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Nr. 10.

Festigkeitsberechnung von Kugelschalen.
Von Ing. L. Bolle, La Chaux-de-Fonds.

(Schluss von Seite 108.)
Belastungsfille 5 und 6.

Vorher sind die Belastungsfille 3 und 4 als zwei
Superpositionen der partikuliren Integrale X; und Y, ge-
funden worden; hier setzen sich die Félle 5 und 6 zu-
sammen aus den vier partikuliren L&sungen, die zu den
Integralen X;, Vi, X;, Y; der Grunddifferentialgleichung
gehéren. Die neu hinzutretenden Integrale X, und ¥, und
ihre entsprechenden Differentialausdriicke @, und ¥; werden
wieder durch Reihenentwicklungen dargestellt, wihrend die
Losungen selbst sich aus diesen Funktionen nach denselben
Formeln (1) ableiten lassen, wenn wir nur iberall den
Index 1 durch 2 ersetzen. Wir nehmen an, diese vier
Losungen seien fiir unsere gusseiserne Schale (R = 143 cm,
2/ = 6 ¢cm und » = 0,2) bekannte Funktionen von a, die wir
direkt zur Berechnung der Fille 5 und 6 benutzen kdnnen.

Entsprechend den vier Losungen kommen jetzt in der

' Zusammensetzung vier Integrationskonstanten a,, &, as

und b, vor, zu deren Bestimmung wir vier Gleichungen
notig haben. Auf den zwei Réndern unseres Bodens (es
sei z. B. @, = 39° und o, = 6° gewihlt) sind die folgenden
Bedingungen zu erfiillen (vergl. Abb. 1 auf S. 106):

Belastungsfall 5 Belastungsfall 6
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die gesuchten Losungen sind somit vollstindig bestimmt.
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Abbildung 6. Abbildung 7.

Die Abbildungen 6 und 7 zeigen, wie die Spannungen in
der Nihe des belasteten Randes grosse Werte annehmen, nach
einigen Schwankungen indessen ziemlich rasch abnehmen,
um in der Nihe des Aussenrandes ganz gering zu werden.
Aus den gerechneten Spannungen o, und o, liessen sich
die Deformationsgréssen (Abb. 8 und g) mit Hulfe der
Gleichungen (2) und (3) berechnen.

Wir wollen uns bei diesen Untersuchungen nicht zu
lange aufhalten und fiigen nur noch eine Bemerkung von
praktischer Bedeutung hinzu.

Eine auf dem inneren Rande wirkende Belastung
(o0m, oder ¢, und o) ibt, wie wir oben gesehen haben, auf
die #usseren Teile des Bodens nur geringen Einfluss aus.
Wird daher eine offene Schale so belastet, dass die grosste
Beanspruchung gerade in der Nihe des Aussenrandes auf-
tritt (das ist fiir die meisten Belastungen der Fall), so
wird sich diese Beanspruchung nicht stark verdndern, wenn

wir auf dem inneren Rande andere Bedingungen vor-
schreiben (z. B. die Schale dort verstirken oder sie als
geschlossen annehmen), wihrend die Spannungen in der
Nahe der Oeffnung dabei starke Verinderungen erfahren.

Andere Belastungsgesetze.

Von den sechs betrachteten Hauptfillen wird, wenn
wir das Belastungsgesetz [X = ¢ (a) Z = v (0)] andern, nur
der erste zu ersetzen sein. Die finf letzten gehoren eigentlich
zu dem Falle der unbelasteten Schale und werden daher
durch eine solche Aenderung gar nicht bertihrt. Wir haben
sie auch nur dazu benutzt, um die in jedem Beispiel voll-
stindig bestimmte Lésung 1 den verschieden gestellten
Randbedingungen anzupassen.

Diejenige Loésung (1) zu finden, die zu einer ge-
wissen Belastung gehort, das soll uns die mathematische
Losung leisten. Fir die zwel praktisch noch in Betracht
kommenden Belastungsgesetze (Eigengewicht oder Belastung
durch diejenigen Trigheitskrifte, die einer um die Axe
gleichférmig rotierenden Schale entsprechen) lassen sich
die Resultate sehr einfach mit Hilfe von elementaren
Funktionen ausdriicken. Nur in einem, schon an sich inte-
ressanten Beispiel mochten wir diese partikulire Losung
noch niher beschreiben.

