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Festigkeitsberechnung von Kugelschalen.
Von Ing. L. Bolle, La Chaux-de-Fonds.

Die Festigkeitsberechnung der Kugelschalen, die z. B.
in der Dampfturbinenkonstruktion als Zwischenbden Ver-
wendung finden, ist nur in seltenen Fillen mathematisch
genau durchgefiihrt worden.?) Die dazu verwendete Methode
hat sich nicht als praktisch erwiesen, weil sie die um-
standliche durch Reihenentwicklung ausgefiihrte Integration
einer Differentialgleichung 5. Ordnung erforderte. Dieses
Umstandes wegen, und in Anbetracht der technischen
Wichtigkeit des Problems, erschien es an-
gezeigt, die betreffenden Konstruktionsteile
nach einem angeniherten Verfahren?) zu
berechnen und auf die genaue Losung zu

X, Y, Z die Komponenten der auf die Flacheneinheit
der Mittelkugel bezogenen Belastung in P (X, Y, Z
sind gegebene Funktionen von a).

o, o, die gleichméssig verteilte Spannung in ,radialer®
(x-Axe) bezw. ,tangentialer” (y-Axe) Richtung, normal
auf die zugehérigen Schnitte.

0. 0, die Maximalwerte (2 = -/, Innenfaser) der reinen
Biegungsspannungen in ,radialer und ,tangentialer®
Richtung.

7 den Mittelwert der Schubspannungen in einem Parallel-
schnitte.

Wettbewerb Kirchgemeindehaus Ziirich-Wiedikon.
IIL. Preis, Entwurf Nr.61. — Verfasser: Knell & Hdssig, Architekten in Ziirich.

verzichten.

Andererseits hat Herr Reissner3) durch
eine andere Wahl der Grundvariablen die
mathematische Losung auf eine neue Form
gebracht, in der die Grundgleichungen, fur
den Fall einer konstanten Dicke, ganz sym-
metrisch erscheinen. Diese Symmetrie hat
Prof. Meissner dazu benutzt, um eine grosse
Vereinfachung der Integration zu erzielen;
er zeigte4) nimlich, dass sich die Losung
der Elastizitatsaufgabe eines Torus (und
dessen Grenzfille, Kegel und Kugel) auf
die Integration einer einzigen Differen-
tialgleichung 2. Ordnung zuriickfiihren lasst.
Auf diese Resultate gestiitzt, liess sich im
Falle der Kugel ein auch fiir die Praxis
bequemes Berechnungsverfahren finden,
dessen Ergebnissen zu zeigen den Zweck
der folgenden Seiten bildet.

Es bezeichnen im Folgenden:

R den Radius der Mittelkugel.
2 h die Dicke der Schale.

a das Komplement der geographischen Breite
Punktes P der Mittelflache.

Wihlen wir in P ein rechtwinkliges Koordinaten-
system: die x-Axe in der Richtung der Tangente an
die Meridiankurve (4« = mit wachsendem q); die
y-Axe in der Richtung der Tangente an den Parallel-
kreis; die 2-Axe in der inneren Flichennormalen.

eines

1) Dr. E. Fankhauser, ,Exp. und theoret. Untersuchungen iiber die
Festigkeit von Kegel- und Kugelbéden*. Berlin 1913.

%) Dr. H. Keller, ,,Berechnung gewélbter Béden*. Berlin 1912. (Bau-
zeitung, Bd. LXI, Seite 111 ff, Mirz 1913).
3) Reissner, ,,Spannungen in Kugelschalen*, in der Miiller-Breslau Fest-

Leipzig, Kroner 1912, 7

4) Physikalische Zeitschrift 1913. S. 343 bis 349. — Vergl. ferner:
Meissner, ,,Ueber Elastizitit und Festigkeit diinner Schalen® in Vierteljahrs-
schrift' der Naturforsch. Gesellschaft in Ziirich, 1. u. 2. Heft 1913.

schrift.

