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Ueber graphische Integration
von totalen Differentialgleichungen.
Von Prof. Dr. Erust Meissner, Ziirich.

1. Einleitung.

Die meisten Probleme der Mechanik und Physik fihren
bei ihrer mathematischen Fassung auf Differentialgleichungen,
aus denen die unbekannten Funktionen bestimmt werden
miissen. Sind diese von mehreren Veranderlichen abhingig,
so hat man es mit partiellen, kommt deren nur eine einzige
vor, so hat man es mit totalen Differentialgleichungen zu
tun. Letztere treten in der Mechanik besonders hiufig
auf. Sie sind dort meist von der zweiten Ordnung.

Fir die analytische Losung totaler Differential-
gleichungen liegen eine Reihe von Integrationsmethoden
vor, die aber nur in den einfachern Fillen zum Ziele
fihren, d. h. fir die gesuchte Funktion einen Ausdruck in
elementaren Funktionen (x*, ¢%, sin x, cos x, Ig x etc.) zu finden
erlauben; denn in der Mehrzahl der Fille werden durch die
Differentialgleichungen neue Funktionen definiert, die sich
tiberhaupt nicht elementar darstellen lassen. So fiihren
viele Bewegungsaufgaben, z. B. das Pendel- und Kreisel-
problem auf elliptische Funktionen, wihrend andere Funk-
tionen erfordern, die auch dem Mathematiker unbekannt
sind. (Das Dreikérperproblem in der Himmelsmechanik).

Nun ist ftir den Techniker und Physiker der Stand-
punkt gegentibersolchen ,unlésbaren“ Differentialgleichungen
durchaus nicht derselbe, wie fiir den Mathematiker. Waih-
rend dieser letztere nach der Existenz, dem Charakter und
den Eigenschaften der Loésung fragen wird, begniigt sich
der Techniker, wenn er bei gegebenen Anfangsbedingungen
den Verlauf der Funktion qualitativ, wo moglich auch
quantitativ beurteilen kann, wobei es ihm auf Fehler von
einigen Prozenten im allgemeinen kaum viel ankommen
durfte. Er wird also nach Verfahren suchen, welche die
Losung wenigstens mit Ann#herung zu berechnen erlauben.

Zu diesem Zweck kann er einmal fir die Losung
eine Potenzreihe (oder eine andere Funktionenreihe mit
gentigend vielen verfligharen Konstanten) ansetzen, und
so der Differentialgleichung zu gentigen suchen. Aber
diese Methode ist selten praktisch durchfithrbar, und man
hat hiufig Konvergenzschwierigkeiten.

Ein zweites Mittel besteht darin, schon die Differen-
tialgleichung zu vereinfachen, indem etwa Glieder vernach-
lassigt werden, deren Einfluss voraussichtlich klein ist.
Das tut man z. B. bei der Behandlung gewdhnlicher Pendel-
schwingungen, wo die genaue Differentialgleichung

d%¢

dr
unter Voraussetzung von kleinen Schwingungen durch die
viel einfachere

— k2 sin @

d2¢

dt?
ersetzt wird. Aber dies Verfahren hat stets gewisse Vor-
aussetzungen, die hiufig nicht erfillt sind; auch ist man
im Unsichern iber den Geltungsbereich der gefundenen
Losung.

Eine dritte Methode endlich bentitzt das sog. Dif-
ferenzenverfahren. Sie ersetzt die Differentialgleichung
durch eine Differenzengleichung, die Differentiale durch
endlich grosse, wenn auch sehr kleine Differenzen, und
berechnet sich so schrittweise die ganze Funktion ange-
nihert aus den gegebenen Anfangswerten. Schon in ein-
fachen Fillen kommt man aber auf diese Weise zu umfang-
reichen Rechnungen und mehr oder weniger uniibersicht-
lichen Zahlentabellen.

