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räumigkeit und vornehmer Einfachheit. Einzig die schönen
Glasgemälde, die Leuchtkörper und die fein gearbeiteten
Beichtstühle,' sowie die steinerne Kanzel schmücken das
Schiff. Der Taufstein war eine der letzten Arbeiten des
kürzlich verstorbenen Bildhauers K. Leuch in Zürich. Die
Altäre, die Tympanonreliefs der Portale, sowie die Nischenfiguren

über den letztern wurden von den Bildhauern
Payer & Wipplinger in Einsiedeln angefertigt.

Das Aeussere der massiv in warm gelblich leuchtendem

Jurakalk erbauten Kirche ist in modern-romanischen
Formen gehalten. Das Querschiff, so breit wie das Hauptschiff,

liegt mit den
Seitenschiffen und auf
der Nordseite sogar
mit dem Turm in
einer Flucht, womit
bezweckt war, dem
Ganzen monumentale
Ruhe zu verleihen.
Die Vorhalle ist in
die Hauptfassade mit
drei grossen, reich
skulptierten Arkaden
hineingebaut; die
Seitenportale am Querschiff

sind der Fassade
wenig vorgestellt und
massiv mit Stein
überdacht. Der Turm ist
bis zur Kreuzspitze
70 m hoch.

Die Kirche fasst im
Schiff 1054, in der
Taufkapelle 18 und
auf der Empore 56,
im ganzen 1128
Sitzplätze. Der Voranschlag

für den ganzen
Neubau mit Umgebungsarbeiten, Glocken, Orgel, Innenausstattung,

Architektenhonorar und Bauführungskosten aber
ohne Gemälde und Statuen betrug 560000 Fr. Die
Ausführung blieb um 2500 Fr. darunter, obwohl eine Glocke
mehr aufgehängt wurde und die prächtige Orgel mit
36 Registern von Kuhn in Männedorf grösser gewählt wurde,
als vorgesehen war. Zu erwähnen ist noch das herrlich
klingende Geläute von sechs Glocken von Glockengiesser
Robert in Porrentruy. Die Warmluftheizung nach System
Drevet & Lebigre, in einem eigenen Heizraum unter der
Sakristei untergebracht, wurde von Balzardi & Cie. in Basel
erstellt. Als Bauführer fungierte zur besten Zufriedenheit der
Behörde und des Architekten Herr A. Metzler von Bälgach.

Ueber graphische Integration
von totalen Differentialgleichungen.

Von Prof. Dr. Ernst Meissner, Zürich.

ü. i-i

m

Abb. 4. Axiale Innenansicht der kathol. Kirche in Romanshorn.

(Schluss von Seite 202.)

9. Gedämpfte harmonische Schwingung.
(Abbildung 10, 11).

Hier soll einmal an einem rechnerisch kontrollierbaren
Beispiel erprobt werden, welche Genauigkeit etwa erreichbar
ist, wenn das Intervall, in dem die Funktion bestimmt

werden soll, gross
ist, und wenn die
Funktion darin stark
schwankt.

Es handelt sich um
die Integration der
Differential-Gleichung

q" + X q M q — 0

wo X =-- — gesetzt
wurde. Sie beschreibt

bekanntlich einen
Schwingungsvorgang,
in dem eine Dämpfung
proportional der
Geschwindigkeit ein
Erlöschen der Schwingungen

bewirkt.
Damit keine Spitzen

im Liniendiagramm
auftreten, wurde q
ersetzt durch die Funktion

p(u) q (u) -j- 15 cm
die der Differentialgleichung

P"+jP'+P -i5 o (9)
genügt. Für den Krümmungsradius ihres Diagramms C
hat man

q(u) =p M p" 15 — K (10)

Als Anfangsbedingungen wurden gewählt für
u o q0 — 45 cm q'0= — 15 cm

also p0 60 cm p'0 ¦— 15 cm (11)
und für den Differenzenwinkel a wurde 50 genommen. Für
die konstruierte Funktion q (u) ergibt die Rechnung

q (u) B A • e
~ ' I cos (s u -\- ß)

Hier sind — r + is die Wurzeln der charakteristischen

Gleichung x2 -) 1- i o

d. h. man hat 4. wmm
und A und ß sind Integrationskonstanten. Diese bestimmen
sich aus den Anfangsbedingungen (11). Man erhält

.4 45,98 cm tgß=~h= ß n° 51' 3i"
dementsprechend wird

p (u) 15 -f- 45,98 e

3 V63

8 cos V63, ¦ß

Abb. 1. Grundriss der kathol. Kirche Romanshorn. I : 600.