Es handle sich um’eine geschlossene Kugelschale, die
gleichférmig um einen Durchmesser rotiert, und es sei die
spezifische Masse mit 7 und die Umfanggeschwindigkeit
am Aequator mit 7 bezeichnet. Die durch die Trigheits-
krifte hervorgerufenen Spannungs- und Deformations-
grossen nehmen dann die folgenden Werte an:
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Je nach der Grosse von

1

% wird diese Losung sehr
verschieden ausfallen.

Geht z. B. %

fundenen Grossen den Grenzen
g — o —lo

. R
uzg(l—l—y)-sz-sma-cosa w:E-mV'A’- (1 +»cos?a)

in . Null tiber, so n#hern sich die ge-

0, = m V2sin2 a

unsere Kugel verhilt sich dann gleich einer Membran (ohne
Biegungswiderstand).



II2

SCHWEIZERISCHE BAUZEITUNG

[Bd. LXVI Nr. 10

Wihlen wir aber wie in dem gerechneten Beispiele

h Co g . .
— = 0,1, SO erhalten wir fiir die Biegungsspannungen noch

betrachtliche Werte, wahrend die anderen Grossen nicht
stark von ihren Grenzen abweichen. Dies erklart sich
daraus, dass die Abweichungen im allgemeinen mit der

o V3 5 o
zweiten Potenz von =z die Biegungsspannungen aber nur

5 : h y 5
mit der ersten Potenz von = unendlich klein werden.
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Abbildung 10,

Abbildung 11.

Zur Erlauterung der Abbildungen 1o und 11 ist noch
zu sagen, dass sie das elastische Verhalten der Kugel-
schale R — 1tocm, 2 h = 2 cm, v = 0,3 darstellen, wenn
die Grosse m-V? = 1000 kgfcm? gesetzt wird. Dieser Aus-
druck m .V2 stellt bekanntlich diejenige Spannung dar, die
in einem aus demselben Material ausgefiihrten, mit der
Geschwindigkeit V rotierenden Ringe auftritt. Die elastischen
Verschiebungen sind ihrer Kleinheit wegen in einem (100 mal)
grossern Masstabe als der Kugelradius selbst aufgetragen
worden. Unten in der Abb. 11 ist in gleicher Weise wie
oben die Deformation der entsprechenden unendlich diinnen
Kugelschale (R 10 ¢m, mV? = 1000 kg [cm?) dargestellt.

Verwandte Bdden

Wir haben in den vorangehenden Entwicklungen
die Brauchbarkeit der neuen Berechnungsmethode erkannt
und damit unser erstes Ziel erreicht. Um dem Konstrukteur
noch einen gréssern Dienst zu leisten, wollen wir nun darauf
ausgehen, die in einigen belasteten Boden auftretenden ge-
fahrlichen Spannungen wenigstens angenihert abzuschatzen.

Die gefundenen numerischen Ergebnisse gestatten uns,
bis jetzt nur solche Béden zu beurteilen, die aus unserer Kugel
von R = 143 ¢m, 2 h= 6 cm und » = 0,2 herausgeschnitten
werden. Es bleibt noch zu bestimmen, welche Veridnde-
rungen diese Ergebnisse erleiden, wenn wir von einer Kugel
zur andern {ibergehen; insbesondere wollen wir unter-
suchen, welche Verwandtschaft zwischen zwei Kugelschalen
bestehen muss, damit die Verinderung eine minimale wird.

Bei der Reihendarstellung der Funktionen A; und
Y, spielt die Grosse

2
1z :V3 (x —V’)—,,R; — 4
die von der Kugel abhingt, eine fast so wichtige Rolle,
wie die variable x — sin® a selbst; es ldsst sich sogar zeigen,
dass fiir grossere Werte von u (dinne Schalen) die Funk-
tionen X; und Y;, in dem Gebiete, wo sie noch bequem zu
berechnen sind, nur noch von dem Ausdrucke ux = psin?a
abhingen. Es liegt der Gedanke nahe, die zwei zu ver-
gleichenden Schalen so zu wihlen, dass sie am Rande
denselben Wert von u sin?a, besitzen; zwei solche Boden
werden wir in der Folge ,verwandte® Béden bezw. Schalen
nennen. Damit wir nicht zugleich verschiedene Einfliisse

Aufstellung von empirischen Formeln.

zu beriicksichtigen haben, wollen wir zwei aus demselben
Material hergestellte, verwandte Boden untersuchen und
zwar fir die einfachsten Belastungsfdlle 3 und 4. Die
horizontale Zugspannung o, sei in allen Fallen gleich gross.