— kg

Es liegt nahe, den Gedanken, 'der hier zugrunde
liegt, zu verwenden, um ein graphisches Verfahren darauf
aufzubauen. Das ist auch deswegen besonders empfehlens-
wert, weil gelegentlich die schon in der Differentialgleichung
auftretenden Funktionen, und umsomehr die Losung sich
entweder gar nicht oder nur umstindlich analytisch be-
schreiben lassen, wihrend sie graphisch einfach durch ein
Diagramm gegeben sind. Das trifft z. B. zu, wenn die
Funktion in verschiedenen Gebieten verschiedenen analy-
tischen Gesetzen folgt (Momentenfliche eines belasteten
Stabes) oder wenn sie (wie im Beispiel 5 die stérende
Kraft) eine ganz willkirliche Funktion ist, die man ana-
lytisch durch eine vielgliedrige Fourier-Reihe ann#hernd
darstellen miisste.

Deutet man die unbekannte Funktion als Ordinate y,
die unabhingige Verinderliche als Abszisse x einer Kurve £
in rechtwinkligen Koordinaten, so wird durch die Differen-
tialgleichung fiir y (x) dieser Kurve eine bestimmte, charak-
teristische Eigenschaft zugeschrieben. Ist die Gleichung
erster Ordnung, etwa 1)

.y’ :f (xr y)
wobei f einen bekannten Ausdruck in x und y bedeutet,
so wird zu jedem Kurvenpunkte der Winkel z der Tangente

mit der x-Axe vorgeschrieben, da ja ' = tgrist. Aehnlich
gibt eine Differentialgleichung zweiter Ordnung
v = 9,

eine Beziehung zwischen dem Krimmungsradius g, dem
Tangentenwinkel 7, und den Koordinaten eines Kurven-
punktes. Aber es scheint praktisch fast aussichtslos, darauf
ein graphisches Naherungsverfahren griinden zu wollen.
Denn o hingt durch die verwickelte Formel
_ a4y

mit " und »” zusammen. Noch schlimmer stehts bei Dif-
ferentialgleichungen von hoherer als zweiter Ordnung.

Es soll Aufgabe der folgenden Zeilen sein, eine
graphische Integrationsmethode zu entwickeln, die diese
Uebelstdnde nicht besitzt, und die, wie mehrere Beispiele
zeigen, den praktischen Bediirfnissen nach Einfachheit und
Genauigkeit gleichzeitiy gentigen dirfte. Das Verfahren
ist in dem Sinne allgemein, als es auf Gleichungen beliebig
hoher Ordnung anwendbar ist, wenn auch seine Genauig-
keit naturgemass mit wachsender Ordnung abnimmt. Wenn
in den Beispielen trotzdem nur Differentialgleichungen
zweiter und erster Ordnung integriert werden, so geschiehts,
weil diese weitaus am hiufigsten auftreten.

2. Das Liniendiagramm einer Funktion.

Wenn sich auf das gewodhnliche Punktdiagramm einer
Funktion ein graphisches Verfahren, das praktisch brauch-
bar wire, nicht aufbauen lasst, so rithrt das davon her,
dass die Ableitungen der Funktion mit den geometrischen
Eigenschaften ihres Schaubildes in keinem gentigend ein-
fachen Zusammenhang stehen, und aus dem Diagramm
ohne weiteres nicht entnommen werden kdnnen.

Nun sind wir aber an jene Kurvendarstellung durch-
aus nicht gebunden; wir konnen vielmehr an ihrer Statt
jedes Gebilde beniitzen, welches die Abhingigkeit der
Funktion von ihrem Argumente darzustellen geeignet ist.
Das im folgenden verwendete Gebilde nenne ich das
Liniendiagramm der Funktion.