Die neue katholische Kirche Romanshorn beherrscht
vermöge ihrer erhöhten prachtvollen Lage die ganze
Gemeinde, den Hafen und den Bodensee weithin, vereint
mit der neuen Schwesterkirche am gegenüberliegenden
Ende des grossen Dorfes Zeugnis gebend von dem Opfermut

und der Grosszügigkeit seiner Bewohner. G.

Das Liniendiagramm Cvonp (u) besteht daher aus Schleifen,
die sich mit wachsendem u mehr und mehr um den Kreis K
vom Radius 15 cm le£en, der O zum Mittelpunkte hat. In
Abb. 10 (auf Y3 verkleinert) sind die ersten dieser Schleifen
gezeichnet. Sie entsprechen den stärksten Schwankungen
von p (u). Der gestrichelt gezeichnete Teil des Diagrammes
C macht auf grosse Genauigkeit keinen Anspruch mehr,
da dort mit a — 150 konstruiert wurde.

Zur Kontrolle sind die Extrema von p (u) bezw. q (u)
gemessen worden. Sie treten für ««-Werte auf, die aus

tg(su+ß) -j=-r^
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gefunden werden. Ist u^ die kleinste positive Lösung
dieser Gleichung, so sind alle folgenden Lösungen
derselben in der Formel

Uk Ux -\- k —

enthalten. Man erhält durch Rechnung — 181,42° und

ux 162,230 u2 343,650 % 525.°7°
Aus der Zeichnung der Abbildung 10 können diese Werte
gefunden werden, indem man von O aus die Normalen
an C, oder, was damit gleichbedeutend ist, die Tan- *

genten an die Evolute C zieht. Man erhält so die
Linien OEit O E2, O E3, die mit der Axe u 0

die resp. Winkel uu u2, m3 einschliessen. Die Zeichnung

in Naturgrösse gab für :

10. Graphische Quadratur.
(Abbildung 12).

Es soll graphisch das Integral ermittelt werden:

p (u) H A I tg u • du — A lg cos u Alg ——
J cos

Man hat I (u)

wo A =30 cm gesetzt ist.

Atgu. p'0 B 0.

äX CSC

Abb. 11

CLQ

Abb. 10

«x ¦ 161,970 u% 343,45° % jj 525,28°
Fehler — 0,26° — 0,20 + 0,21°
in °/e — 0,16 — 0,06 — 0,04

Man kann somit eine überraschend grosse Genauigkeit

feststellen.
Für die Werte^ OTT, =p (z^) p2 — O E2 — p{th)

usw. ergibt sich folgende Zusammenstellung:
Gemessen in cm : ßt —16,87 ^2=4-36,48 ßs -{- 0,70
also I ?1=—31,87 ?„= +21,48 ?3p= — 14,30
Berechnet: ?1 —32,02 & +21,55 —14,51
Fehler in q: -j- 0,15 —0,07 + °,21
in %: 0,5 — 0,3 1,5

Das Verhältnis zweier aufeinander folgenden Werte

Demgemäss wurden in der Abbildung 12 von O aus die

Strecken/0=o p\ =-r4tg7,5° 0£>'1; /2 ^tgi5° OQ\;
p't A tg 22,5° O Q's usw. unter o, 71/2_°,I5°, 22,5°
usw. zur jy-Axe aufgetragen, und die zugehörigen Punkte

P\,Pî,Ps usw. der Reihe nach von P0 aus konstruiert.
Folgende Tabelle gibt über die erhaltenen Resultate
Auskunft: (pi PiQil).

