
Zeitschrift: Schweizerische Bauzeitung

Herausgeber: Verlags-AG der akademischen technischen Vereine

Band: 65/66 (1915)

Heft: 10

Artikel: Festigkeitsberechnung von Kugelschalen

Autor: Bolle, L.

DOI: https://doi.org/10.5169/seals-32288

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 07.01.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-32288
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


\. September 1915.J SCHWEIZERISCHE BAUZEITUNG

INHALT: Festigkeitsberechnung von Kugelschalen. — Die Vereinigten Lagerplätze

Haggen-Bruggen bei St. Gallen. — Wettbewerb für ein Kirchgemeindehaus in
Zürich-Wiedikon. — Elektrizitätswerke der Schweiz. — Miscellanea : XLVÎ.
Generalversammlung des Schweizerisch^™ Ingenieur- und Architekten-Vereins.
Leistungsmessungen an Turbinen auf elektrischem Wege. Vorschläge zur Verhütung von Oel-

schalterexplosionen. Die neue Ohiobrücke bei Kenova. Zerschneiden von Gusseisen in
warmem Zustande. Die Petroleumgewinnung der Welt. — Konkurrenzen : Bürgerspital
Solothurn. — Nekrologte : Walter Jegher. J. Kelterborn. — Literatur : Die
Rammwirkung im Erdreich. Literarische Neuigkeiten. — Vereinsnachrichten: Schweizerischer
Ingenieur- u. Architekten-Verein. Gesellschaft ehern« Studierender : Stellenvermittlung.

Band 66. Nachdruck von Text oder Abbildungen ist nur mit Zustimmung der Redaktion und unter genauer Quellenangabe gestattet. Nr. 10.

Festigkeitsberechnung von Kugelschalen.
Von Ing. L. Bolle, La Chaux-de-Fonds.

(Schluss von Seite 108.)

Belastungsfälle 5 und 6.
Vorher sind die Belastungsfälle 3 und 4 als zwei

Superpositionen der partikulären Integrale Xi und Yt
gefunden worden; hier setzen sich die Fälle 5 und 6
zusammen aus den vier partikulären Lösungen, die zu den
Integralen Xlt Fi, ^2, Y% der Grunddifferentialgleichung
gehören. Die neu hinzutretenden Integrale X2 und Fj und
ihre entsprechenden Differentialausdrücke ©ä und W% werden
wieder durch Reihenentwicklungen dargestellt, während die
Lösungen selbst sich aus diesen Funktionen nach denselben
Formeln (1) ableiten lassen, wenn wir nur überall den
Index 1 durch 2 ersetzen. Wir nehmen an, diese vier
Lösungen seien für unsere gusseiserne Schale (R— 143 cm,
2 h 6 cm und v 0,2) bekannte Funktionen von a, die wir
direkt zur Berechnung der Fälle 5 und 6 benutzen können.

Entsprechend den vier Lösungen kommen jetzt in der
Zusammensetzung vier Integrationskonstanten aìt 61( a%

und 62 vor, zu deren Bestimmung wir vier Gleichungen
nötig haben. Auf den zwei Rändern unseres Bodens (es
sei z. B. aa 390 und a{ 6° gewählt) sind die folgenden
Bedingungen zu erfüllen (vergi. Abb. 1 auf S. 106) :

Belastungsfall 5 Belastungsfall 6
a — aa aH o ax o ö# o ox — o

a a
\°n= —Os 238^/cm2) oH — os 238 kglcm1)

' [Or, ¦ o ê o
die gesuchten Lösungen sind somit vollständig bestimmt.

wir auf dem inneren Rande andere Bedingungen
vorschreiben (z. B. die Schale dort verstärken oder sie als
geschlossen annehmen), während die Spannungen in der
Nähe der Oeffnung dabei starke Veränderungen erfahren.

Andere Belastungsgesetze.

Von den sechs betrachteten Hauptfällen wird, wenn
wir das Belastungsgesetz [X <p (a) Z 1// (a)] ändern, nur
der erste zu ersetzen sein. Die fünf letzten gehören eigentlich
zu dem Falle der unbelasteten Schale und werden daher
durch eine solche Aenderung gar nicht berührt. Wir haben
sie auch nur dazu benutzt, um die in jedem Beispiel
vollständig bestimmte Lösung 1 den verschieden gestellten
Randbedingungen anzupassen.