Emporen-Grundriss 1:600. — Entwurf Nr. 61. — Predigtraum gegen Siidwest.

oy die Komponente der resultierenden Spannung aus ¢, und 7
in horizontaler Richtung (normal zur Rotationsaxe).
R 2
T2k 2
nung, die in allen Punkten einer von aussen her
mit dem Drucke p kg/em? belasteten Kugel herrscht.
#, v, w die in der Richtung der Axen fallenden Kompo-
nenten der elastischen Verschiebung von P.
? den Verdrehungswinkel der Normalen, infolge der
Forménderung.

die auf der Mittelkugel gemessenen spezifischen
Dehnungen in ,radialer“ bezw. ,tangentialer Richtung.

die Kugelspannung, d. h. diejenige Span-

O’S:

€y &

v=% das Verhiltnis der Querkontraktion zur Lingen-

Dilatation.
E den Elastizititsmodul.

Mm= VS (r — vﬁ)ég2 — 2 eine fir die Bequemlichkeit
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der Rechnung eingefiihrte Konstante.

Wegen der vorausgesetzten axialen Symmetrie aller
Bedingungen ist Y= o0, v = o und ¥ wird in der Meridian-
ebene liegen.

Zerlegung der Aujfgabe.

Wir denken uns einen durchbohrten Boden, aus einer
Hohlkugel lings der beiden Parallelkreise @, und ¢, heraus-
geschnitten. Wie in allen Festigkeitsaufgaben wird hier
der Spannungszustand, ausser von der stetigen Belastung,
noch linear von den Gréssen (o, 7, 6.), und (o, 7, 0,); ab-
hingen, welche die Randbedingung charakterisieren. Diese
sechs Parameter diirfen wir aber nicht willktirlich annehmen,
wenn die Schale im Gleichgewicht bleiben soll. Es gibt
eine Gleichgewichtbedingung, die trotz der vorausgesetzten
Symmetrie der Belastung nicht identisch erfillt wird; diese
driickt aus, dass die Summe der Krifte in der Richtung
der Symmetrieaxe verschwinden muss. Diese Gleichung
reduziert die Anzahl der von einander unabhingigen Para-
meter, von denen der Spannungszustand linear abhingt,
auf funf. Zzihlen wir aber die Abhingigkeit von der stetigen
Belastung noch hinzu, so folgt aus dem Superpositionsprinzip,
dass wir nur fiir sechs verschiedene Belastungsfille die
Losungen zu kennen brauchen, um dann jede andere Lésung
durch lineare Zusammensetzung darstellen zu kdnnen.

Der Klarheit unserer Darstellung wegen wollen wir
aber zuerst annehmen, dass die stetige Belastung, wenn
eine solche iiberhaupt vorkommt, nur durch den Druck einer
Fliissigkeit erzeugt wird, dass also X = Y = o und
Z = phkglem? sei; andere Belastungsgesetze werden wir
erst spater betrachten.

05 6 6y 6
N/ ,+P kg/m2
o, e AN 2 oy
- SINOL
1 6r5 Gn‘m—;
a Ota
65 Gry Gm\

(2 g g Xy

Abbildung 1.

In der Abbildung 1 sind diejenigen sechs Belastungs-
falle, die wir in der Folge berechnen werden, schematisch
dargestellt. Dieses Schema zeigt deutlich, was wir mit
dem ersten Falle meinen; er enthilt den Einfluss des Be-
lastungsgesetzes. Bei dem zweiten sind die Spannungen
o,; und ¢,, so gewahlt, dass die Schale im Gleichgewicht
ist. Fir die Falle 3 und 4 soll die punktiert eingezeichnete
Erginzung des Kreisbogens nur andeuten, dass wir es
entweder mit einem vollen Boden zu tun haben, oder
wenn das nicht der Fall ist, dass wir auf dem inneren
Rande diejenigen Spannungen angreifen lassen, die in den
entsprechenden Punkten des auf dem Aussenrande gleich
belasteten vollen Bodens herrschen wiirden. In den zwei
letzten Fallen bleibt der Aussenrand vollstindig frei,
wahrend jetzt der Innenrand belastet wird.

Belastungsfille 1 und 2.