?4 + 24,75
?4 + 9,75
?i + 9,76

— 0,01
— 0.1

hat, genau genommen, den Wert — e V&3

findet aus der angeschriebenen Tabelle
1,485. Man

1 A A A A A A A
Gemessen In cm 0,24 1,04 2,39- 4,32 6,95 10,43 14,96 20,89

Berechnet 0,258 1,040 2,375 4,315 6,944 10,397 14,890 20,795

Fehler — 0,02 0,0 + °.01 + 0,01 + 0,01 + 0,03 + 0,07 + 0,09

H 8 0 o,4 0,2 0,2 0,3 o,5 o,5

^=_Ij48 HSRMH ^ _I)47 Mittel:-1,484
Die Abweichung des Mittelwertes vom wahren ist also
kleiner als 1 °/00. Wiederum zeugen diese Ergebnisse für
die Brauchbarkeit der Methode. In Abbildung 11 ist noch
das Punktdiagramm der ermittelten Funktion p (u)
dargestellt im Masstab 1 : M

Trotz der Kürze und Einfachheit der Konstruktion ist
die erreichte Genauigkeit derart, dass das Quadraturverfahren

den Vergleich mit andern wohl aushalten dürfte.
Dies umso mehr, als damit nicht etwa nur der Wert eines

bestimmten Integrals, sondern die Integralfunktion Alg-^-^
überhaupt für jedes u zwischen o ° und 60 ° ermittelt
worden ist.
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11. Erzwungene Schwingungen.
(Abbildungen 13, 14).

In diesem Beispiel wird die graphische
Methode angewendet auf einen Fall, der rechnerisch

nicht mehr kontrollierbar ist. Es sei ein
mechanisches System gegeben, das harmonische
Schwingungen ausführen kann, und dem
Einfluss einer periodisch störenden Kraft unterliegt,

die im übrigen einem ganz willkürlichnn
Gesetz unterliegt. Die Differentialgleichung, die
die eintretende Bewegung beschreibt, kann dann
auf die Form gebracht werden *) :

p" —p+f(u)
wo / (u) wesentlich das Gesetz der störenden
Kraft darstellt. Es handelt sich daher um die
Ermittlung des Liniendiagramms C von p (u),
dessen Krümmungsradius q gegeben ist durch

Q{u) =p-\-p" =f(u).
Abbildungen 13 und 14 zeigen die Konstruktion.

Abbildung 13 enthält in rechtwinkligen
Koordinaten das Diagramm ABDSE der
willkürlich gegebenen Funktion f{u). Es ist
angenommen worden, die Störung setze in u 0 plötzlich ein,
und höre in u n ebenso plötzlich wieder auf.
Demgemäss sind die Ordinaten / (0) und / (ri) von null
verschieden. Vor und nach der Störung schwingt p nach
einem Sinusgesetz harmonisch. Zu Beginn der Störung sei

p p0= OP0 p', o \

Abbildung 14 enthält die hier sehr einfache
Konstruktion des Liniendiagramms C. In Abbildung 13 ist
nachträglich rückwärts das gewöhnliche Punktdiagramm der
Funktion p (u) in der Kurve P0 W-^ KNW% M eingezeichnet
worden, a ist gleich 15° gewählt. Die Krümmungsradien
von C können jeweilen direkt im Schaubild von f (u)
(Abb. 13) abgegriffen werden. Die Kurve C hat der
Nullstelle von / (u) entsprechend eine Spitze S. Es gibt eine
Normale OK an C (Tangente an C) von 0 aus; ihr
entspricht das Maximum K (Abb. 13) von p («). Ferner geht
eine (strichpunktierte) Tangente ON von O an C) sie
liefert die Nullstelle N (Abb. 13) von p (u). Endlich können
von O aus zwei (punktierte) Normalen an C" gezogen
werden; damit übereinstimmend hat das Punktdiagramm
der Abb. 13 in W± und W^ Wendepunkte.

N 2JI
2 as m

Abb. 13

Zu bemerken bleibt noch, dass das zu
andern Anfangsbedingungen gehörige
Liniendiagramm in diesem Beispiel einfach
dadurch gefunden wird, dass man den
Anfangspunkt O passend verlegt.

') Dieselbe Differentialgleichung tritt auch auf bei der Bestimmung
der Form eines ursprünglich;: "kreisförmig gebogenen Stabes unter dem

Einfluss gegebener Kräfte.

Abb. 12

Abb. M

12. Bahnkurve des sphärischen Pendels.

(Abbildung 15 bis 18).

