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Festigkeitsberechnung von Kugelschalen.
Von Ing. L. Bolle, La Chaux-de-Fonds.

Die Festigkeitsberechnung der Kugelschalen, die z. B.
in der Dampfturbinenkonstruktion als Zwischenböden
Verwendung finden, ist nur in seltenen Fällen mathematisch
genau durchgeführt worden.1) Die dazu verwendete Methode
hat sich nicht als praktisch erwiesen, weil sie die
umständliche durch Reihenentwicklung ausgeführte Integration
einer Differentialgleichung 5. Ordnung erforderte. Dieses
Umstandes wegen, und in Anbetracht der technischen
Wichtigkeit des Problems, erschien es
angezeigt, die betreffenden Konstruktionsteile
nach einem angenäherten Verfahren2) zu
berechnen und auf die genaue Lösung zu
verzichten.

Andererseits hat Herr Reissner8) durch
eine andere Wahl der Grundvariablen die
mathematische Lösung auf eine neue Form
gebracht, in der die Grundgleichungen, für
den Fall einer konstanten Dicke, ganz
symmetrisch erscheinen. Diese Symmetrie hat
Prof. Meissner dazu benutzt, um eine grosse
Vereinfachung der Integration zu erzielen ;

er zeigte*) nämlich, dass sich die Lösung
der Elastizitätsaufgabe eines Torus (und
dessen Grenzfälle, Kegel und Kugel) auf
die IiÄgration einer einzigen
Differentialgleichung 2. Ordnung zurückführen lässt.
Auf diese Resultate gestützt, Hess sich im
Falle der Kugel ein auch für die Praxis
bequemes Berechnungsverfahren finden,
dessen Ergebnissen zu zeigen den Zweck
der folgenden Seiten bildet.

Es bezeichnen im Folgenden:
R den Radius der Mittelkugel.
2 A die Dicke der Schale.
a das Komplement der geographischen Breite eines

Punktes P der Mittelfläche.
Wählen wir in P ein rechtwinkliges Koordinatensystem:

die #-Axe in der Richtung der Tangente an
die Meridiankurve (-f- x mit wachsendem a); die
y-Axe in der Richtung der Tangente an den Parallelkreis;

die s-Axe in der inneren Flächennormalen.

X, Y, Z die Komponenten der auf die Flächeneinheit
der Mittelkugel bezogenen Belastung in P (X, Y, Z
sind gegebene Funktionen von a).

or, ot die gleichmässig verteilte Spannung in „radialer"
(.«-Axe) bezw. „tangentialer" (y-Axe) Richtung, normal
auf die zugehörigen Schnitte.

ox, Oy die Maximalwerte (z -f- h, Innenfaser) der reinen
Biegungsspannungen in „radialer" und „tangentialer"
Richtung.

z den Mittelwert der Schubspannungen in einem Parallel¬
schnitte.

Wettbewerb Kirchgemeindehaus Zürich-Wiedikon.
III. Preis, Entwurf Nr. 61. — Verfasser: Knell Sc Hässig, Architekten in Zürich.
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*) Dr. E. Fsnkhauser, „Exp. und theoret. Untersuchungen über die
Festigkeit von Kegel- und Kugelböden". Berlin 1913.

a) Dr. H. Keller, „Berechnung gewölbter Böden". Berlin 1912. (Bau-
zeitnng, Bd. LXI, Seite III. ff, März 1913).

8) Reissner, „Spannungen in Kugelschalen", in der Müller-Breslau
Festschrift. Leipzig, Kröner 1912.

*) Physikalische Zeitschrift 1913. S. 343 bis 349. — Vergi, ferner:
Meissner, „Ueber Elastizität und Festigkeit dünner Schalen" in Vierteljahrsschrift

der Naturforsch. Gesellschaft in Zürich, 1. u. 2. Heft 1915.

oH die Komponente der resultierenden Spannung aus or und t
in horizontaler Richtung (normal zur Rotationsaxe).