Die unabhingige Variable heisse #, und werde als
Winkel gedeutet, die von # abhingige Funktion p, als
Strecke interpretiert. Wihrend beim gewohnlichen Punkt-

1) Akzente bedeuten hier, wie im Folgenden Ableitungen nach der
, unabhiéngigen Verinderlichen.
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diagramm der Funktion p, zwei zusammengehéorige Werte
# und p, jeweilen durch einen Punkt des Schaubildes dar-
gestellt sind (namlich durch dessen Koordinaten), werden
sie nunmehr durch eine gerade Linie g, zur Anschauung
gebracht, und zwar so:

Ist O (xy) ein rechtwinkliges Koordinatensystem, so
soll g, durch die Gleichung bestimmt sein :

xcosu +ysinu —p, = o

demnach hat das Lot OQ, (Abb. 1) vom Ursprung auf die
Gerade g, die Linge p,, und es schliesst mit der x-Axe
den Winkel # ein. Jedem zusammengehorigen Wertepaar
[#, p.] entspricht eine Gerade g,. Fiir eine gegebene Funk-
tion p (#) erhalt man einfach unendlich viele solcher Ge-
raden: sie umbhiillen eine Kurve C, das Liniendiagramm
der Funktion p (#). Ihre Angabe geniigt genau wie beim
gewohnlichen Diagramm, um das Funktionsgesetz p (%)
graphisch zu beschreiben, p (%) heisst umgekehrt die
Stiitzgeradenfunktion der Kurve C.

<

Abb, 1. +

Qu

Nun sei P, (Abb. 1) der Punkt, in dem die Gerade g, das
Liniendiagramm C beriihrt. Dann berechnen sich nach bekann-
ten Regeln die Koordinaten «, y von 2, aus den Gleichungen

g = o 5 . i

;o () oder ACer g ij’ ‘ (I)

e = 10 —xsinu -+ ycosu—p', = o (2)
Aber nach Abbildung 1 ist

P,0,= —x sinu -+ y cos u also wegen (2)

PHQM == plll = O Q’u
und die Gerade g’, von der Gleichung (2) steht demnach
in P, senkrecht zur Tangente g, des Diagramms C. Sie
ist also die Normale an die Kurve C in P,, oder, was
damit gleichbedeutend ist, die Tangente an die Evolute C’
der Kurve C. Fur die Kurve C’ spielt die Funktion p’ ()
dieselbe Rolle, wie p () ftr C, d. h. die Evolute C’ ist das
Liniendiagramm der ersten Ableitung @‘{{7")_
weiter die Evolute C” der Evolute C’ konstruiert, erkennt
man, dass sie das Liniendiagramm der Funktion p" (%) dar-
stellt u. s. f. Man sieht, die Abstinde der rechtwinklig
aufeinander folgenden Tangenten g,, &', &7, ... an die
Kurven C, C, C”, ... vom Anfangspunkte O werden der
Reihe nach durch die Gréssen p (w), p' (), p” () . . . wieder-
gegeben. Alle Ableitungen der Funktion p (#) treten also
im Liniendiagramm in einfacher und gleichartiger Weise
auf. Dem Differentiationsprozess entspricht der Uebergang
zur Evolute, dem Quadraturprozess der zur Evolvente
einer gegebenen Kurve.
Fir den Kriimmungsradius g, des Diagramms C in
P, ergibt sich aus Abbildung 1:
Qu=PuP,u:PuQ,u—}_QIuP,u:OQu+ (3)
+ 00" =p@+¢" @

Indem man

Er wird also in der denkbar einfachsten Form durch die
Funktion p (#) und ihre zweite Ableitung dargestellt. Da-
rauf beruht wesentlich die Brauchbarkeit der im folgenden
Abschnitt geschilderten Integrationsmethode.

Das einfachste Liniendiagramm, n#amlich einen Punkt
mit den rechtwinkligen Koordinaten (e, ) hat die Schwin-
gungsfunktion

p (u) = a cos u -+ b sin u.
Funktionen, die sich um eine solche additive Funktion
unterscheiden, haben kongruente, parallel liegende Dia-
gramme. Unterscheiden sich zwei Funktionen um eine
Konstante, so sind ihre Liniendiagramme Parallelkurven.