Wenn ein gewöhnliches Fadenpendel von der Länge /
unter allgemeinen Anfangsbedingungen in Schwingungen
versetzt wird, so beschreibt sein Endpunkt m eine
Bahnkurve, die auf einer Kugel gelegen ist. Bedeutet ô die
vom tiefsten Punkt dieser Kugel aus gemessene geogr.
Breite, cp die von einem beliebigen Anfangsmeridian aus
gerechnete Länge, / die Zeit, so liefert für die Bewegung
des Pendels der Flächensatz die Gleichung

sin* «3 • d-f c Idt v '
und der Energiesatz gibt

Hier ist X H -f- und die Integrationskonstanten c und k hängen

von den Anfangsbedingungen ab.
Man setze cos ô 1.

(dz\lDann folgt
Ig (3)

m i /(*)=(i-*2) (* BBc2 (4)

als Differentialgleichung für die Funktion z (t). Die Gleichung
der Bahnkurve ist eine Beziehung zwischen z und cp. Für
sie erhält man aus (4) und (1) wegen (3)

dz dcp

dt ' dt' (I m (5)

Diese Differentialgleichung ist graphisch zu integrieren.
Wir nehmen die Anfangsbedingungen so, dass

c — k

ist. Es wird dann

f(z) Xz(i

5/

und diese Funktion verschwindet für
0 0 0 0X 0,9513 z 02 —1,0513

Daraus folgt, dass die Bahnkurve zwischen den Breitenkreisen

z 0 und z Zi hin und her läuft. Wir können
den Anfangsmeridian so legen, dass für cp 0 z — o wird,
und haben unter dieser Voraussetzung Gleichung (5) zu
lösen, die übergeht in

WBSÊ. *3)V*<>—«-1O0«) (so

woraus
dcp*

/dz\ dz
__

d I" I (<f"Y~\
\dcpj dcp dz L 2 \dcp) J

(1- z*) [5 (1 - 02) (I _ 7Äi) + 0 (3.s3 m 1)) (6)
Im Intervall von 0 0 bis 0= zt schwankt der Ausdruck
auf der rechten Seite sehr stark, und damit auch die
Krümmung des Liniendiagramms von 0 (cp). Es ist daher
einige Genauigkeit nur zu erzielen, wenn man den Masstab

gross, und die Winkeldifferenz a klein nimmt. Beides ist
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unbequem, weshalb hier zu dem früher erwähnten Mittel
der Argumenttransformation gegriffen wird. Wir führen
demnach die neue Veränderliche u 3 <p ein ; 0 (9?) geht
über in eine Funktion p (u), für die die Gleichungen gelten :

du

d*p
~dtfi

-f
i i~L V>(io —p— 10p*) M F1 (p)

[5 (1 — P*) (t- — 7P*)+P (3P2- 1)] I F* (P)

Aehnlich lässt sich bei Differentialgleichungen höherer
Ordnung allgemein vorgehen, indem man sie durch simultane

Systeme niederer Ordnung ersetzt.

Zürich, 15. August 1913.

p + ^=p + F2(p) F* (py

Abb. 15

Abb

also auch q

In den
Abbildungen 15 bis 18
ist die Längeneinheit

gleich
20 cm gemacht
worden. In
Abbildung 15 stellen
die Kurven A BD
und EFG die
oben angeschriebenen

Funktionen

Fx (p) und
Fs (p) dar.
Abbildung 16 zeigt

' die Konstruktion
des Liniendia-
grammes C von
p (u). Die
Anfangswerte sind
Po 0 p' 0

und es fällt
daher P0 nach O.
Der Abstand p'
der Normalen von
0 kann für jeden
Punkt P, dessen p gefunden worden ist, aus der Abbildung

15 jeweilen entnommen werden; ebenso der
Krümmungshalbmesser q. Eine Interpolation ist unnötig, da
ausserdem a klein, nämlich gleich 5° gewählt wurde. Aus
der gefundenen Funktion p (u) bezw. z (cp) ist endlich in
Abbildung 17 und 18 auf eine leicht erkennbare Weise
Aufriss und Grundriss der Bahnkurve des Pendels
gezeichnet worden. Der Masstab dieser zwei Figuren wurde
auf die Hälfte verkleinert. Sie zeigen die aus der Literatur
bekannte Form der Bahnkurve. (Vergl. etwa Enzykl. der
math. Wissenschaften Bd. IV 1. (6) P. Stäckel. Pg. 505.)