Diejenige Lösung (1) zu finden, die zu einer
gewissen Belastung gehört, das soll uns die mathematische
Lösung leisten. Für die zwei praktisch noch in Betracht
kommenden Belastungsgesetze (Eigengewicht oder Belastung
durch diejenigen Trägheitskräfte, die einer um die Axe

P^ichförmig rotierenden Schale entsprechen) lassen sich
die Resultate sehr einfach mit Hülfe von elementaren
Funktionen ausdrücken. Nur in einem, schon an sich
interessanten Beispiel möchten wir diese partikuläre Lösung
noch näher beschreiben.

Es handle sich um "eine geschlossene Kugelschale, die
gleichförmig um einen Durchmesser rotiert, und es sei die
spezifische Masse mit m und die Umfanggeschwindigkeit
am Aequator mit V bezeichnet. Die durch die Trägheitskräfte

hervorgerufenen Spannungs- und Deformations-
grössen nehmen dann die folgenden Werte an:
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Abbildung 6. Abbildung 7.

Die Abbildungen 6 und 7 zeigen, wie die Spannungen in
der Nähe des belasteten Randes grosse Werte annehmen, nach
einigen Schwankungen indessen ziemlich rasch abnehmen,
um in der Nähe des Aussenrandes ganz gering zu werden.
Aus den gerechneten Spannungen or und at liessen sich
die Deformationsgrössen (Abb. 8 und 9) mit Hülfe der
Gleichungen (2) und (3) berechnen.

Wir wollen uns bei diesen Untersuchungen nicht zu
lange aufhalten und fügen nur noch eine Bemerkung von
praktischer Bedeutung hinzu.

Eine auf dem inneren Rande wirkende Belastung
(oH, oder oH und ox) übt, wie wir oben gesehen haben, auf
die äusseren Teile des Bodens nur geringen Einfluss aus.
Wird daher eine offene Schale so belastet, dass die grösste
Beanspruchung gerade in der Nähe des Aussenrandes
auftritt (das ist für die meisten Belastungen der Fall), so
wird sich diese Beanspruchung nicht stark verändern, wenn
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Abbildung 8.

C

Abbildung 9.

or M cos2 a ; a. -4cos2a + [mV* \\ sin3 a~ r. I, li r, l, \ Ohi2h
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|(l+r)(w^-A)sin,
-g- \m V2 (1 + v cos3 a) ^j (sin2 a + 2 v cos2 a)

C,=
(3 + v) m V*

R-¦KSBNll ¦1 f3 4. y) (5 4. v) 2 h m V*
52_„2 #1-, Ji2

Je nach der Grösse von — wird diese Lösung sehr
R

verschieden ausfallen.

Geht z. B. -— in. Null über, so nähern sich die ge-R
fundenen Grössen den Grenzen

or M o. ot m V2 sin2 aay o
R R

u -=(1 + v) • mV2 • sin a • cos a w -= • m V2 • (1 + v cos2 a)

unsere Kugel verhält sich dann gleich einer Membran (ohne
Biegungswiderstand).
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Wählen wir aber wie in dem gerechneten Beispiele

-s- 0,1, so erhalten wir für die Biegungsspannungen noch

beträchtliche Werte, während die anderen Grössen nicht
stark von ihren Grenzen abweichen. Dies erklärt sich
daraus, dass die Abweichungen im allgemeinen mit der

j,
zweiten Potenz von—, die Biegungsspannungen aber nur
mit der ersten Potenz von — unendlich klein werden.
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Abbildung io. Abbildung ii.
Zur Erläuterung der Abbildungen io und n ist noch

zu s.agen, dass sie das elastische Verhalten der Kugelschale

R io cm, 2 h 2 cm, v 0,3 darstellen, wenn
die Grösse m-V2 — 1000 kg/cm2 gesetzt wird. Dieser
Ausdruck m • V2 stellt bekanntlich diejenige Spannung dar, die
in einem aus demselben Material ausgeführten, mit der
Geschwindigkeit F rotierenden Ringe auftritt. Die elastischen
Verschiebungen sind ihrer Kleinheit wegen in einem (100 mal)
grössern Masstabe als der Kugelradius selbst aufgetragen
worden. Unten in der Abb. 11 ist in gleicher Weise wie
oben die Deformation der entsprechenden unendlich dünnen
Kugelschale (R 10 cm, mV2 — 1000 kg/cm2) dargestellt.

Verwandte Böden; Aufstellung von empirischen Formeln.

Wir haben in den vorangehenden Entwicklungen
die Brauchbarkeit der neuen Berechnungsmethode erkannt
und damit unser erstes Ziel erreicht. Um dem Konstrukteur
noch einen grössern Dienst zu leisten, wollen wir nun darauf
ausgehen, die in einigen belasteten Böden auftretenden
gefährlichen Spannungen wenigstens angenähert abzuschätzen.

