Zeitschrift: Schweizerische Bauzeitung

Herausgeber: Verlags-AG der akademischen technischen Vereine

Band: 63/64 (1914)

Heft: 15

Artikel: Der Neubau der Universität Zürich: Architekten Curjel & Moser

Autor: [s.n.]

DOI: https://doi.org/10.5169/seals-31535

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 02.10.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Der Neubau der Universität Zürich.

Architekten Curjel & Moser. (Mit Tafeln 22 bis 25.)

Als wir im letzten Bande anlässlich der Universitäts-Einweihung den Bau in seiner Gesamtanlage und Wirkung im Stadtbilde (Seite 221) und späterhin in seiner innern Gliederung und Durchbildung (Seite 357) zur Darstellung brachten, war sein Aeusseres noch nicht in allen seinen Schmuckteilen fertig. Unsere damalige Veröffentlichung vervollständigen wir heute durch die beigegebenen Bilder, die wir wie die frühern dem freundlichen Entgegenkommen des Herrn Kantonsbaumeister H. Fietz verdanken. Die figürlichen Reliefs über dem östlichen und nördlichen Eingang stammen von P. Osswald, die ornamentale Einfassuug zu letzterem sowie andere Einzelheiten von W. Schwerzmann. Doch haben auch O. Kappeler und Andere in dieser ihnen eigenen Ornamentik dekorative Beiträge geliefert an Fassaden, Brüstungen, Kandelabern und Gesimsen. Mehr klassischer Geist spricht aus den beiden Skulpturen des Schweizers H. Haller in Paris.

Neue Versuche über die Unterkühlung beim Ausfluss gesättigten Dampfes.

Von Prof. Dr. A. Stodola, Zürich.

Anfänglich gesättigter Dampf bleibt beim Ausströmen, wie ich in der Schweiz. Bauzeitung, Bd. LXI, Seite 229, berichtet habe, während der Expansion bis zum engsten Querschnitt der Ausströmungsvorrichtung fast vollständig unterkühlt. Bei einer Düse setzt unmittelbar hinter dem engsten Querschnitt, wenn die Uebersättigung den 3,3 bis 4-fachen Betrag erreicht hat, eine plötzliche stärkere Kondensation ein, durch welche, wie ich in der "Zeitschrift des Vereins Deutscher Ingenieure", J. 1913, Seite 1776, nach-

gewiesen habe, die Unterkühlung rasch sinkt.

Seither war ich in der Lage1), zwei weitere Versuche zu veranstalten, welche zur Aufklärung dieses eigentümlichen Sachverhaltes beitragen dürften. Wie ich in jener Abhandlung erläutert habe, ist zur Bestimmung des Unterkühlungszustandes in irgend einem Querschnitt die Kenntnis des sekundlichen Dampfgewichtes G, des absoluten Druckes p, des Querschnittes f und der Strömungsgeschwindigkeit w erforderlich. Beschränken wir uns auf die Untersuchung des Zustandes im Endquerschnitt einer Düse, so kann die Dampfgeschwindigkeit am besten durch Messung der Strahlreaktion bestimmt werden. Wir benutzten hierzu einen, der Vorrichtung von Frederic und Kembel bezw. Christlein nachgebildeten Apparat, bei welchem die Reaktion bei rund 10 kg Gesamtbetrag auf 5 gr genau bestimmt werden konnte. Am Düsenende könnte aber Ueberdruck herrschen, über den die Reaktionsmessung nichts aussagt. Die Aufgabe war daher, die Reaktion ganz besonders bei demjenigen Druckverhältnis zu messen, wo der Dampf im Endquerschnitt genau auf den Gegendruck der Umgebung expandiert. Zu diesem Zwecke wurde 3 mm vom Düsenende eine nach innen gut abgerundete Messbohrung von 1 mm lichte Weite angebracht und durch geeigneten Rohranschluss der dort herrschende Druck beobachtet. Auf theoretischem Wege konnte hieraus genügend genau der Druck am Düsenende abgeleitet werden. Stellt man während des Versuchs diesen Druck als Gegendruck ein, so liefert die Reaktionsmessung die gewünschte Endgeschwindigkeit. Die untersuchten Düsen besassen Kegelgestalt und waren am Einlauf mit einem Halbmesser gleich dem Durchmesser des engsten Querschnittes abgerundet. Abmessungen und Versuchsergebnisse sind nebenstehend zusammengestellt.