Diese zwei Fille nehmen in der mathematischen
Losung eine ganz besondere Stelle ein; sie sind von der
Integration der Grunddifferentialgleichung des Problems
unabhingig, und konnen in geschlossener Form (und mit
Hilfe von elementaren Funktionen) wie folgt ausgedriickt
werden :

1 a,4=o,=—2—12-%:0s
oz —lo —fu——o
8r=£r=_2_1;'§(1_”)
W —VRe) i—0 und
2 0, = — 06, = i

1-2)C 3
w:—%[cosa-lg(tg%)—{— I]
Die Konstante C des zweiten Falles hat den Wert:
C = —o,; Rsin?q,

Das Anwendungsgebiet dieser zwei Losungen allein
ist nattirlich dadurch eingeschrinkt, dass wir hier nur ge-
wisse Randbedingungen zu erfillen vermégen. Die ge-
meinsamen Werte 6, =7 =0 verlangen z. B., dass bei
einer Auflagerung der Platte die Reaktion der Unterlage
genau in der Richtung der Tangente an den Meridian der
Mittelfliche wirke.

Nehmen wir eine Halbkugel, die auf einer horizon-
talen Ebene frei aufliegt, und nur durch den auf der kon-
vexen Seite wirkenden Druck p beansprucht wird, so ist
die erwihnte Auflagerungsbedingung erfallt, und die erste
Losung gibt uns das bekannte Resultat, dass unsere Schale
sich in demselben Spannungszustande befindet, in dem sie
sich als Teil der gleich belasteten vollen Kugel befinden
wiirde; in allen Punkten herrscht die konstante Spannung

: R P
GTS G

Wir schneiden jetzt unsere Halbkugel lings des Pa-
rallelkreises a; ab und lassen den so enstandenen inneren
Rand vollstindig frei. Dieser neue Belastungsfall ist mit
einer Superposition unserer beiden Losungen leicht zu er-
reichen; es geniigt die Grosse o,;, im zweiten Falle gleich
— og zu wihlen, woraus sich fir die Konstante C folgender
Wert ergibt:

C=-—§R25in2ai

Diese zusammengesetzte Losung gilt ohne weiteres
noch fiir irgend einen Teil a, a;, unserer Halbkugel; die
einzige Bedingung dafiir ist die, dass die erwidhnte Auf-
lagerungsbedingung auf dem neuen Rande immer noch
erfiillt wird.

Belastungsfille 3 und 4.

Diese zwei Belastungsfille treten nicht mehr wie die
beiden vorigen direkt als unabhingige Integrale in der
mathematischen Losung auf; sie sind vielmehr gemeinsam
mit den Fallen 5 und 6, als vier verschiedene Zusammen-
setzungen der Integrale einer Differentialgleichung?) 4. Ord-
nung zu betrachten. Der Umstand aber, dass wir es beil
den Fillen 3 und 4 mit einem in der Mitte geschlossenen
Boden zu tun haben, bedingt in den zugehorigen Zusam-
mensetzungen das Verschwinden zweier Integrale.?)

Zu jedem Integral der Differentialgleichung gehort
natiirlich eine bestimmte Losung, d. h. es gehéren zu jedem
Integral bestimmte Werte fiir jede Spannungs- oder De-
formationsgrésse. Gehen wir z. B. von den zwei Inte-
gralen (in ihrer Reihendarstellung geschrieben) aus, die bei
den Fillen 3 und 4 vorkommen :

X1=A0+A1x+A2x2—|—...

Y; =BO+le+ng2+...
wobei ¥ = sin?2a und 4, B, von w abhingende Zahlen-
koeffizienten sind, und fihren wir noch die zwei Reihen ein:

1) Auf die Integration der Grunddifferentialgleichung der Aufgabe
werde ich nicht niher eintreten; es geniigt zu sagen, dass die neue
Form, die ihr Prof. Meissner gegeben hat, die Integrale durch vier Reihen-
entwicklungen darstellt, die nach Potenzen von x — sin? & fortschreiten.