Die gefundenen numerischen Ergebnisse gestatten uns,
bis jetzt nur solche Böden zu beurteilen, die aus unserer Kugel
von R 143 cm, 2 h 6 cm und v — 0,2 herausgeschnitten
werden. Es bleibt noch zu bestimmen, welche Veränderungen

diese Ergebnisse erleiden, wenn wir von einer Kugel
zur andern übergehen ; insbesondere wollen wir
untersuchen, welche Verwandtschaft zwischen zwei Kugelschalen
bestehen muss, damit die Veränderung eine minimale wird.

Bei der Reihendarstellung
Fi spielt die Grösse

der Funktionen Xi und

m y?2

f* \ 3 (1 — v*) wjË — v*.

die von der Kugel abhängt, eine fast so wichtige Rolle,
wie die variable x sin2 a selbst ; es lässt sich sogar zeigen,
dass für grössere Werte von jj, (dünne Schalen) die
Funktionen Xi und Fi, in dem Gebiete, wo sie noch bequem zu
berechnen sind, nur noch von dem Ausdrucke jix =Jasin2a
abhängen. Es liegt der Gedanke nahe, die zwei zu
vergleichenden Schalen so zu wählen, dass sie am Rande
denselben Wert von /x sin* aa besitzen ; zwei solche Böden
werden wir in der Folge „verwandte" Böden bezw. Schalen
nennen. Damit wir nicht zugleich verschiedene Einflüsse

zu berücksichtigen haben, wollen wir zwei aus demselben
Material hergestellte, verwandte Böden untersuchen und
zwar für die einfachsten Belastungsfälle 3 und 4. Die
horizontale Zugspannung oB sei in allen Fällen gleich gross.

Wir wählen z. B. die zwei gusseisernen, verwandten
Böden :

jxx 80,9, aal M 39° und ^ 200, aaII 23° 35'
Der erste ist schon bei den Fällen 3 und 4 (Abb.

2 und 3) für eine horizontale Spannung aH -f- 238 kg/cm2
untersucht worden ; wir behalten daher diesen Wert auch
für den zweiten Boden bei. In den Abb. 12 und 13, auf
denen wir den Vergleich ausführen, sind die Masstäbe
für a so gewählt, dass der Oeffnungswinkel aa jedesmal
durch dieselbe Strecke dargestellt wird. Die gezeichneten
Kurven (für den erten Boden ausgezogen, für den zweiten

/i. "ZOC

Abb. 12. — Masstab der Spannungen 1« 800 kg/cm2. — Abb. 13.

punktiert) zeigen die vollständige Analogie, die zwischen
den zwei gleich belasteten, verwandten Böden in Bezug
auf die Spannung besteht. Nicht nur nehmen die
maximalen Spannungen am Rande die gleichen Werte an,
sondern der Verlauf der Spannungen ist im ganzen
Gebiete der Schalen sehr ähnlich. Diese Analogie gilt natürlich
noch für eine Superposition der Lösungen [3] und [4],
insbesondere auch für den Belastungsfall [4] — [3], bei
dem die Randbelastung der Böden nur aus den gleichen
Biegungsspannungen (maximaler Wert ox) besteht.
Gestützt auf die letzten Resultate lässt sich der folgende,
allgemein gültige Satz aussprechen:

Die auf dem Rande gleich belasteten (os und ox),
verwandten Böden werden praktisch gleich beansprucht ; in den

entsprechenden Punkten herrschen ungefähr dieselben Spannungen.
Um zu beurteilen, inwieweit sich zwei verwandte

Böden bei den verwickeiteren Belastungsfällen 3', 4', 3"
und 4" vergleichen lassen, ist es angezeigt, wieder von
den Fällen 3 und 4, bei denen unsere Analogie gültig ist,
auszugehen, und von den Superpositionen Gebrauch zu

machen, die uns zu den neuen Fällen geführt hatten.
Die Fälle 3' und 4' setzten sich aus den Lösungen

1 und 3, bezw. 1 und 4, wie folgt zusammen :