Zum Schluss möge noch eine Andeutung über die
Integration von Differentialgleichungen höherer Ordnung
gemacht werden. Auch auf sie ist unsere Methode
anwendbar. Ein Beispiel einer solchen hat geradezu die
Veranlassung zur Entwicklung dieses Verfahrens gegeben.
Es handelte sich dort um die Ermittlung der Spannungen
in Kugelschalen, also um ein Problem, das in dieser
Zeitschrift jüngst behandelt wurde1). Ich habe gezeigt2), dass

man es auf die Lösung von zwei simultanen Differentialgleichungen

zweiter Ordnung zurückführen kann, die die
Form besitzen:

P\ =/i (Pi P* Pt")

a m (pi pi pH

Sie sind einer Differentialgleichung vierter Ordnung
gleichwertig. Nennt man Qi o2 die Krümmungshalbmesser der
Liniendiagramme d C2 von pi (u) bezw. p2 (u), so folgen
hieraus Ausdrücke von der Form:

Qi 9 Fi (pi,pi',p2)
Qi F2 {pi, pi, pi)

und es ist' wohl sofort verständlich, wie durch diese
Gleichungen die graphische Konstruktion der zwei Kurven
G C2 nun gleichzeitig und schrittweise vollzogen werden kann.

i) Von Dr.-Ing. Huldreich Keller in Bd. LXI, S. in u. fl.

2) Physikalische Zeitschrift, Bd. 14. 1913. S. 343—349-

Abb

mm

Rudolf Diesel.

Die kurz vor dem rätselhaften Verschwinden des

vielangefochtenen Erfinders erschienene Schrift „Die Entstehung des
Dieselmotors" von Rudolf Diesel, Dr.-Ing. h. c.1) würde, auch abgesehen von
diesen tragischen Begleitumständen, das Interesse jedes Maschineningenieurs

in höchstem Masse fesseln. Der Werdegang eines der

wichtigsten Wärmemotoren wird hier vom ersten Aufdämmern des

Erfindungsgedankens durch die tastenden Anfänge, iScheinerfolge,

Fehlgriffe, Entmutigungen hindurch bis zum zähe, nach langjähriger
Arbeit errungenem Siege vom handelnden Ingenieur selbst in meisterhafter

Weise geschildert. Und ist die Schrift, wie wir das von Diesel

nicht anders erwarten konnten, Geschichtsdokument und Kampfmittel

zugleich, so werden wir ihm nicht minder dankbar sein müssen

für die Fülle von Tatsachen technischer und menschlicher Art, die

für Jung und Alt Stoff zu nachdenklichen Betrachtungen darbieten.

Schon wie Diesel den Anstoss zum Erfindungsgedanken
beschreibt, ist sehr reizvoll. Er stammt aus der Bemerkung von
Professor Linde, dass bei einer isothermischen Zustandsänderung
eines Gases alle zugeführte Wärme in Arbeit verwandelt wird.
Daher die aus den Tagesblättern schon bekannte Randnotiz Diesels

in seinem Vorlesungsheft : „Studieren, ob es nicht möglich ist, die

Isotherme praktisch zu verwirklichen", und im Buche heisst es:

„Der Wunsch der Verwirklichung des Carnotschen Idealprozesses
beherrschte fortan mein Dasein". Wir, die es heute leichter haben,

besser zu wissen, würden einwenden: Der Carnotprozess hat zwei
Isothermen, und die zweite vernichtet einen Teil der Arbeit, den die

erste liefert; es kommt nicht auf die besondere Art des Prozesses

an, sondern auf das Endergebnis; nur darauf, dass vom Gewinn in

den obern Temperaturregionen beim unvermeidlichen Rücklauf auf

dem tiefern fiiyeau möglichst wenig verloren gehe. Allein die
teilweise schiefe Auffassung, die in der 1893 erschienenen Schrift Diesels:

„Theorie und Konstruktion eines rationellen Wärmemotors",
vorherrscht, ändert nichts an der Tatsache, dass er durch seine

Begeisterung Veranlassung gab zu einer der folgenschwersten Versuchsreihen

in der Geschichte des Maschinenbaues, und dass der

Ausgangspunkt seines Verfahrens: die wesentliche Erhöhung der Ver-

i) Berlin 1913, Verlag von Jul. Springer. Preis geh. 5 M, geb. 6 M. (siehe
Band LXII, Seite 212).
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