2) Die Spannungen, die zu diesen zwei Integralen gehdren, wiirden
in der Mitte unendlich grosse Werte annehmen ; solche Spannungen werden
aber nie in unsern Fillen 3 und 4 auftreten und diese Bedingung kénnte
achon das Verschwinden dieser Losungen erklidren.
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Werte der spezifischen Spannungen, in kg/cm? (R = 143 cm, 2 h = 6 cm, v = 0,2).
Liosung X;.
o o0 50 100 150 ‘ 200 ‘ 250 300 350 400 450
0, ~+ 23,83 | 23,71 | +22,59 | | 19,52 !~l— IT,44 — 3,85| — 27,31| — 56,29| — 81,33|— 83,9
a, 23,83 | 423,56 | +19,95 | + 4,77 | — 34,32 — 08,6 |-—2157 |—319,1 | —3136 |- 8
Ox - 0,12 | —10,36 | — 40,82 | — 87,55 | — 1353 | —141,9 | — 357 |+277,7 |-+897,6 |- 1798
i, - o012 | — 5,08 | —20,39 | —44,12 | — 70,9 |— 86,5 | — 67,0 |+ 186 | I-204,9 || 492
Léosung Y.
a ‘ o? ’ 5° ‘ 109 l 150 ‘ 200 250 ‘ 7370‘: ' 35° ‘; ;o;’ 7 ‘ E 45”‘; i
o, o —+ 1,82 | + 7,23 | 415,70 | 25,86 | | 34,25]+ 35,36/—= 21, 57 = 15,13\— 78,1
0 o = 554 | -2%,75 | +46,37 | + 71,20 |-+ 73,5 |+ 125 |—162,0 | — 5052 |—-100I
0r . | 150,56 | 450,10 | 43,43 | - 15,54 | — 56,2 | —193,2 | —39L,1 | —584,3 | —584,9 | — =20
oy 50,56 || 150,32 | 47,13 | 436,30 | -+ 8,3 |— 4571 |— 1244 |—2124 |—2551I |— I46
A . e . vorigen Gleichungen, fiir jeden Fall 3 und 4, @; und &
Py=2 @nt1)-d,-xt und By = 2 (2nt1)- B2t berechnen; mit den entsprechenden Superpositionen

7n=0 n=o
die in einem gewissen Differentialzusammenhang mit X;
und Y; stehen, so werden die zu X; und Y; entsprechen-

den Ldsungen wie folgt ausgedriickt:

Integrale X; Integrale Y,
o,.:—£~cosa~X, o,.:«%-cosa-}’]
o,:—%-cosa-(l), o,:—%-cosa-ﬁl’l
t;—l—z—R]l-sina-Xl r:—kg-sina-y}

R R

O = At (1) 01/:—ﬁ'y1
o TER RS e e TOR /O v v
*E'ﬁ'sma[”‘l_/“' 1] ﬁ‘:f-z—h-sma[v 1+ wp X

co 2

G‘”:_z(l—.i:?)[v(¢l —*—V‘(XI) — 0, = _Z(ioja;}2) [V(E[’l +VY1) +

—p(Pr Y1) —+ (D, Y1)

L] S

ay:—%[p(xﬁg@,)_ oy:—z('j°—_‘”yz)[y(yl+m¥l)+

— w¥; +v¥) —+ w (X v D))

Im Gegensatz zu den Hauptfillen 1 und 2 sind hier
die Spannungen nicht mehr mit Hilfe von elementaren
(d. h. aus einer Tafel direkt abnehmbaren) Funktionen aus-
gedriickt; die Berechnung der vorkommenden Funktionen
muss far jede Platte wiederholt werden. Es wiirde uns
zu lange aufhalten, wenn wir auf diesen Teil der Rechnung
eingehen wiirden; wir nehmen daher an, X; und Y; seien
bekannte Funktionen von «, die wir fiir eine gusseiserne
Kugelschale (v = 0,2) von gegebenem Radius (R = 143 ¢m)
und gegebener Dicke (2/4 = 6 ¢m) gerechnet haben.1) Die
zugehorigen Losungen sind in den Zahlentafeln 1 und 2
in der Weise dargestellt, dass wir fir alle a (von 5° zu
5% bis a = 459 zugleich die entsprechenden Werte von
0, 04 0, und o, angeben.