R i>

as 7 • — die Kugelspannung, d. h. diejenige Span¬

nung, die in allen Punkten einer von aussen her
mit dem Drucke p kg/cm* belasteten Kugel herrscht.

u, v, w die in der Richtung der Axen fallenden Kompo¬
nenten der elastischen Verschiebung von P.

¦& den Verdrehungswinks«: der Normalen, infolge der
Formänderung.

sr, et die auf der Mittelkugel gemessenen spezifischen
Dehnungen in „radialer" bezw. „tangentialer" Richtung.

v — das Verhältnis der Querkontraktion zur Längen-
Dilatation.

E den Elastizitätsmodul.
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der Rechnung eingeführte Konstante.
Wegen der vorausgesetzten axialen Symmetrie aller '

Bedingungen ist Y o, v o und & wird in der Meridianebene

liegen.
Zerlegung der Aufgabe.

Wir denken uns einen durchbohrten Boden, aus einer
Hohlkugel längs der beiden Parallelkreise a{ und aa
herausgeschnitten. Wie in allen Festigkeitsaufgaben wird hier
der Spannungszustand, ausser von der stetigen Belastung,
noch linear von den Grössen (or, r, ax)a und (an x, ox){
abhängen, welche die Randbedingung charakterisieren. Diese
sechs Parameter dürfen wir aber nicht willkürlich annehmen,
wenn die Schale im Gleichgewicht bleiben soll. Es gibt
eine Gleichgewichtbedingung, die trotz der vorausgesetzten
Symmetrie der Belastung nicht identisch erfüllt wird ; diese
drückt aus, dass die Summe der Kräfte in der Richtung
der Symmetrieaxe verschwinden muss. Diese Gleichung
reduziert die Anzahl der von einander unabhängigen
Parameter, von denen der Spannungszustand linear abhängt,
auf fünf. Zählen wir aber die Abhängigkeit von der stetigen
Belastung noch hinzu, so folgt aus dem Superpositionsprinzip,
dass wir nur für sechs verschiedene Belastungsfälle die
Lösungen zu kennen brauchen, um dann jede andere Lösung
durch lineare Zusammensetzung darstellen zu können.

Der Klarheit unserer Darstellung wegen wollen wir
aber zuerst annehmen, dass die stetige Belastung, wenn
eine solche überhaupt vorkommt, nur durch den Druck einer
Flüssigkeit erzeugt wird, dass also X Y o und
Z p kg/cm2 sei ; andere Belastungsgesetze werden wir
erst später betrachten.

/,+p W<m*

smcoiS-rSra "ri smcCa

a.a
#=0
<j_/oc

öu 6U *-H

X,

v=o
o-a

¦&-0 #=0

cca- 'cc,

Abbildung I.

In der Abbildung i sind diejenigen sechs Belastungsfälle,
die wir in der Folge berechnen werden, schematisch

dargestellt. Dieses Schema zeigt deutlich, was wir mit
dem ersten Falle meinen ; er enthält den Einfluss des
Belastungsgesetzes. Bei dem zweiten sind die Spannungen.
0„- und ara so gewählt, dass die Schale im Gleichgewicht
ist. Für die Fälle 3 und 4 soll die punktiert eingezeichnete
Ergänzung des Kreisbogens nur andeuten, dass wir es
entweder mit einem vollen Boden zu tun haben, oder
wenn das nicht der Fall ist, dass wir auf dem inneren
Rande diejenigen Spannungen angreifen lassen, die in den
entsprechenden Punkten des auf dem Aussenrande gleich
belasteten vollen Bodens herrschen würden. In den zwei
letzten Fällen bleibt der Aussenrand vollständig frei,
während jetzt der Innenrand belastet wird.