Wir wghlen z. B. die zwei gusseisernen, verwandten
Boden:

s = 80,9, @, = 39° und pyy = 200, %1 = 23°35'

Der erste ist schon bei den Fillen 3 und 4 (Abb.
2 und 3) fiir eine horizontale Spannung o, = -+ 238 kg/cm?
untersucht worden; wir behalten daher diesen Wert auch
fiir den zweiten Boden bei. In den Abb. 12 und 13, auf
denen wir den Vergleich ausfiihren, sind die Masstibe
fir ¢ so gewihlt, dass der Oeffnungswinkel a, jedesmal
durch dieselbe Strecke dargestellt wird. Die gezeichneten
Kurven (far den erten Boden ausgezogen, fiir den zweiten

Abb. 12. — Masstab der Spannungen I cm = 800 kg/cm?. — Abb. 13.

punktiert) zeigen die vollstindige Analogie, die zwischen
den zwei gleich belasteten, verwandten Béden in Bezug
auf die Spannung besteht. Nicht nur nehmen die maxi-
malen Spannungen am Rande die gleichen Werte an,
sondern der Verlauf der Spannungen ist im ganzen Ge-
biete der Schalen sehr dhnlich. Diese Analogie gilt natiirlich
noch fiir eine Superposition der Loésungen [3] und [4],
insbesondere auch fir den Belastungsfall [4] — [3], bei
dem die Randbelastung der Béden nur aus den gleichen
Biegungsspannungen (maximaler Wert = oy) besteht. Ge-
stiitzt auf die letzten Resultate lésst sich der folgende,
allgemein giiltige Satz aussprechen:

Die auf dem Rande gleich belasteten (o5 und o), ver-
wandten Boden werden praktisch gleich beansprucht ; in den ent-
sprechenden Punkten herrschenungefihr dieselben Spannungen.

Um zu beurteilen, inwieweit sich zwel verwandte
Boden bei den verwickelteren Belastungsfillen 3/, 4/, 3”
und 4" vergleichen lassen, ist es angezeigt, wieder von
den Fallen 3 und 4, bei denen unsere Analogie giltig ist,
auszugehen, und von den Superpositionen Gebrauch zu
machen, die uns zu den neuen Fillen gefihrt hatten.

Die Fille 3’ und 4 setzten sich aus den Lésungen
1 und 3, bezw. 1 und 4, wie folgt zusammen:

[37] = [x] +-cos a, - [3] und [4] = [1] -+ cos a, - [4];

es wurde dabei angenommen, dass bei den Losungen [3] und
) R
[4] die horizontale Zugspannung o, gleich — o5 =+ e p

sei. Setzen wir oy gleich -~ 1 kg/em?, so lassen sich
oy und oy aus oz und oy mit Hiilfe der Gleichungen

R P Z
W= D T 2k
ableiten. Im Gegensatz zu den Fallen 3 u. 4 (0= — 1 kg/cm?)
andern sich hier die Spannungen o3, und oy, wenn man
von einem Boden auf einen verwandten iibergeht. Wegen
der Anwesenheit von cos ¢, bleibt nicht einmal das Ver-
hiltnis gs_' (bezw. %’“) fiir alle verwandten Béden konstant.