Aus diesen zwei partikuliren Loésungen gelangen wir
zu den gesuchten Losungen (Belastungsfille 3 und 4) durch
eine einfache Superposition; die Konstanten @, und &,
die die Art der Zusammensetzung bestimmen, sind so zu

wahlen, dass die Randbedingungen erfiillt sind; diese
lauten (vergl. Schema 1):

Fall' 3 o5 — gegeben ¢, = © = 'y

Fall 4 o0, = gegeben ¥ = o fastalt=na,

Mit Ricksicht auf eine spitere Superposition der
Falle 3 und 4 mit 1, wahlen wir 6, = — g5, wo o diejenige

Kugelspannung bezeichnet, die zu einem bestimmten Drucke
- p gehort (z.B. p = + 20 kgfem?; oy = -+ 238 kglem?).
Wird weiter a, = 399 angenommen ?), so gestatten uns die

1) Die Integrale und die zugehdrigen Losungen hingen aber nur
von dem Verhﬁltnis% und von » ab; sie sind also fiir alle aus demselben
Material ausgefiihrten ahnlichen Kugeln die gleichen.

gelangen wir ohne weiteres zu den gesuchten Losungen.

In der Abbildungen 2 und 3, wo wir diese Ldsungen
wiedergeben, sind in Abhidngigkeit von a zugleich die
radiale und die tangentiale Spannung fiir Punkte der
Mittelflache (punktiert; o, und ¢,) und fiir Punkte der innern
(0, + 0,; 0, + 0,) und der 4usseren (6, — 0,; 0,—o,) Ober-
fliche aufgetragen.

- o

S T i e

G /

Abb. 2. Falle 3, 3" und 3': Abb. 3. Fille 4, 4’ und 4":
3: Axe0O; 1cm ==800kg/cm? 4: Axe0O0; 1 cm— 800 kg[cm?
3’: Axe O'O’; 1 cim — 800 cos 39° 4': Axe 0'0’; 1 ez — 800 cos 39°
=2 622 kgfcm? =2 622 kgfcm?

4': Axe 0" 0" 1,25 cm =238 kgfem?
I cm — 19T kgfem?

3'": Axe O Q" 2,85 cm =238kglcm?
I cm = 83,6 kg|cm?

Als erste Anwendung des Vorstehenden betrachten
wir zwei neue Belastungsfille, die schon frither von Dr.
H. Keller untersucht worden sind. Bei diesen zwei Faillen,
die wir mit 3" und 4  bezeichnen wollen, ist der Boden
von aussen her mit einem Drucke p = - 20 kg/cm? be-
lastet und die Randbedingungen driicken sich durch die
folgenden Gleichungen aus:

3)on = o 4) on = ©
Oy — O G =@

Im Falle 3’ liegt folglich der Boden frei auf einer Ebene
auf; im Falle 4" wird noch (durch Anbringen des nétigen Rand-
momentes) die Neigung der dusseren Tangente festgehalten.

Es ist leicht einzusehen, wie sich diese neuen Fille aus
den gerechneten 1, 3 und 4 ableiten lassen. Die Randwerte:

oy =+ o0scosa, Oy =— — O OF — 05
FallIOz:O e FauSox:o Fall40:0
zeigen, dass folgende Superpositionen zum Ziele fiihren:

[1] + [3] - cos @, =[37] und [x] + [4] - cos @, = [4]
(die in [] gesetzten Ziffern bedeuten Losungen).

