Zeitschrift: Schweizerische Bauzeitung

Herausgeber: Verlags-AG der akademischen technischen Vereine

Band: 65/66 (1915)

Heft: 12

Inhaltsverzeichnis

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 16.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

INHALT: Das Adhäsionsgewicht elektrischer Fahrzeuge bei Motoren verschiedener Stromart. — Der Neubau des "Rösslitor" in St. Gallen. — Zum heutigen Stand der Rostfrage und neue Gesichtspunkte und Mittel zur Rostverhinderung. — Miscellanea: Rhein-Weser-Kanal. Ausnützung der Wärme der Hochofenschlacken. Schutz von Schwachstromleitungen gegen Starkstrom. — Nekrologie: H. Ward Leonard.

— Konkurrenzen: "Pont Butin" in Genf. J. Daler-Spital. — Korrespondenz betreffend Wasserwerk Eglisau. — Literatur: Eisenbetonbau. La Elettrificatione delle Ferrovie. — Vereinsnachrichten: Zürcher Ingenieur- und Architekten-Verein. Gesellschaft ehemaliger Studierender: Stellenvermittlung.

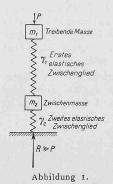
nTafel 23 und 26: Der Neubau des "Rösslitor" in St. Gallen.

Band 65.

Nachdruck von Text oder Abbildungen ist nur mit Zustimmung der Redaktion und unter genauer Quellenangabe gestattet.

Nr. 12.

Das Adhäsionsgewicht elektrischer Fahrzeuge bei Motoren verschiedener Stromart.


Ein neuer Beitrag zu einer alten Streitfrage von Prof. Dr. W. Kummer, Zürich.

Anlässlich der Erörterungen über die ersten praktischen Anwendungen der elektrischen Zugförderung mittels Einphasen-Wechselstroms ist von den Vertretern der Bahnsysteme mittels Gleichstroms und mittels Drehstroms gegen den Betrieb mittels Einphasenstroms der Einwand erhoben worden, das Adhäsionsgewicht von Einphasenlokomotiven mit unmittelbarem Antrieb durch Einphasenmotoren müsse erheblich unter demjenigen von Gleichstromlokomotiven und Drehstromlokomotiven vom selben Totalgewicht liegen, weil zufolge der pulsierenden Triebkraft der Einphasenmotoren ein Gleiten der Triebräder schon bei verhältnismässig niedrigen mittlern Zugkräften am Radumfang eintreten müsse. Eine Bestätigung für die Richtigkeit dieser Ansicht, wenigstens grundsätzlich und unter den obwaltenden Verhältnissen auch in quantitativer Hinsicht, ist im Jahre 1906 durch amerikanische Versuche, über die wir uns an Hand der Berichterstattung von B. G. Bergmann1) hier noch eingehender äussern werden, erbracht worden. Anderseits liegen aber auch schon seit vielen Jahren mannigfache Versuchsresultate vor, aus denen das Vorhandensein eines merkbaren Einflusses der pulsierenden Triebkraft von Einphasenmotoren auf das Adhäsionsgewicht der damit ausgerüsteten Fahrzeuge rundweg bestritten werden kann. Den ersten Versuch einer rechnungsmässigen Klärung der aus den sich widersprechenden Ansichten und Erfahrungen entstandenen Streitfrage hat Prof. G. Osanna, München, ebenfalls schon im Jahre 19062) veröffentlicht, indem er den Verlauf der bei eintretendem Gleiten der Räder auf den Schienen zu erwartenden Gleitbewegungen bei Annahme eines von der Gleitgeschwindigkeit unabhängigen Adhäsionskoeffizienten untersuchte und daraus die durch Gleiten bedingten Effektverluste berechnete, die jedoch, wegen des ausgleichend wirkenden grossen Trägheitsmomentes der antreibenden, und von Osanna mit starrer Uebersetzung wirkend angenommenen Motoren, als vernachlässigbar klein ermittelt wurden. Die von Osanna gemachte Annahme eines konstanten, für die Reibung bei Ruhe und bei Bewegung gleichmässig anwendbaren Reibungskoeffizienten hat jedoch schon bald zu einem Widerspruch gegen seine Berechnungen geführt 3), die auch von Vertretern der Einphasentraktion als nicht recht überzeugend empfunden wurden4).