3. Integration der Differentialgleichungen zweiter Ordnung.
Fir die unbekannte Funktion p (#) liege eine Dif-

ferentialgleichung zweiter Ordnung vor, d. h. eine Be-
ziehung von der Form
R (14, 2 P/) pN) =10 (4)
N
st ¢
Lt e
o et
Abb. 2. o ih ;g‘xf'\/ o A
E:_/;’——‘ Q;
3
@
% Po Qo
Man lose sie nach p” auf:
1 ]’H = f(u, p, pl)
Es ist dann auch
0 () =p W)+ p" (W) =F @ p,p) (5)

ein bekannter Ausdruck in den Grossen #, p, p'. In ge-
wissen einfachen Fillen werden auf der rechten Seite von
(5) nicht alle drei Argumente auftreten; dann vereinfacht
sich die Konstruktion.

Statt die Funktion p (#) zu suchen, die der Gleichung
(4) resp. (5) gentigt, stelle man sich jetzt die gleichwertige
geometrische Aufgabe, ihr Liniendiagramm C zu finden.
Dabei hat man sich fiir p (#) etwa die Anfangsbedingungen

p (0) =2, po)=p% (©)
vorgeschrieben zu denken.

Die Gleichung (5) gibt nun fir jeden Punkt P, den
zugehorigen Wert o, des Krimmungsradius. In infinitesi-
maler Nihe von P, kann C ersetzt werden durch den (drei-
punktig beriihrenden) Krimmungskreis vom Zentrum P,
(Abbildung 1), wobei P, P', = g, ist. Mit Ann4herung kann
dieser Ersatz auch auf ein endliches Bogenstiick ausgedehnt
werden, und zwar umso genauer, je kleiner der zugehorige
Zentriwinkel ¢ ist. Unsere Naherungsmethode besteht darin,
dass die Kurve C auf diese Weise durch viele kleine osku-
lierende Kreisbogenstiicke ersetzt wird.

Man beginnt die Konstruktion bei dem durch (6) ge-
gebenen Punkte P,  indem man die Punkte O,, P,, O', auf-
trigt, sodass O O, = p, O, P, = O O, = p'o (Abbildung 2).
Die Gleichung (5) gibt jetzt o (0) = 0, = F (0, p,, p',), welche
Strecke von P, aus auf der Normalen P, O, bis nach /', abge-
tragen wird. Es ist P, der Kriimmungsmittelpunktvon Cin P,
Nun wihlt man je nach der verlangten Genauigkeit einen
kleinen Winkel @, Dann schligt man um /', den Kreisbogen
P, P; mit a, als Zentriwinkel, und betrachtet niherungsweise
den in P, oskulierenden Bogen P, P; als erstes Stiick der ge-
suchten Kurve C. Es kénnen jetzt fir P, die entsprechenden
Punkte O; O'; und damit die Wertep, = p (a,) = 0 O, = P, 0’1,
P =2 (a,) = O O aus der Zeichnung entnommen werden.
Sie sind natiirlich nur angen#hert richtig, aber bei kleinem
a, gentigend genau, insbesondere wenn die Kriimmung der
Kurve C in der Nihe von P, nicht stark schwankt. Mit
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diesen Werten berechnet man jetzt den Kriimmungsradius
o¢ in Py, der nach (5) durch
o = o (a) = F(ay #1, p1)

gegeben ist, und wiederholt nun die fiir P, beschriebene
Konstruktion an P;, indem man P; P, = g; macht (Ab-
bildung 2), und um 7”; durch P, wieder einen kleinen
Kreisbogen P, P, schligt, der ein weiteres Bogenstiick der
Kurve C approximiert. Dabei kann der beniitzte Zentri-
winkel o, wieder beliebig gew#hlt werden. Wenn nicht
die Genauigkeit der Zeichnung eine Abénderung wiinschbar
macht, wird man etwa @, = a, = a setzen. So fiahrt man
fort, und erhilt fir C die stetige Folge P, P, P Py . . .

von Kreisbogenstiicken.