2) Den gleichen Boden, auf einer horizontalen Ebene frei aufliegend
und mit dem Drucke p— 20 az auf der konvexen Seite belastet, hat Dr.
Keller loc. cit. mit Hiilfe seines angeniherten Verfahrens gerechnet.
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Zur Darstellung dieser zwei Lésungen 3 und 4
konnen wir die Abbildungen 4 und 5 benutzen, wenn wir
dort zuerst den Masstab der Spannungen im Verhiltnis
von I zu cosa, reduzieren und nachher die a-Axe nach
O' O' verlegen. Die Aenderung des Masstabes bedarf keiner
Erklarung, die Verschiebung der Axe dient dazu, die
tiberall herrschende konstante Spannung oy des ersten
Falles zu den Betrigen [3]- cosa, bezw. [4] - cosa, zu
addieren. Die Strecke O 0O’, um die man den Ursprung
aller Spannungen verschiebt, stellt die im neuen Masstab
gemessene Spannung — o, = — 238 kg/cm?® dar. Diese
neue Interpretation der Abbildungen 4 und 5 fiihrt uns
also sehr bequem zu den Spannungen der Belastungs-
falle 3" und 4.

mm

+20

+10 10
Ar_+—|
+05 05 e
| — 35° 390 oC=5 10° 15° 20° 307 357 392
o == 0 =
o5t 100 150 200 28N 30° | 25° B

g
1

Abbildung 4. Abbildung 5.

Der Vergleich dieser numerischen Resultate mit den-
jenigen des Herrn Dr. H. Keller?!) zeigt im allgemeinen
nur geringe Abweichungen. Nur im Scheitel und fir die
Losung 4 in der Nihe des Randes, ist die Ueberein-
stimmung nicht sehr befriedigend; beide Abweichungen
finden ihren Grund in der angewandten Berechnungs-
methode selbst; einerseits ist eine Extrapolation uasicher,
anderseits wird das Rechnen mit kleinen Differenzen sehr
ungenau oder dann recht unbequem, dort wo die Span-
nungen zu rasch variieren. (Dr. Keller erhilt als maximale
Spannung 1150 kgfcm?, wihrend bei uns dieses Maximum
1350 kg/cm? betragt).

Als zweite Anwendung der Losungen 1, 3 und 4
berechnen wir noch zwei weitere Belastungsfille 3" und 4",
die ein gewisses technisches Interesse haben und die sich
in mathematischer Hinsicht nur wenig von 3" und 4  unter-
scheiden. Der Boden ist immer noch auf der konvexen
Seite mit dem Drucke p = - 20 kg/cm? belastet, die Unter-
stitzung wird durch die folgenden Randbedingungen er-
lautert : :
3 e = © AN =@

G =—0 U — "0

An Stelle der Gleichung o, = o, .die bei dea Fillen
3" und 4  die Superposition bestimmt hat, kommt hier die
andere ¢, — o, die ausdriickt, dass die Auflagerung keine
Verschiebung des Randes in horizontaler Richtung zulésst.
Nach 3”) ist der dussere Parallelkreis (a,) der Mittelfldche
festgehalten und der Rand kann sich frei um diese Punkte
drehen, wihrend nach 4”) der Boden fest eingespannt ist.

Wie frither setzen sich 3" und 4” allein aus 1 und 3
bezw. 1t und 4 zusammen und die gemeinsame Bedingung
& = o gestattet uns, wieder die Art der Zusammensetzung
zu bestimmen. Zu diesem Zwecke driicken wir zuerst mit
Hilfe des Elastizitatsgesetzes die spezifische Dehnung e, in
den Spannungen o, und ¢, aus:

I
eff = T2 (Ut =i 7/01')
die Gleichung &, = o kann durch die gleichwertige ,=»-g,
ersetzt werden.

Wir fithren unsere jetzige Superposition von I mit 3
bezw. 1 mit 4 direkt auf den Abbildungen 2 und 3, durch

1) Loc. eit. S. 32

Aenderung des Masstabes und Verschiebung der a-Axe
aus. Mit Hilfe der Gleichung 6, = v -0, bestimmen wir
zuerst die neue Lage der Axe O”0O". Die Kurven der
Abb. 2 und 3 stellen auch die Spannungen der Fille 3"
und 4" dar; bezeichnet man die Schnittpunkte der Kurven
0, und ¢, mit der letzten Ordinate (¢ = a,) mit 4 und B,
und ist O” der Schnittpunkt dieser Ordinate mit der neuen
a-Axe, so besteht zwischen den Strecken O” 4 und O” B
die gleiche Beziehung, wie zwischen den entsprechenden
Spannungen o, und o, (fir ¢ = a,); daraus folgt, dass
04