[3'] 0] + cos «« • [3] und [4'] |>] + cos «a • W ;

es wurde dabei angenommen, dass bei den Lösungen [3] und

[4] die horizontale Zugspannung a„ gleich — os -f ^ • p
sei. Setzen wir o„ gleich + 1 kg/cm2, so lassen sich

as< und 04' aus o3 und 04 mit Hülfe der Gleichungen

[1 —iovcosajR p r -, -ff

ov =— -h- -[i-Os-cosaa\ ot. =—Tk- _

ableiten. Im Gegensatz zu den Fällen 3 u. 4 (oa= + 1 kg/cm2)
ändern sich hier die Spannungen a3< und ov wenn man
von einem Boden auf einen verwandten übergeht. Wegen
der Anwesenheit von cos aa bleibt nicht einmal das Ver-

.hältnis ü (bezw. — | für alle verwandten Böden konstant.
as \ as 1

Bei den zwei BelälMagsfällen 3" und 4" ist die
Sache etwas einfacher. Aus dem Ableitungsverfahren
dieser Lösungen ist leicht zu ersehen, dass das Verhältnis

— (bezw. —I infolge unserer Analogie für alle verwandten
as \ asJ
Böden konstant ist.
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Nach diesen Vorbereitungen können wir dazu

übergehen, das für den Konstrukteur bequemste Rechnungsverfahren

abzuleiten; wir beschränken uns dabei auf die
zwei wichtigsten Belastungsfälle 3' und 4" [frei aufliegende
(3') oder eingespannte (4") Schale durch Aussendruck
-\-p kg\cm2 belastet] und geben zuerst an, wo bei diesen
Belastungsfällen die gefährlichen Spannungen auftreten.

Belastungsfall f. Ist fi sin2 aa klein, so tritt die
gefährliche Spannung wie bei der ebenen Platte in der Mitte
auf und zwar auf der konvexen Oberfläche [0^^ (or — ox)0].
Nimmt fj, sin3 aa zu, so verschiebt sich das Maximum der
Radialspannungen; dieses ist jetzt in einer gewissen
Entfernung des Randes zu finden, aber sein absoluter Betrag
wird bald kleiner, als die auf der inneren Kante des Randes
auftretende Tangentialspannung [(er, -f- ^y)aa], die mit
ju ¦ sin2 aa rasch zunimmt.

Belastungsfall 4". Die Radialspannung [(0,. + ox)a„],
die auf der inneren Kante des Randes wirkt, ist hier bei
allen Böden die gefährliche. Um den Betrag dieser
gefährlichen Spannung bei den verschiedenen Böden zu
ermitteln, wollen wir nicht einfach die entsprechenden Grössen
aus den früher gemachten Rechnungen entnehmen, und sie
nachher mit Hülfe unserer Analogie auf die verwandten
Böden übertragen, da es sich dort um gusseiserne Böden
(v 0,2) handelt, während die Technik für solche Konstruktionen

häufiger Flusstahl (v ¦= 0,3) verwendet. Wir
benutzen dabei die Gelegenheit, die Grenzen des
Anwendungsgebiets unserer Analogie einigermassen festzustellen.
Mit Rücksicht darauf schneiden wir aus den drei Flusstahl-
Kugelschalen von jjl S 20, jj, 80,9 und fi H 200
verschiedene Böden heraus, die wir für die Belastungsfälle 3
(oH -4-1 kg\cm2) und 4" untersuchen. Um die Ergebnisse
im Sinne unserer Analogie zu vergleichen, tragen wir auf
die horizontale Axe der Abbildungen 14 und 15 den Wert
des Ausdruckes fi • sin2 aa, und auf die entsprechende
Ordinate diejenige Spannung auf, die für den zu
verfolgenden Zweck von Interesse ist, d. h. in Abb. 14:
entweder (or — ox)0 oder {o, -Jroy)aa je nach der Grösse von
^¦sin2 aa, in Abb. 15 das Verhältnis fr+°*)g" Die so
bestimmten Punkte, die wir für jede Kugelschale anders
bezeichnen, und zwar entsprechend den drei Werten von
H 20, 80,9 und 200, mit Kreisen, Kreuzen und Punkten,
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können nur sagen, dass wir sie bei den gerechneten
Beispielen, abgesehen von der erwähnten Abweichung,
immer bestätigt gefunden haben ;. diese Beispiele sind aber
nur aus dem Gebiete gewählt worden, in dem die
Funktionen Xx und Fi sich noch bequem aus den entsprechenden
Reihen berechnen lassen ; wir hatten keine Oeffnung grösser
als aa — 450 und den Betrag von fi ¦ sin2 aa immer < 40
gewählt. Für grosse Werte von /j, scheint unsere Analogie
noch ausserhalb dieser letzten Grenze zu gelten.