Belastungsfälle 1 und 2.
Diese zTjjrei Fälle nehmen in der mathematischen

Lösung eine ganz besondere Stelle ein; sie sind von der
Integration der Grunddifferentialgleichung des Problems
unabhängig, und können in geschlossener Form (und mit
Hülfe von elementaren Funktionen) wie folgt ausgedrückt
werden :

R p
2 h 2 s

ay t $ o

Sr — E. ¦—
2 h 2 v '

Rst u 9j o und

2. o, .Aï2sin2« 2 h
% # o

(i + v, C

2h E

W — (i+")c
2hE

jjäin a ¦ 1g (tg-^j — cotg °J

i^cosa-lg(tg-^j -f- ij
Die Konstante C des zweiten Falles hat den Wert :

C — — ori R sin2 at
Das Anwendungsgebiet dieser zwei Lösungen allein

ist natürlich dadurch eingeschränkt, dass wir hier nur
gewisse Randbedingungen zu erfüllen vermögen. Die
gemeinsamen Werte ax — r o verlangen z. B., dass bei
einer Auflagerung der Platte die Reaktion der Unterlage
genau in der Richtung der Tangente an den Meridian der
Mittelfläche wirke.

Nehmen wir eine Halbkugel, die auf einer horizontalen

Ebene frei aufliegt, und nur durch den auf der
konvexen Seite wirkenden Druck p beansprucht wird, so ist
die erwähnte Auflagerungsbedingung erfüllt, und die erste
Lösung gibt uns das bekannte Resultat, dass unsere Schale
sich in demselben Spannungszustande befindet, in dem sie
sich als Teil der gleich belasteten vollen Kugel befinden
würde ; in allen Punkten herrscht die konstante Spannung

R p
°s' - Th * T

Wir schneiden jetzt unsere Halbkugel längs des
Parallelkreises at ab und lassen den so enstandenen inneren
Rand vollständig frei. Dieser neue Belastungsfall ist mit
einer Superposition unserer beiden Lösungen leicht zu
erreichen; es genügt die Grösse ari im zweiten Falle gleich
— os zu wählen, woraus sich für die Konstante C folgender
Wert ergibt:

C — £- R2 sin2 at2

Diese zusammengesetzte Lösung gilt ohne weiteres
noch für irgend einen Teil aa a{ unserer Halbkugel; die
einzige Bedingung dafür ist die, dass die erwähnte
Auflagerungsbedingung auf dem neuen Rande immer noch
erfüllt wird.

Belastungsfälle 3 und 4.

Diese zwei Belastungsfälle treten nicht mehr wie die
beiden vorigen direkt als unabhängige Integrale in der
mathematischen Lösung auf; sie sind vielmehr gemeinsam
mit den Fällen 5 und 6, als vier verschiedene Zusammensetzungen

der Integrale einer Differentialgleichung1) 4.
Ordnung zu betrachten. Der Umstand aber, dass wir es bei
den Fällen 3 und 4 mit einem in der Mitte geflossenen
Boden zu tun haben, bedingt in den zugehörigen
Zusammensetzungen das Verschwinden zweier Integrale.2)

Zu jedem Integral der Differentialgleichung gehört
natürlich eine bestimmte Lösung, d. h. es gehören zu jedem
Integral bestimmte Werte für jede Spannungs- oder De-
formationsgrösse. Gehen wir z. B. von den zwei
Integralen (in ihrer Reihendarstellung geschrieben) aus, die bei
den Fällen 3 und 4 vorkommen:

Xx A0 + Ax x -Ar Ai x2 +
Y1 =B*-\-Bxx-\-Bix2-\-...

wobei x sin* a und A„, Bn von fi abhängende
Zahlenkoeffizienten sind, und führen wir noch die zwei Reihen ein :

') Auf die Integration der Grunddifferentialgleichung der Aufgabe
werde ich nicht näher eintreten; es genügt zu sagen, dass die neue
Form, die ihr Prof. Meissner gegeben hat, die Integrale durch vier
Reihenentwicklungen darstellt, die nach Potenzen von x sin2 a fortschreiten.