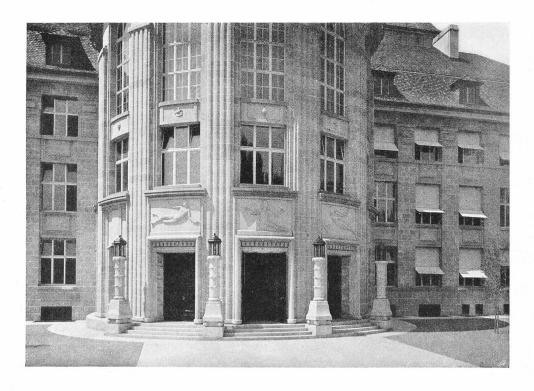
In der zitierten Abhandlung wurde auseinandergesetzt, dass die Kontinuitätsgleichung einen um so kleineren Endquerschnitt ergibt, je grösser die Unterkühlung war. Hiernach hat es keinen Sinn, Beispiele mit noch grösseren Unterkühlungsbeträgen zu rechnen. Aber wie soll erklärt

werden, dass selbst bei Annahme vollkommener Kondensation der tatsächlich vorhandene Endquerschnitt, wie die Zusammenstellung unter A lehrt, nicht ganz ausgefüllt wird? Der Fehlbetrag ist zwar klein, nämlich rund 1,8% bei Düse 1 und 2,3% bei Düse 2, oder im Durchmesser ausgedrückt 0,16 mm bei Düse 1, 0,29 mm bei Düse 2. Diese Abweichungen könnte man als Ausdruck der Beobachtungsfehler hinstellen; doch würde dies mit der Sorgfalt der Messungen schlecht übereinstimmen. Ferner ist die Vermutung zulässig, dass der Dampf zwar gesättigt, statt dessen aber die Wassertropfen überhitzt sind, sodass im Endquerschnitt keine gleichmässige Temperatur herrscht. Doch zeigt es sich, dass die Tropfentemperatur T' umgekehrt negativ werden müsste, wenn die Stetigkeit erfüllt sein soll. Im andern Fall kann der Endquerschnitt wieder nicht ausgefüllt werden. Noch grösser wird die Abweichung, falls man den Dampf obendrein, wenn auch noch so wenig, unterkühlt annimmt. Es muss also nach einer andern Erklärung gesucht werden, und diese ergibt sich aus nachfolgender Betrachtung.

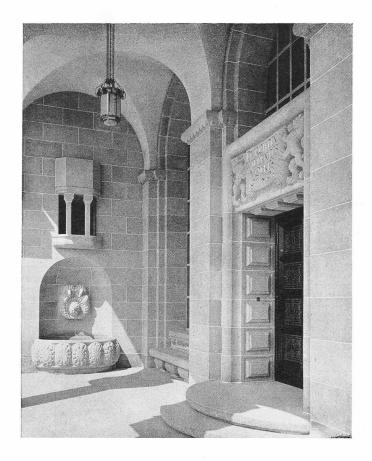
Zusammenstellung der Versuchsergebnisse.

Enddurchmesser	2,06 3,00 50	12,07 25,12 150
Enddurchmesser	50	
Absoluter Anfangsdruck p_1		150
Anfangstemperatur	10	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$, , 5	11,15
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	74	197,5
Expansions verhältnis	47	470.5
Spezifisches Anfangsvolumen v_1 m^3/kg 0.2 Sekundliche Dampfmenge G kg 0.4	082	0.571
Sekundliche Dampfmenge G kg 0,1	,53	19,52
그렇게 하는 사람들 보고 있다고 있는 사람들이 되었다. 하고 하는 사람들은 아이들이 하는 사람들이 되었다. 그렇게 되었다.	2440	0,1872
Ausflusszahl χ in Formel $G = \chi f_m \sqrt{\frac{p_1}{v_1}}$ 2,	1351	0,1809
	044	2,046
Strahlreaktion P kg	0,85	17,60
Mittl. Dampfgeschwindigk. am Düsenende $\overline{w} = \frac{P \cdot g}{G} m/sek$ 78	87,8	954,5
Anfänglicher Wärmeinhalt i	55,9	675,5
Anfängliche Entropie s_1	6046	1.5929