S S

Bei den zwei Belastungsfallen 3 und 4" ist die

Sache etwas einfacher. Aus dem Ableitungsverfahren
dieser Losungen ist leicht zu ersehen, dass das Verhaltnis
Gg

[t—os-cosa,] ow= —‘:—[1 — 04+ COS ]

(bezw. c‘—) infolge unserer Analogie fiir alle verwandten
as as

Boden konstant ist.
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Nach diesen Vorbereitungen kénnen wir dazu tber-
gehen, das fir den Konstrukteur bequemste Rechnungs-
verfahren abzuleiten; wir beschrinken uns dabei auf die
zwei wichtigsten Belastungsflle 3' und 4" [frei aufliegende
(3') oder eingespannte (4”) Schale durch Aussendruck
—-p kg[cm? belastet] und geben zuerst an, wo bei diesen
Belastungsfillen die gefahrlichen Spannungen auftreten.

Belastungsfall 3. Ist usin®a, klein, so tritt die ge-
fahrliche Spannung wie bei der ebenen Platte in der Mitte
auf und zwar auf der konvexen Oberfliche [oem=(c. — a5l
Nimmt wsin?q, zu, so verschiebt sich das Maximum der
Radialspannungen; dieses ist jetzt in einer gewissen Ent-
fernung des Randes zu finden, aber sein absoluter Betrag
wird bald kleiner, als die auf der inneren Kante des Randes
auftretende Tangentialspannung [(6, + ¢,)s,], die mit
(- sin? @, rasch zunimmt.

Belastungsfall 4'. Die Radialspannung [(o, -+ 04)a,],
die auf der inneren Kante des Randes wirkt, ist hier bei
allen Boden die gefahrliche. Um den Betrag dieser ge-
fahrlichen Spannung bei den verschiedenen Béden zu er-
mitteln, wollen wir nicht einfach die entsprechenden Gréssen
aus den friher gemachten Rechnungen entnehmen, und sie
nachher mit Hiilfe unserer Analogie auf die verwandten
Boden tibertragen, da es sich dort um gusseiserne Béden
(» = 0,2) handelt, wahrend die Technik fiir solche Konstruk-
tionen hiufiger Flusstahl (» = 0,3) verwendet. Wir be-
nutzen dabei die Gelegenheit, die Grenzen des Anwen-
dungsgebiets unserer Analogie einigermassen festzustellen,
Mit Riicksicht darauf schneiden wir aus den drei Flusstahl-
Kugelschalen von u = 20, u— 80,9 und [ = 200 ver-
schiedene Boden heraus, die wir fir die Belastungsfille 3
(04 = + 1 kg|cm?) und 4" untersuchen. Um die Ergebnisse
im Sinne unserer Analogie zu vergleichen, tragen wir auf
die horizontale Axe der Abbildungen 14 und 15 den Wert
des Ausdruckes u-sintq, und auf die entsprechende
Ordinate diejenige Spannung auf, die fir den zu verfol-
genden Zweck von Interesse ist, d. h. in Abb. 14: ent-
weder (o, — 0.), oder (o, -+ 0,)a, je nach der Grosse von

pi-sin2 a,, in Abb. 15 das Verhaltnis O *olee
S
stimmten Punkte, die wir fir jede Kugelschale anders be-

zeichnen, und zwar entsprechend den drei Werten von
t = 20, 80,9 und 200, mit Kreisen, Kreuzen und Punkten,

Die so be-
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Abbildung 14, Abbildung 15.

sollten alle auf einer Kurve liegen; die Abweichung liefert
uns ein Mass iiber die Genauigkeit unserer Analogie. Das

Zusammentfallen ist im allgemeinen ein ganz befriedigendes ;"

nur fiir @ — 20 weichen die letzten Punkte etwas stirker
von der mittleren Kurve ab. Dazu ist zu bemerken, dass

; [ R ;
eine Kugelschale, fiir die © = 20 und —= 6 ist, kaum noch

als ,dimne Schale“ angesehen werden darf; in einem
solchen Fall ist das Ergebnis der Theorie schon nicht mehr
einwandfrei. Es ist daher gerechtfertigt, auf diese Ab-
weichung keine Riicksicht zu nehmen und die gefundene
Analogie fiir alle tiblichen Werte von u gelten zu lassen.
Wir haben aber nicht gepriift, ob sie auch fiir alle Werte
von sin? ¢, richtig bleibt. Dies ist kaum zu erwarten; wir

konnen nur sagen, dass wir sie bei den gerechneten
Beispielen, abgesehen von der erwihnten Abweichung,
immer bestitigt gefunden haben ; diese Beispiele sind aber
nur aus dem Gebiete gew#hlt worden, in dem die Funk-
tionen X; und ¥; sich noch bequem aus den entsprechenden
Reihen berechnen lassen ; wir hatten keine Oeffnung grosser
als a, = 45° und den Betrag von w-sin?q, immer < 40
gewdhlt. Fiir grosse Werte von u scheint unsere Analogie
noch ausserhalb dieser letzten Grenze zu gelten.