*) Die Spannungen, die za diesen zwei Integralen gehören, würden
in der Mitte unendlich grosse Werte annehmen ; solche Spannungen werden
aber nie in unsern Fällen 3 und 4 auftreten und diese Bedingung könnte
ichon das Verschwinden dieser Lösungen erklären.
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Werte der spezifischen Spannungen, in kg/cm2 (R 143 cm, 2 h — 6 cm, v 0,2).

Lösung X%.

a oo 5° IO» i5° 20° 250 30° 35° 40» 45°

' or
Ol

Ox

°y 1

+ 23,83

+ 23,83
+ 0,12
+ O.I2

+ 23.71
+ 23,56
— 10,36

- 5,o8

+ 22,59
+ 19,95
— 40,82
— 20,39

-\ 19,52
+ 4,77- 87,55
— 44,12

+ 11,44
— 34,32
— 135,3
— 70,9

— 3,85
— 108,6
— I4i,9
— 86,5

— 27,31
— 215,7
— 35,7
— 67,0

— 56,29
— 3*9,1
+ 277,7
+ i8,6

— 81,33
— S^,6
+ 897,6
+ 204,9

— 83,9
+ 8

^1798
+ 492

Lösung Y !¦*

a O» 5° IO» 15° 20O 25° 30° 35° 40° 45°

Or

ot
Ox

Oy

0
0

+ 50,56
+ 50,56

+ 1,82

+ 5,54
+ 5°,10
+ 50,32

+ 7,23
+ 21,75
+ 43,43
+ 47,13

+ *5,7o
+ 46,37
+ 15,54
+ 36,30

+ 25,86
+ 71,20
— 56,2

+ 8,3

+ 34,25
+ 73,5
— 193,2
— 45,i

+ 35,36
+ 12,5
— 39i,i
— 124,4

+ 21,57
— 162,0
— 584,3
— 212,4

— pli
— 505,2
— 584,9
— 255,1

— 78,1
IOOI

— 20
— 146

<£>! 2 {2.n+i)-An-xn und SP, 2 (zn + i)-Bn-xn
ft 0 » o

die in einem gewissen Differentialzusammenhang mit Xi
und Yi stehen, so werden die zu Xx und Fi entsprechenden

Lösungen wie folgt ausgedrückt:

Integrale Yi
R

2 h

R
2 h
R

Integrale Xt
R

2 h
R

2 h

mkx 2*
Or

• cos a • Xi

• cos a • 4>.

• sin a • Xi

§Ü

Or —

(I)

• cos a • Yi

• cos a- ¥1

• sin a • Yi
R

2 h
Yi

'&=-*• r-h-sma{vXi—p,Yi\2h
cos a

2(l_^K^+^)-
[v(Xi +v$i)-
WBè

cos a
2(1 —¦y2)BU

E

°x

Oh

§§ |Ë sin a [v Yi +pXi]

j^H^+vYi) +

;v mLWÊË2(1-^)
V <Pi)]

Im Gegensatz zu den Hauptfällen 1 und 2 sind hier
die Spannungen nicht mehr mit Hülfe von elementaren
(d. h. aus einer Tafel direkt abnehmbaren) Funktionen
ausgedrückt; die Berechnung der vorkommenden Funktionen
muss für jede Platte wiederholt werden. Es würde uns
zu lange aufhalten, wenn wir auf diesen Teil der Rechnung
eingehen würden ; wir nehmen daher an, Xi und Yi seien
bekannte Funktionen von a, die wir für eine gusseiserne
Kugelschale (v 0,2) von gegebenem Radius (i?= 143 cm)
und gegebener Dicke (2 Â 6 cm) gerechnet haben.*) Die
zugehörigen Lösungen sind in den Zahlentafeln 1 und 2
in der Weise dargestellt, dass wir für alle a (von 50 zu
50 bis a 45°) zugleich die entsprechenden Werte von
Ort ox, at und oy angeben.