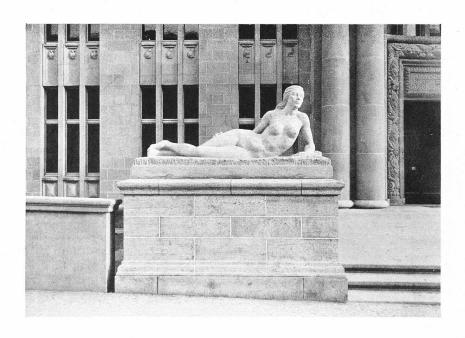

A. Endzustand bei normaler Expansion und theoretischer Kondensation.

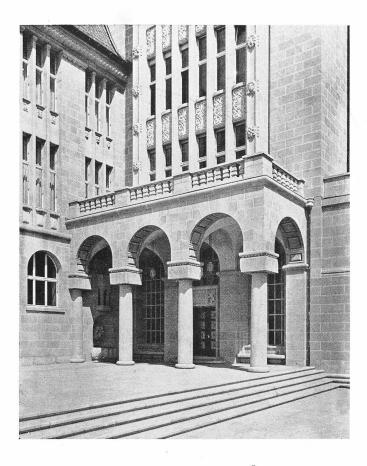

	Düse 1	Düse 2
Absoluter Druck p_2	1,082	0,571.
Adiabatischer Wärmeinhalt i_2	582,6	550,72
Adiabatische spezifische Dampimenge X2	0,8930	0,8615
Adiabatisches Wärmegefälle H_0	83,28	118,3
Effektives Wärmegefälle $H_e = A \frac{v^2}{2g}$	74,08	108,9
Verlust in Prozenten des adiabatischen Gefälles 0/0	11,05	8,00
Wärmeinhalt des effektiven Endzustandes bei theore-		
tischer Kondensation i	591,8	566,5
Entsprechende spezifische Dampfmenge	0,9101	0,8782
Zugehörige spezifische Volumen v m^3/kg	1,458	2,553
Endquerschnitt nach der Kontiunitätsgleichung $\overline{f} = \frac{Gv}{v} cm^2$	2,498	4,842
Tatsächlicher Endquerschnitt (kalt) f	2,545	4,955
Unterschied $f = \overline{f}$ in Prozesten von $f \dots \dots 0/0$	1,84	2,28

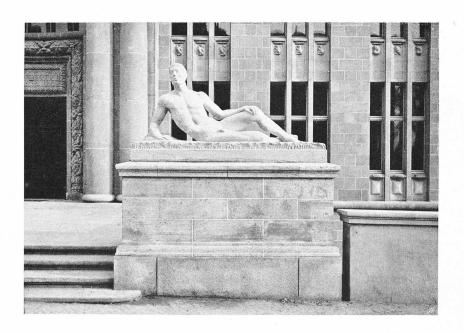
B. Endzustand bei Annahme von Unterkühlung.

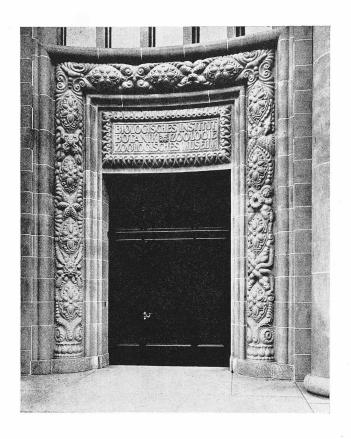

	Düse 1	Düse 2
Absoluter Druck	1,082	0,571
Zugehörige Sättigungstemperatur t _s ° C	101,3	84,2
Angenommene Unterkühlungstemperatur t_u . O C	90,0	75,0
Zugehöriger Sättigungsdruck kg/cm ²	0,715	0,392 .
Tropfenhalbmesser r bei thermischem Gleichgewicht der Kapillarkräfte	1,79 · 10-9	2,13.10-9
Expansion, aber mit Unterkühlung	0,9018	0,8658
Spezifisches Volumen	1,396	2,451
Effektives spezifisches Volumen m^3/kg	1,416	2,518
Endquerschnitt nach der Kontinuitätsgleichung		
$\overline{f} = \frac{Gv}{\overline{w}}$	2,428	4.775
Unterschied $f = \overline{f}$ in Prozenten von f $\frac{0}{6}$	4,60	3,63

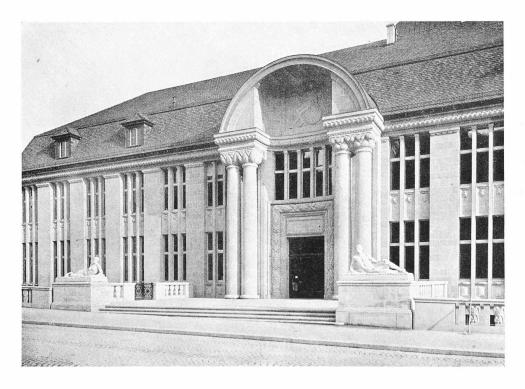
¹⁾ Unter dankenswerter Unterstützung unseres Laboratoriums durch Herrn Ing. Turovetz.




UNIVERSITÄT ZÜRICH — OSTFRONT MIT HAUPTEINGANG ARCHITEKTEN CURJEL & MOSER, KARLSRUHE


VOM WESTLICHEN EINGANG AN DER KÜNSTLERGASSE


VOM NÖRDLICHEN EINGANG ZUM BIOLOGISCHEN INSTITUT FIGUR VON BILDHAUER H. HALLER IN PARIS


WESTLICHE EINGANGSHALLE AN DER KÜNSTLERGASSE

VOM NÖRDLICHEN HAUPTEINGANG ZUM BIOLOGISCHEN INSTITUT FIGUR VON BILDHAUER H. HALLER IN PARIS

HAUPTEINGANG ZUM BIOLOGISCHEN INSTITUT

