Beton	4,5	4,5	4,5
7. Drehungsspannung des Beton .	4,0	4,0	4,0

Die Werte unter 1. sind bei Säulen mehrgeschossiger Gebäude auf 25 kg/cm2 im Dachgeschoss und 30 kg/cm2 im darunter liegenden Geschoss abzumindern. Für Platten von weniger als 10 cm Dicke gelten die Werte $\sigma_e =$ 1000 und $\sigma_{bd} = 35 \ kg/cm^2$. — Es dürfen die Betondruckspannungen bis auf 1/7 der Würfelfestigkeit in Säulen und 1/6 in Rahmen und Bögen erhöht werden, wenn die Würfel-

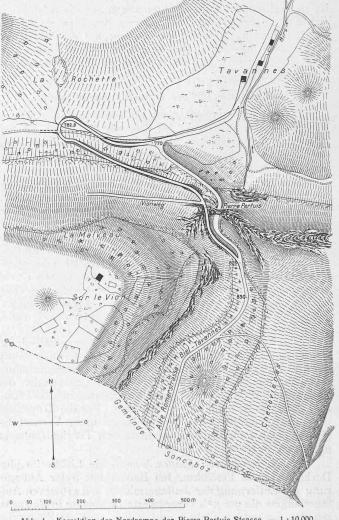


Abb. 1. Korrektion der Nordrampe der Pierre-Pertuis-Strasse. - 1:10000.