Aus diesen zwei partikulären Lösungen gelangen wir
zu den gesuchten Lösungen (Belastungsfälle 3 und 4) durch
eine einfache Superposition; die Konstanten a, und 61(

die die Art der Zusammensetzung béj^jptmen, sind so zu
Wählen, dass die Randbedingungen erfüllt sind ; diese
lauten (vergi. Schema 1) :

Fall 3 oH ='gegeben ox o für a aFall 4 oH gegeben ¦& o
Mit Rücksicht auf eine spätere Superposition der

Fälle 3 und 4 mit 1, wählen wir oB — os, wo os diejenige
Kugelspannung bezeichnet, die zu einem bestimmten Drucke
-\-p gehört (z.B.p + 20 kg/cm2; oH + 238 kgjcm2).
Wird weiter aa 39° angenommen2), so gestatten uns die

M Die Integrale und die zugehörigen Lösungen hängen aber nur
von dem Verhältnis — und von v ab ; sie sind also für alle aus demselben

A

Material ausgeführten ähnlichen Kugeln die gleichen.

vorigen Gleichungen, für jeden Fall 3 und 4, «1 und bt

zu berechnen; mit den entsprechenden Superpositionen
gelangen wir ohne weiteres zu den gesuchten Lösungen.

In den Abbildungen 2 und 3, wo wir diese Lösungen
wiedergeben, sind in Abhängigkeit von a zugleich die
radiale und die tangentiale Spannung für Punkte der
Mittelfläche (punktiert ; or und ot) und für Punkte der innern
(or + ox; ot M Oy) und der äusseren (or — ox) at — ov)
Oberfläche aufgetragen.

m
i5' 53-

3

3'

Abb. 2. Fälle 3, 3' und 3" :

Axe O O ; lern—- 800 kgjcml
AxeO'O';

Axe O" O''

1 cm 800 cos 390

c^ 622 kgjcm2

2,85 cm — 23&èg/cmî

lem — 83,6 kgjcm2

Abb. 3. Fälle 4, 4' und 4" :

4 : Axe O O ; 1 cm 800 kglcm2

4': AxeO'O'; 1 cm 800 cos 390

jjg 622 kgjcm2

4": AxeO"0"; i,2$cm 23&kg/cm2
1 cm 191 kgjcm2

Als erste Anwendung des Vorstehenden betrachten
wir zwei neue Belastungsfälle, die schon früher von Dr.
H. Keller untersucht worden sind. Bei diesen zwei Fällen,
die wir mit 3' und 4' bezeichnen wollen, ist der Boden
von aussen her mit einem Drucke p + 20 kg/cm2
belastet und die Randbedingungen drücken sich durch die
folgenden Gleichungen aus:

3') o„ o 4') oH o
ox o ¦& o

Im Falle 3' liegt folglich der Boden frei auf einer Ebene
auf; im Falle 4'wird noch (durch Anbringen des nötigen
Randmomentes) die Neigung der äusseren Tangente festgehalten.

Es ist leicht einzusehen, wie sich diese neuen Fälle aus
den gerechneten 1, 3 und 4 ableiten lassen. Die Randwerte:

Os +OsCOSaa Vo11 „0B= -Os T7o1, Ao„= ~osFall 1 Fall 4 q
ox o # o ° ox o ^#=0Fall 3 "» "° n

erzeigen, dass folgende Superpositionen zum Ziele führen:
[1] + [3] • cos aa =[3'] und [1] + [4] • cos aa [4']

(die in [] gesetzten Ziffern bedeuten Lösungen).