Es braucht jetzt kaum noch erklärt zu werden, wie
man aus den Angaben der Abbildungen 14 und 15 die
gewünschten gefährlichen Spannungen o3< und 04»
abzuleiten hat. Für den* Fall 3' setzt man in die Formel

ov — — • — [1 — os ¦ cos aa\

direkt die abgelesene Spannung (Abb. 14) an Stelle von
a3 ein ; im Falle 4" ist nur die dem Boden entsprechende Zahl
(ar4-^)a_VAhh TC^ mit „___*_,

2 h

sollten alle auf einer Kurve liegen ; die Abweichung liefert
uns ein Mass über die Genauigkeit unserer Analogie. Das
Zusammenfallen ist im allgemeinen ein ganz befriedigendes ; '
nur für ja, — 20 weichen die letzten Punkte etwas stärker
von der mittleren Kurve ab. Dazu ist zu bemerken, dass

eine Kugelschale, für die ju 20 und —r= 6 ist, kaum noch
als „dünne Schale" angesehen werden darf; in einem
solchen Fall ist das Ergebnis der Theorie schon nicht mehr
einwandfrei. Es ist daher gerechtfertigt, auf diese
Abweichung keine Rücksicht zu nehmen und die gefundene
Analogie für alle üblichen Werte von fi gelten zu lassen.
Wir haben aber nicht geprüft, ob sie auch für alle Werte
von sin3aa richtig bleibt. Dies ist kaum zu erwarten; wir

!(Abb. 15) mit os- zu multiplizieren.üs 1 "' " 2 A 2

Wenn wir über die Abb. 14 und 15 verfügen, können
wir die gewünschten Spannungen bei jedem Boden leicht
abschätzen ; da aber die Kurven der genannten Abbildungen
meistens nicht vorliegen, ist es angezeigt, sie analytisch so
gut wie möglich darzustellen und fertige Formeln für die
Berechnung der maximalen Spannungen aufzustellen.

Aus Bequemlichkeitsgründen haben wir für jeden
Belastungsfall zwei Formeln aufgestellt: die ersten geben
für kleine Werte von fi sin2 aa eine gute Genauigkeit und
sind so gebaut, dass sie den Uebergang zu der ebenen
Platte (aa — o) zulassen ; die zweiten sind für die anderen
Werte von /j, sin2 aa genau. Bei dem Fall 3' wird die so
gerechnete Spannung im allgemeinen die am Rande
auftretende Tangentialspannung darstellen ; sie kann aber auch
(wenn ju sin2 aa < 9) dem absoluten Betrage nach der
maximalen Radialgpannung gleich sein.

Wir schlagen mit allem Vorbehalt die Formeln vor:
Belastungsfall 3' (auf einer Ebene frei aufliegende

Schale).
R
2h
—- • sin* a 1,2

o„ — 1,24 & ¦ p • cos aa (r=R- sin aa)

R
2h

sin2 a ^>

Po -A — 1-f-cos ccJ 1,6+2,44 sin

Belastungsfall 4" (fest eingespannte Schale)

«•¦Fé)]

m •sin2 «. < 3

am=—p (^)2 [0,75-0,038 (^)2 .sin2a0] (r=Rsinaa)

sin2 aa > 3 omlx

Diese Formeln gelten nur für Flusstahlböden (v 0,3)
und es muss noch bemerkt werden, dass sie nur in dem
vorher angegebenen Gebiete geprüft wurden [aa < 450 und

— sin2 aa < 12 (fri sin2 aa < 40)] ; ist — > 30, so wird man
sehr wahrscheinlich die letzte Grenze etwas überschreiten
dürfen.

Die aufgestellten Formeln können uns natürlich nur
in seltenen Fällen einen Dienst erweisen ; ein Boden wird
nicht immer zugleich alle die gestellten Bedingungen
erfüllen ; wir glauben aber gezeigt zu haben, wie man solche
empirische Formeln, die sich einem bestimmten Zwecke
besser anpassen, aufstellen kann. Die maximalen Spannungen
sind nicht immer diejenigen Grössen, nach denen man die
Festigkeit einer Konstruktion zu bemessen hat; oft wird die
Anstrengung des Materials nach anderen Hypothesen
beurteilt. In solchen Fällen würden uns ähnliche Rechnungen
die Möglichkeit verschaffen, die maximale Beanspruchung
bei allen Böden abzuschätzen. Ganz anders steht es mit
der Knickungsgefahr (p -+-); über diese gibt unsere
Untersuchung überhaupt kein Urteil ab.
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