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Spiel; die beiden mittleren Kuppelachsen sind starr im
Rahmen gelagert, die beiden äusseren mit je 40 mm Seiten-
spiel, während die Drehzapfen der Drehgestelle selbst sich
um 78 mm aus der Mittelaxe seitlich verschieben können.

Die Motoren befinden sich nunmehr im Lokomotivrahmen

eingebaut, sodass die Drehgestelle und Triebräder
deren Last nicht mehr ungefedert zu tragen haben.

Diese Maschine hat sich auch effektiv als ein
ausgezeichneter Kurvenläufer erwiesen, der auch Weichen mit
Radien von 115 m anstandslos befährt.

Die Hauptverhältnisse der Lokomotive sind folgende :

Länge über Puffer 16 m
Totaler Radstand n,34 »
Starrer Radstand 4,5 „
Triebrad-Durchmesser 1350 mm
Laufrad-Durchmesser 850 „
Zahnrad-Uebersetzungsverhältnis 1 : 2,23
Gewicht des mechanischen Teiles 48 /
Gewicht des elektrischen Teiles 59 „
Gesamtgewicht 107 „
Adhäsionsgewicht 80 „
Gewicht eines Motors einschliesslich Zahn-

rad-Uebersetzung 14 „
Gewicht eines Transformators 7,5 „
Maximaler Achsdruck 16,5 „
Geschwindigkeit bei 1 ^-Stundenleistung 50 km/std
i1/2-Stundenleistung 2500 PS
Entsprechende Zugkraft am Rad T3500 kg
Maximale Zugkraft beim Anfahren 18000 „
Maximale zulässige Geschwindigkeit .75 km/std

(Forts, folgt.)

Die graphische Untersuchung des kontinuierlichen

Balkens mit veränderlichem Trägheitsmoment

auf elastisch drehbaren Stützen.
Von Diplom-Ingenieur A. Ritter, Kilchberg bei Zürich.

Die beiden Fälle des kontinuierlichen Balkens mit
veränderlichem Trägheitsmoment und desjenigen auf elastisch
drehbaren Stützen sind einzeln von Professor W. Ritter
in seinen „Anwendungen der graphischen Statik" (III. Band,
Seite 104 bis 146) ausführlich behandelt worden. Die
vorliegende Abhandlung bezweckt, den Vorgang zu schildern,
der bei einer genauen graphischen Untersuchung eines
kontinuierlichen Balkens vorzunehmen ist, welcher sowohl
veränderliches Trägheitsmoment besitzt, als auch mit seinen
Stützen elastisch verbunden ist.

Es ist dies ein bei Brückenbauten oft vorkommender
Fall und zwar sowohl bei Fachwerksbrücken, wie auch bei
vollwandigen, speziell bei Eisenbetonbrücken. Besonders
häufig findet sich dieser Fall aber bei Deckenkonstruktionen
aus Eisenbeton, bei denen die Träger mit den Säulen fest
verbunden sind und die ersteren durch Anordnung von
Vouten ein sich stark änderndes Trägheitsmoment besitzen.
Dass die genaue Untersuchung einer solchen Konstruktion
wesentlich andere Resultate liefert als eine angenäherte
Berechnung derselben als kontinuierlicher Balken mit
konstantem Trägheitsmoment und freier Stützenlagerung, ist
in der Literatur schon oft genug festgestellt worden.

Für den Fall des Trägers auf elastisch drehbaren
Stützen wird nach oben genanntem Werk aus der Gleichung

e' 2 EJ
die Lage der „Elastizitätslinie" gerechnet, welch letztere
zur Konstruktion der Fixpunkte gebraucht wird. Diese
Gleichung kann für den Fall veränderlichen Trägheitsmomentes

nicht mehr ohne weiteres angewendet werden,
und es soll in Folgendem eine entsprechende Gleichung
abgeleitet werden, welche auch für veränderliches
Trägheitsmoment gültig ist. Es wird dabei vorausgesetzt, dass
die beiden diesbezüglichen Kapitel des oben genannten
Werkes bekannt sind.