2) Den gleichen Boden, auf einer horizontalen Ebene frei aufliegend
und mit dem Drucke p 20 at auf der konvexen Seite belastet, hat Dr.
Keller loc. cit. mit Hülfe seines angenäherten Verfahrens gerechnet.
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Zur Darstellung dieser zwei Lösungen 3' und 4'
können wir die Abbildungen 4 und 5 benutzen, wenn wir
dort zuerst den Masstab der Spannungen im Verhältnis
von 1 zu cos aa reduzieren und nachher die a-Axe nach
O' O' verlegen. Die Aenderung des Masstabes bedarf keiner
Erklärung, die Verschiebung der Axe dient dazu, die
überall herrschende konstante Spannung os des ersten
Falles zu den Beträgen [3] • cos aa bezw. [4] • cos aa zu
addieren. Die Strecke O O', um die man den Ursprung
aller Spannungen verschiebt, stellt die im neuen Masstab
gemessene Spannung — os + 238 kg/cm2 dar. Diese
neue Interpretation der Abbildungen 4 und 5 führt uns
also sehr bequem zu den Spannungen der Belastungsfälle

3' und 4'.

i
Ar /

3 39

of= >" 1 0° 1 5° 2 3° 2 \.3O5"
U*^\^

1
1P

w 1
^
i

Ù.T

oi"5° 10* 15" 20° ^.-^30° 55° 33

25?

Abbildung 4. ¦ffljBlfölung 5.

Der Vergleich dieser numerischen Resultate mit
denjenigen des Herrn Dr. H. Keller1) zeigt im allgemeinen
nur geringe Abweichungen. Nur im Scheitel und für die
Lösung 4' in der Nähe des Randes, ist die Ueberein-
stimmung nicht sehr befriedigend ; beide Abweichungen
finden ihren Grund in der angewandten Berechnungsmethode

selbst; einerseits ist eine Extrapolation unsicher,
anderseits wird das Rechnen mit kleinen Differenzen sehr
ungenau oder dann recht unbequem, dort wo die
Spannungen zu rasch variieren. (Dr. Keller erhält als maximale
Spannung 1150 kg/cm2, während bei uns dieses Maximum
1350 kg/cm2 beträgt).

Als zweite Anwendung der Lösungen 1, 3 und 4
berechnen wir noch zwei weitere Belastungsfälle 3" und 4",
die ein gewisses technisches Interesse haben und die sich
in mathematischer Hinsicht nur wenig von 3' und 4'
unterscheiden. Der Boden ist immer noch auf der konvexen
Seite mit dem Drucke p -f- 20 kg/cm2 belastet, die
Unterstützung wird durch die folgenden Randbedingungen
erläutert :

3") 1 o 4") | o
ox o & ¦= o

An Stelle der Gleichung o„ M o, die bei den Fällen
3' und 4' die Superposition bestimmt hat, kommt hier die
andere st o, die ausdrückt, dass die Auflagerung keine
Verschiebung des Randes in horizontaler Richtung zulässt.
Nach 3") ist der äussere Parallelkreis (aa) der Mittelfläche
festgehalten und der Rand kann sich frei um diese Punkte
drehen, während nach 4") der Boden fest eingespannt ist.

Wie früher setzen sich 3" und 4" allein aus 1 und 3
bezw. 1 und 4 zusammen und die gemeinsame Bedingung
Et o gestattet uns, wieder die Art der Zusammensetzung
zu bestimmen. Zu diesem Zwecke drücken wir zuerst mit
Hülfe des Elastizitätsgesetzes die spezifische Dehnung 'à in
den Spannungen ot und or aus :

st -g (dt — vdr)

die Gleichung e, o kann durch die gleichwertige o, v • or
ersetzt werden.

Wir führen unsere jetzige Superposition von 1 mit 3
bezw. 1 mit 4 direkt auf den Abbildungen 2 und 3, durch

l) Loc. cit. S. 32.

Aenderung des Masstabes und Verschiebung der a-Axe
aus. Mit Hülfe der Gleichung ot v • or bestimmen wir
zuerst die neue Lage der Axe 0" O". Die Kurven der
Abb. 2 und 3 stellen -auch die Spannungen der Fälle 3"
und 4" dar ; bezeichnet man die Schnittpunkte der Kurven
or und ot mit der letzten Ordinate (a aa) mit A und B,
und ist O" der Schnittpunkt dieser Ordinate mit der neuen
a-Axe, so besteht zwischen den S'fS:ken O" A und O" B
die gleiche Beziehung, wie- zwischen den entsprechenden
Spannungen or und ot (für a a„) ; daraus folgt, dass

WO. 1

-=- A m0"B v
(für Gusseisen m — 5) ; der Punkt O" ist dtrapfa dieses
Verhältnis eindeutig bestimmt und somit auch die neue a-Axe.
Da die Strecke 0 O", um die sich die Axe verschiebt, die
Spannung — os -+- 238 kg/cm2 darstellt, kennt man auch
den neuen Masstab ; damit ist die Aufgabe vollständig gelöst.