0"B v

(fir Gusseisen m = 5); der Punkt O” ist durch dieses Ver-
hiltnis eindeutig bestimmt und somit auch die neue a-Axe.
Da die Strecke O 0", um die sich die Axe verschiebt, die
Spannung — oy = - 238 kg/cm? darstellt, kennt man auch
den neuen Masstab ; damit ist die Aufgabe vollstandig geldst.
Es bleibt uns nur noch {ibrig, unsere vorige Unter-
suchung noch bezlglich der Deformation des Bodens zu
vervollstandigen; wir werden dabei auf keine neuen
Schwierigkeiten stossen, denn die analytische Losung gibt
Beziehungen zwischen den gerechneten Spannungen o, und
o, und den Deformationsgréssen » und w. Die Gleichungen

n:k-sina—k(l;ﬂ-o,utga
(2) R
w=/eocosa—f-(o,.—{46,)

gelten namlich fiir alle Losungen, die sich aus den Fillen
3, 4, 5 und 6 allein zusammensetzen lassen.

Wir wenden diese Formeln auf die Fille 3 und 4 an,
und wihlen die Integrationskonstante £ so, dass sich der
Scheitel wihrend der Forminderung nicht verschiebt
(w, = 0); dann ist:

R
Ee— — * 20

In den Abb. 4 und 5 sind die Ergebnisse dieser

Rechnung wiedergegeben; wir haben auch die Grossen
f = wusinag--wcosa

(3) Ar = wucos a — w sin a

aufgetragen, welche die axiale Durchbiegung und die hori-

zontale Verschiebung eines Punktes der Schale angeben.

Fur die Falle 3/, 4/, 3 und 4" gelten die Beziehungen
(2) nicht mehr; wie wir aber vorher den Spannungszustand
bei diesen Losungen aus den Resultaten der Fialle r und 3
(bezw. 1 und 4) ableiteten, konnten wir hier das gleiche fiir
die Deformation tun. Wir héatten zuerst den Masstab
(Abb. 4 und 5) in denselben Verhiltnissen wie oben (Ab-
bildungen 2 und 3) abzuindern, und zu diesen Betrigen
die Losung 1, d. h. die Werte:

R
=8 = ) (cos a — 1)
zu addieren. Mit Riucksicht auf die Deutlichkeit der Ab-
bildungen 4 und 5 wollen wir dies nicht einzeichnen, da
sich ‘diese Addition nicht mehr einfach durch Verschiebung
der a-Axe ausfihren lésst. (Schluss folgt.)

", — %-as(x—v)sina

Miscellanea.

Die Eisenbahnbriicke iiber den Ganges bei Sara Ghat.
In den ersten Monaten dieses Jahres ist fiir die von Calcutta aus
gegen Norden fiihrende Linie der Eastern Bengal State Ry etwa
190 km nordlich dieser Stadt, bei Sara Ghat, eine neue Briicke
iiber den Ganges fertiggestellt worden, die in verschiedener Hin-
sicht bemerkenswert ist. Bei einer Gesamtlinge von 1798 m
weist diese gleichzeitig dem Eisenbahn- und Strassenverkehr dienende
Briicke fiinfzehn Oeffnungen von je 109,5 m Spannweite sowie auf
jedem Ufer drei Vorlanddffnungen von je 24 m Weite auf. Die
Hauptoffnungen sind mittels parabolischer Triager von 105 m Linge
und 16 m grésster Hohe fiberbriickt; der Abstand der Haupttrdger
voneinander betrigt 9,75 m, die Gesamtbreite der Briicke, ein-
schliesslich der beidseitigen Stege fiir Fussginger, 14,80 m.

Infolge der geringen Tragfihigkeit des Untergrundes sowie
empfindlicher Einwirkung der Hochwasser auf die Ufer, die haufigen
Ueberschwemmungen und starker Erosion unterworfen sind, war



	Festigkeitsberechnung von Kugelschalen