Es sei A B C D E (Abbildung 1) ein kontinuierlicher
Balken mit elastisch drehbaren Stützen in B, C und D und
veränderlichem Trägheitsmoment, dessen zweites Feld irgendwie

belastet sei. Die Momentenfläche dieses Balkens hat
das in Abbildung 1 dargestellte Aussehen, wo Ms das
Moment bedeutet, das in die Stütze B übergeht. Die
Momentenfläche teilen wir wie eingezeichnet in die Dreiecke

i, 2, 3, 5, 6, 7, 8, 9 und das Fünfeck 4, betrachten
diese Flächen, nachdem wir sie durch E- J dividiert haben,
als Belastungsflächen und zeichnen hierzu das Seileck
A.< B2 N". Nach dem Moor'schen Satz stellt dieser Seilzug

die Tangenten an die elastische Linie der Balkenaxe
dar. Die Lotrechten D, welche durch die Schwerpunkte
der durch E • J dividierten Momentendreiecke gehen und
mit „Drittelslinien" bezeichnet werden, liegen bei veränderlichem

Trägheitsmoment nicht mehr im Drittel der Spannweite.

Auch die „verschränkte Drittelslinie" D' erhält man
nicht mehr durch Vertauschen der Drittelsabstände, sondern
sie ist als Resultierende der Kräfte 1 und 2 aufzufassen.

n
t T

Abbildung 1.

Es ist, wie Abbildung 1 zeigt, auch bei veränderlichem
Trägheitsmoment

£' B''
~N' JV

B' B" ist eine lotrechte Verschiebung auf der .Ö'-Linie,
hervorgerufen durch das Momentendreieck 3. In der bei
veränderlichem Trägheitsmoment auszuführenden Konstruktion

der Drittelslinien kann diese Verschiebung direkt
abgemessen werden.

Um die Erklärung anschaulicher zu machen, ist in
Abb. 2 (S. 24) ein Beispiel durchgeführt worden. Es sind
dort nach der üblichen Konstruktion, welche zur Ermittlung
der Drittelslinien dient, die elastischen Linien A^ B2 C2 für
die Beanspruchung des *) Balkens mit der Momentenfläche
AL Z?! Ci B\ gezeichnet.

Der von der ersten und letzten Seillinie des zweiten
Feldes auf der verschränkten Drittelslinie D' begrenzte
Abschnitt A ist nun gleichbedeutend der Verschiebung B' B"
in Abbildung 1, denn beides sind Senkungen auf derselben
Linie B', hervorgerufen durch analoge Momentendreiecke
mit der Spitze in C\. Da diese Dreiecke sich verhalten

so ist die Grösse B' B" in Wirklichkeitwie Ms zu m,
(nicht verzerrt)

B' B"
S Ms

wo t
E ¦ J

H- — Verzerrungsverhältnis.

Es wurde nun in Abbildung 2 zur Aufzeichnung der
E ¦ JSeilecke A2 B» C2 die veränderliche Polweite w mke

a °
gewählt und zwar in einem gewissen Masstab /< ; im
Beispiel ist mit E 1 kgjiu"-: 1 m — 0,005 mkg, also u

1 m 1

— 200 -7—'•
0,005 mkg kg

') über den Stützen aufgeschnitten gedachten.
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Deshalb ist EJ
Ha EJ Hi

womit folgt B' B" (5//,«
Af,.

H bedeutet die erste Polweite, mit der die Momentenlinie

Ai B\ Ci (Abbildung 2) gezeichnet wurde. Es ist deshalb

letztere erhält man aber direkt auf graphische Weise sehr
einfach folgendermassen:

Man schreibt
e 8 cf_

«' A.-HL *'

und trägt unter dem Abschnitt <5 (Abbildung 2) den mit
dem Rechenschieber gerech-

ü
=*-

lassrab der Polweiten
1 m O.OCSmkg

7 m =0,005/77

,-'-

^
,' I s

S'.

M. 1:200

>;< t

neten Wert ô' do • —— als

Länge im Längenmasstab ab.
Zwei Parallele liefern dann
die Lage der £-Linie.

Leisten nicht nur die
Stützen B, C und D,
sondern auch das Endauflager
A der Drehung der Balkenachse

elastischen Widerstand,

so spielt dort die
Auflagerlinie die Rolle der
verschränkten Drittelslinie,
sodass Ö durch die Strecke
BoN dargestellt wird
(Abbildung 2).

Bei sich stark änderndem
Trägheitsmoment werden die
Kraftecke mit veränderlicher
Polweite ihrer Grösse wegen
unpraktisch. Man verfährt
deshalb besser und genauer,
wenn man als Gewichte nicht
die Momentenordinaten,
sondern die sog. „elastischen
Gewichte zweiter Ordnung"
J w '" aufträgt1). Damit

fällt auch das Zeichnen

der Momentenfläche
At B, Cj B\ weg. Wählt
man die konstante Polweite
w gleich der Spannweite / der
zugehörigen Oeffnung, so

wird einfach ô' — wo u

den Masstab des Kraftecks
bedeutet; wenn z. B.