Es bleibt uns nur noch übrig, unsere vorige
Untersuchung noch bezüglich der Deformation des Bodens zu
vervollständigen ; wir werden dabei auf keine neuen
Schwierigkeiten stossen, denn die analytische Lösung gibt
Beziehungen zwischen den gerechneten Spannungen or und
ot und den Deformationsgrössen u und w. Die Gleichungen

u k • sin a — -ß— • or • tg a
(2) |w k • cos a M • (or -\- o/)

gelten nämlich für alle Lösungen, die sich aus den Fällen
3, 4, 5 und 6 allein zusammensetzen lassen.

Wir wenden diese Formeln auf die Fälle 3 und 4 an,
und wählen die Integrationskonstante k so, dass sich der
Scheitel während der Formänderung nicht verschiebt
(w0 o) ; dann ist :

k= — .*oro
In den Abb. 4 und 5 sind die Ergebnisse dieser

Rechnung wiedergegeben; wir haben auch die Grössen

/' u sin a-\-w cos a
™> Ar=u cos a — w sin a
aufgetragen, welche die axiale Durchbiegung und die
horizontale Verschiebung eines Punktes der Schale angeben.

Für die Fälle 3', 4', 3" und 4" gelten die Beziehungen
(2) nicht mehr ; wie wir aber vorher den Spannungszustand
bei diesen Lösungen aus den Resultaten der Fälle 1 und 3
(bezw. 1 und 4) ableiteten, könnten wir hier das gleiche für
die Deformation tun. Wir hätten zuerst den Masstab
(Abb. 4 und 5) in deÄlben Verhältnissen wie oben
(Abbildungen 2 und 3) abzuändern, und zu diesen Beträgen
die Lösung 1, d. h. die Werte:

7? r?

Ui — • os (1 — v) sin a wt — os (1 — v) (cos a — 1)

zu addieren. Mit Rücksicht auf die Deutlichkeit der
Abbildungen 4 und 5 wollen wir dies nicht einzeichnen, da
sich diese Addition nicht mehr einfach durch Verschiebung
der a-Axe ausführen lässt. (Schluss folgt.)

Miscellanea.

Die Elsenbahnbrücke über den Ganges bei Sara Ghat.
In den ersten Monaten dieses Jahres ist für die von Calcutta aus

gegen Norden führende Linie der Eastern Bengal State Ry etwa
190 km nördlich dieser Stadt, bei Sara Ghat, eine neue Brücke
über den Ganges fertiggestellt worden, die in verschiedener
Hinsicht bemerkenswert ist. Bei einer Gesamtlänge von 1798 m
weist diese gleichzeitig dem Eisenbahn- und Strassenverkehr dienende
Brücke fünfzehn Oeffnungen von je 109,5 m Spannweite sowie auf

jedem Ufer drei Vorlandöffnungen von je 24 m Weite auf. Die

Hauptöffnungen sind mittels parabolischer Träger von 105 m Länge
und I6/77 grösster Höhe überbrückt; der Abstand der Hauptträger
voneinander beträgt 9,75 m, die Gesamtbreite der Brücke,
einschliesslich der beidseitigen Stege für Fussgänger, 14,80 777.

Infolge der geringen Tragfähigkeit des Untergrundes sowie

empfindlicher Einwirkung der Hochwasser auf die Ufer, die häufigen

Ueberschwemmungen und starker Erosion unterworfen sind, war
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