Es braucht jetzt kaum noch erklirt zu werden, wie
man aus den Angaben der Abbildungen 14 und 15 die
gewiinschten gefihrlichen Spannungen o¢; und o, abzu-

leiten hat. Fir den” Fall 3’ setzt man in die Formel
R 2
il = [t — 05 - cos a,]

direkt die abgelesene Spannung (Abb. 14) an Stelle von
o3 ein; im Falle 4" ist nur die dem Boden entsprechende Zahl
(0’,- *l_ Ga‘)uzz . R
T (beb IS) mit OS:—T;‘ .
Wenn wir tiber die Abb. 14 und 15 verfiigen, kénnen
wir die gewiinschten Spannungen bei jedem Boden leicht
abschétzen; da aber die Kurven der genannten Abbildungen
meistens nicht vorliegen, ist es angezeigt, sie analytisch so
gut wie moglich darzustellen und fertige Formeln fir die
Berechnung der maximalen Spannungen aufzustellen.

Aus Bequemlichkeitsgriinden haben wir fir jeden
Belastungsfall zwei Formeln aufgestellt: die ersten geben
fur kleine Werte von w sin?a, eine gute Genauigkeit und
sind so gebaut, dass sie den Uebergang zu der ebenen
Platte (¢, = o) zulassen; die zweiten sind fir die anderen
Werte von usin?a, genau. Bei dem Fall 3’ wird die so
gerechnete Spannung im allgemeinen die am Rande auf-
tretende Tangentialspannung darstellen ; sie kann aber auch
(wenn usin?e«, < 9) dem absoluten Betrage nach der
maximalen Radialspannung gleich sein.

Wir schlagen mit allem Vorbehalt die Formeln vor:

Belastungsfall ;' (auf einer Ebene frei aufliegende
Schale).

Vs 5
oh sin? g < 1,2

% zu multiplizieren.,

7 \2 .
Omax — — 1,24 (27) -p - cosa, (r = R -sin a,)

R
o -sin?a > 1,2

Omax— P 5[* it —|—cosaa(1,6 —+-2,44 sinaa.Vg)]

Belastungsfall 4" (fest eingespannte Schale).

R 5
5 o sinta, <3

Omax — —P (1)2 [0,75 — 0,038 (5)2 . sin2aa] (r=Rsina,)

24
R 5
2 . sing
=7 ° ol a, >3

Diese Formeln gelten nur fiir Flusstahlbéden (» = o,3)
und es muss noch bemerkt werden, dass sie nur in dem
vorher angegebenen Gebiete gepriift wurden [a, < 45° und

z—i sin? @, <_ 12 (usin2 a, < 40)]; ist §l> 30, so wird man
sehr wahrscheinlich die letzte Grenze etwas iiberschreiten
diirfen.

Die aufgestellten Formeln kénnen uns nattirlich nur
in seltenen Fillen einen Dienst erweisen; ein Boden wird
nicht immer zugleich alle die gestellten Bedingungen er-
filllen; wir glauben aber gezeigt zu haben, wie man solche
empirische Formeln, die sich einem bestimmten Zwecke
besser anpassen, aufstellen kann. Die maximalen Spannungen
sind nicht immer diejenigen Gréssen, nach denen man die
Festigkeit einer Konstruktion zu bemessen hat; oft wird die
Anstrengung des Materials nach anderen Hypothesen be-
urteilt. In solchen Fallen wiirden uns &hnliche Rechnungen
die Moglichkeit verschaffen, die maximale Beanspruchung
bei allen Béden abzuschitzen. Ganz anders steht es mit
der Knickungsgefahr (p = +); uber diese gibt unsere
Untersuchung tberhaupt kein Urteil ab.

Py :—1,20545



	Festigkeitsberechnung von Kugelschalen