1

Abbildun I m IOO

das Moment in gleich der Ordinate m multipliziert mit H oder
¦ist gleich der im Längenmasstab gemessenen Ordinate m,

Es ist

Es wird dann

dann ist /< 0,01 mkg.
S S

H
welche wir als solche mit
dann

B'B"

bezeichnen wollen.
M.

Andererseits ist (Abbildung 1) ebenfalls in unverzerrter
Grösse

N'N" zd2,
wo di den Abstand der Drittelslinie und r die Verdrehung
des Säulenkopfes bedeuten. Es ist aber t —, wenn unter
t das „Elastizitätsmass" der Stützen verstanden wird, d. h.
der reziproke Wert des unter dem Einfluss eines am un-
versohieblichen Säulenkopf angreifenden Momentes von
der Grösse 1 dort entstehenden Verdrehungswinkels.
Damit folgt

N' N" d2

und endlich
e

e'

B> B" S u Ms ¦ f
N' N" m ¦ M, d.

Es soll nun Einiges über die Ermittlung des Elastizitäts-
masses gesagt werden. Bei den meisten der in der Praxis
zu behandelnden Fällen rührt die Elastizität der Stützpunkte
einer Drehung gegenüber von der starren Verbindung des
Balkens mit den ihn tragenden Säulen her.

Ist das Trägheitsmoment der Säule konstaut, so wird
das Elastizitätsmass e am schnellsten durch Rechnung
gefunden und in die Gleichung für 6' eingesetzt. Die
Formeln für t lauten, wenn h die elastische Höhe der
Säule, ys den Abstand der Säulenmitte von der Balkenaxe
und E und J Elastizitätsmodul und Trägheitsmoment der
Säule bedeuten:

a) Bei Anordnung eines Fuss-
gelenkes :

3 (2yx + h)*EJ
4A3

¦—-^4 V-

d a t-

fi d2

Dieser Ausdruck kann nun bei gegebenem Elastizitätsmass

a der Stützen ausgerechnet (ô, m und c/3 sind im
Längenmasstab abzulesen) und damit die Lage der
Elastizitätslinie oder kurz „jÇ-Linie" bestimmt werden. Die

b) Bei fester Einspannung des
Fusses:

12 _>'.,a 4- h-) h J
< Y?

Ifi

') und die elastische Linie mit konstanter
Polwcite w konstruiert.

Balkenhohe

Abbildung 3.
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Ist das Trägheitsmoment der Säule veränderlich, so
kann folgendermassen vorgegangen werden :

a) Bei Anordnung eines Fussgelenkes :

Dieser Fall wurde in dem durchgeführten Beispiel
(Abbildung 2) angenommen. Man zeichne die elastische
Linie A<> Bz der Säule für die Belastung derselben mit dem
Momentendreieck A\ By B\ und zwar analog der Konstruk-

E J

dung 4). Der Wert g 2Ag wird ausgerechnet, während
ya und ys aus der Konstruktion zweier Seilecke zu
entnehmen sind.

Den Punkt S', welcher die Lage des elastischen
Schwerpunktes bestimmt, wählt man dabei praktisch gleich
als Pol des zweiten Kraftecks. Es ist mit obiger Formel
für e leicht einzusehen, dass der Abschnitt s in Abbildung 4

/tion beim Balken mit der veränderlichen Polweite w — gleich —ist und zwar im Masstab der elastischen Gewichte,a o
(bezw. bei Anwendung der elastischen Gewichte zweiter
Ordnung mit konstanter Polweite). Dann zieht man im
Abstand d2 (Entfernung der Drittelslinie von der
Auflagerlotrechten) von der Balkenaxe eine
Parallele zu dieser. Hat man den
Masstab fj, der Polweiten w und die
Strecke iJx B\ gleich wie beim Balken
gewählt (was im Beispiel so gemacht
wurde), so ist die Strecke s auf der
gezogenen Parallelen zwischen Schlusslinie

und erster Seillinie gleich dem
unter der Strecke h abzutragenden
Abschnitt ô'.

Zum Beweis gehen wir von der
Bedeutung der Grösse <)' aus. Es ist

welcher Wert
werden kann.

nun in den Ausdruck für — eingesetzt

nach oben

und mit s

r5' -

Ms
<5'

d,

Geb. 20. Aug. 1846.

a Ms '

wo r die wahre Grösse der Säulen-
kopfverdrehung infolge Ms bedeutet,
und s' "2 « f|~ a Ms g '

wo z die verzerrte Grösse dieser
Verdrehung und £ das Verzerrungsverhältnis

ist. Mit È ,,— und
Hs u s

M,. ms H (wie oben, wo aber der
Index s die auf die Säule sich beziehenden

Grössen bezeichnet) folgt nun
dn m T Jls Us / m U-s

-— Ï7—!— d.? t ¦__--.u Ms - ms tl
Werden nun fis und fi, bei der Säule so gross wie beim
Balken gewählt, so wird

ô' d2 t s,
womit die Richtigkeit der äusserst einfachen Konstruktion
in Abbildung 2 bewiesen ist.