Es muss daher als verdienstvoll bezeichnet werden, dass die Angelegenheit der rechnerischen Untersuchung des Einflusses der Stromart der Bahnmotoren auf die Adhäsionsverhältnisse im Zusammenhang mit Versuchen auf der preussischen Wechselstrom-Bahnstrecke Dessau-Bitterfeld durch G. Brecht, Berlin⁵), neuerdings in Fluss gebracht wurde. Anstatt aber, nach dem Vorgehen von Osanna, tatsächliche Gleitbewegungen zwischen Rad und Schiene vorauszusetzen, zieht Brecht, ebenso wie es B. G. Bergmann in dem bereits erwähnten Versuchsberichte von 1906 ¹), zwecks einer allerdings mehr nur physikalischen Erörterung, versucht hatte, die elastische Deformation des Getriebes zwischen Antriebsmotor und Radumfang einer

bei Stillstand des Zuges anziehenden Maschine in Betracht, wobei die schwingende Beanspruchung im Getriebe unter dem Einfluss der pulsierenden Triebkraft eines Wechselstrommotors untersucht wird. Diesen, von Bergmann erstmals eingehender entwickelten Grundgedanken als zutreffend anerkennend, werden wir in der nachfolgenden Rechnung ebenfalls von ihm ausgehen. Anderseits können wir der Rechnung Brechts, obwohl diese vom selben Grundgedanken ausgeht, deswegen nicht zustimmen, weil die ihr zu Grunde liegende Annahme, nur der nicht vom Widerstand "ausgeglichene" Teil der Zugkraft sei beim Energieaustausch zwischen Massenträgheit und Elastizität zu berücksichtigen, offenbar unzutreffend ist. Auch ist zu beachten, dass die Voraussetzung eines elastischen Triebwerks zwischen Motor und Radumfang es gar nicht zulässt, dass die übertragene Kraft am Motor zwischen o und 2, am Radumfang dagegen nur von wenigen Prozenten unter 1 bis ebensowenig Prozente über I schwingt, wie Brecht gerechnet hat; vielmehr schwingt für ein auf übergrossen Widerstand treibendes Getriebe mit einem oder mehreren elastischen Zwischengliedern die Uebertragungskraft sowohl am Motor, wie am Widerstand, in gleicher Weise zwischen o und 2, ob es sich nun um einen Motor mit der konstanten Triebkraft 1 oder um einen Motor mit einer um den Mittelwert 1 harmonisch pulsierenden Triebkraft handelt. Wie wir noch zeigen werden, beanstanden wir für die hier in Frage stehende Untersuchung grundsätzlich auch das von Brecht angenommene Schema eines Triebwerks mit nur einem elastischen Zwischengliede.

Um nun einwandfrei den Einfluss der Stromart verschiedener Bahnmotoren auf die Schwingungen der Zugkraft am Radumfang stillstehender Triebfahrzeuge auf Grund des Energieaustausches zwischen Elastizität und Massenträgheit rechnungsmässig festzustellen, legen wir der Kraftübertragung zwischen Motor und Radumfang das Schema eines Triebwerks mit zwei elastischen Zwischengliedern

von verschiedenem Nachgiebigkeitsgrad zu Grunde. Dieses, in Abbildung 1 vorgeführte Schema kann auf den Triebradantrieb elektrischer Fahrzeuge insoweit Anwendung finden, als die Motormasse der treibenden Masse m_1 , die Radkranzmasse dagegen der Zwischenmasse m_2 des Schemas entsprechen, und als der Nachgiebigkeitsgrad γ_1 sich auf die Deformation des Getriebes zwischen Motor und Radkranz, der Nachgiebigkeitsgrad γ_2 sich auf die Deformation des Radkranzes an der Berührungsstelle von Schiene und Rad beziehen. Dabei kann für das stillgestellte Fahrzeug

das Getriebe ohne Einfluss auf unsere Betrachtung beliebig als ideales Getriebe mit nur rotierenden Massen oder auch als ideales Kurbelgetriebe z. B. für diejenige Kurbelstellung, der auf beiden Fahrzeugsseiten gleiche Stangenkräfte entsprechen, vorausgesetzt werden. Unserem Schema entsprechend, treten nun in den zwei elastischen Gliedern verschiedene Uebertragungskräfte auf, eine Uebertragungskraft K_1 im ersten elastischen Gliede und eine Uebertragungskraft K_2 im zweiten elastischen Gliede, wobei:

$$K_1 = rac{s_1 - s_2}{\gamma}$$
 und $K_2 = rac{s_2}{\gamma_2}$

bei Einführung der Deformationen, bezw. Wege s_1 am Orte der konzentriert gedachten Masse m_1 und s_2 am Orte der konzentriert gedachten Masse m_2 . Solange nun die Triebkraft P den Widerstand R noch nicht zu überwinden ver-

¹⁾ El. World, Band XLVIII, Seite 713.

²⁾ Elektrische Bahnen und Betriebe 1906, Seite 229.

³⁾ Elektrische Bahnen und Betriebe 1906, Seite 361.

⁴⁾ Elektrische Kraftbetriebe und Bahnen 1914, Seite 281.

⁵⁾ Elektrische Kraftbetriebe und Bahnen 1914, Seite 277 bis 284.