Es ist in diesem Falle also
_e_ jt_

e' s

Die Konstruktion der is-Linie im dritten Feld des
Trägers (Abbildung 2) gestaltet sich ganz entsprechend.

B'ttg

<5'

fr

ngenäeur Arnold Seitz

delkenmitre

'/: -.:

fl-Linie

ys-y«

•f-Y

Wählt man, was in Abbildung 4
geschehen ist, den Masstab der
elastischen Gewichte gleich dem
reziproken Wert des Masstabes ju der
Polweiten w beim Zeichnen der
elastischen Linien des Balkens, also
gleich 1/u, so ist

0 di m s

wo s dann einfach im Längenmasstab
abzumessen ist, was wieder durch
einen wagrechten Strich angedeutet
wurde. Es ist dann

_£_ s L
Ç a% in s 0'

In dem ausgeführten Beispiel wurde
der Elastizitätsmodul E I kg/ms
gesetzt, da er als durchweg konstant
ohne Einfluss auf die Untersuchung
ist. Natürlich ist die zuerst
angegebene Gleichung zur Bestimmung
der iT-Linie auch für verschiedene
Werte von E gültig. In dieser
Gleichung ist der Elastizitätsmodul des
Balkens im Masstab /u enthalten,
derjenige der Stütze im Elastizitätsmass

E.

Nach der Festlegung der ^-Linien
Gest. 25. Dez. 1913. folgt die Konstruktion der Fixpunkte

(Abbildung 2) wie üblich. Zur Berechnung

der Momente bietet die Kombination der beiden Fälle
des veränderlichen Trägheitsmomentes und des Vorhandenseins

von elastisch drehbaren Stützen keine Schwierigkeit.
Zum Schluss soll noch bemerkt werden, dass bei

vollwandigen Balken die Kräfte zum Zeichnen der Seilecke
Ao B2 Co. (Abbildung 2), welche gleich sind den mittlem
Höhen der Trapeze in der Momentenfläche A-, Bt C. B\
streng genommen in den Schwerpunkten dieser Trapeze
angreifen oder, was dasselbe ist, in den Antipolen der
Auflagerlotrechten Ax A2 bezüglich der Elastizitätsellipsen
der einzelnen Lamellen. Daraus folgt, dass die Drittelslinien

stets durch die Antipole der Auflagerlotrechten
bezüglich der Elastizitätsellipsen der einzelnen Oeffnungen
gehen, was in Abbildung 2 angedeutet wurde.

Abb. 4. t Arnold Seitz.

b) Bei fester Einspannung des Fusses:
Das in Abbildung 4 behandelte Beispiel schliesst sich

an das vorhergehende an. Nach dem am Anfang genannten
Werk wird das Elastizitätsmass für diesen Fall nach der
Gleichung

g (y«-ys)
berechnet, wo g die Summe der elastischen Gewichte \gäs
— -g-j,ya und Va die Abstände des Antipols und des elastischen

Schwerpunktes von der Balkenaxe bedeuten (Abbil-

Mit dem am 25. Dezember 1913 zu St. Gallen
verschiedenen a. Vizepräsidenten der Kreisdirektion IV der
Schweizerischen Bundesbahnen, Ingenieur Arnold Seitz, ist
wieder einer aus dem immer enger werdenden Kreise
unserer altern Vereinsmitglieder dahingegangen, der bis
zuletzt treu zu seinen Fachgenossen gehalten hat und bei
ihnen in bestem Angedenken fortleben wird. Unser Kollege
Seitz wurde als Sohn des angesehenen Arztes Johannes Seitz
in St. Gallen am 20. August 1846 geboren und verlebte
seine- Jugendjahre auf dem schönen Gute bei St. Leonhard
ausserhalb der Stadt, in dem sein Vater zuerst eine
Heilanstalt für Geisteskranke und später eine allgemeine, viel
besuchte Kuranstalt leitete. Nach Besuch der städtischen
Schulen in St. Gallen bezog er schon 1864 die Eidg. Techn.
Hochschule in Zürich, um an der Ingenieur-Abteilung mit
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