Es ist klar, dass dieser Konstruktion ein Nachteil
anhaftet, der aber in der Natur der Sache liegt. Jeder
Punkt P, wird aus dem vorhergehenden P,_, konstruiert,
und die in der Lage von P,_, enthaltene Ungenauigkeit
tibertragt sich daher auch auf 2, Im unginstigsten Fall
hat man also eine Hiufung der Fehler mit wachsender
Zahl von Kreisbogenintervallen zu erwarten. Diese Haufung
macht sich praktisch ganz besonders fur die p' () — Werte

bemerkbar.

4. Die Interpolation.

Man kann das beschriebene Verfahren wesentlich
verbessern, indem man eine einfache Interpolation hinzufiigt.

Wenn der Krimmungsradius g, mit » sich andert,
so hat der ersetzende Kreisbogen P, P, (Abbildung 2) nur
im einen Endpunkte P2, den richtigen Radius; im andern
Endpunkt P, wird der Kriimmungsradius einen andern
Wert o, besitzen. Man wird im allgemeinen eine bessere
Ann#iherung an die wahren Verhiltnisse erzielen, wenn
der Kreisbogen statt mit dem Halbmesser g, mit einem

% + 01
2

mittlern Radius o* = geschlagen wird. Dieser neue

Bogen hat als Endpunkt einen Punkt 2,*, dessen Lage
von P; etwas verschieden sein wird. Demgemiss ergeben
sich auch korrigierte Werte p,* p'1* an Stelle von p,, p';.
Es zeigt sich dabei, dass die Korrektur von p; viel be-
trachtlicher ist, als die von p;.

Praktisch ist die neue, verbesserte Konstruktion in
folgender Weise auszufiihren:

o
—=
P I =
T P Q % BN
Abb. 3. Pr
9o
- ar
0 QO

Nachdem P; wie frither konstruiert, und o; aus (5)
gefunden worden ist, trage man (Abbildung 3) von P, aus
auf der Normalen P, O/, bis nach ', die Strecke o, ab, und

halbiere nun P, B,” durch /I/. Dann ist P, II, = = j e

und man hat jetzt um I7,” durch 2, den Bogen vom Zentri-
winkel @, zu schlagen. Sein Endpunkt P,* gibt die korri-
gierte Lage von P;. Genau genommen ergibt sich jetzt
auch fir g; ein neuer verbesserter Wert g,* aus
0% = F (o, p%) p1¥),

sodass eigentlich die Konstruktion mit diesem Wert an
Stelle von g, zu wiederholen wire. Wenn aber a, einiger-
massen klein gew#hlt worden ist, so ist diese zweite Kor-
rektur, die von P,* zu einem neuen Punkte P, ** fithren
wiirde, schon unterhalb der Genauigkeitsgrenze der Zeichnung.

5. Totale Differentialgleichungen erster Ordnung.
Graphische Ermittlung von Integralen (Quadratur).

Liegt eine Differentialgleichung erster Ordnung vor,

P (W) = f (= p) (7)

so erhilt man durch Ableiten eine Relation von der Form

P” (u) zfl (1"1 vz P,)
P’ () = fo (u, p)

tubergeht, sodass auch fiir
oW =p+p =F@up)

ein bekannter Ausdruck in # und p (u) resultiert. Das
angegebene Verfahren kann also auch hier angewendet
werden. Man findet dadurch wieder zunichst 2, und g,
erhalt aber jetzt aus (7) den Wert von p';, und somit eine
Korrektur fiir die Lage der Normalen g’;. Diese schneidet
die Normale g, von P, in einem Punkte II, der nach-
traglich als Zentrum des Niherungsbogens a, verwendet
werden kann. Der Endpunkt dieses neuen Bogens gibt die
korrigierte Lage von 2,. Natiirlich wird man hier im
allgemeinen eine grossere Genauigkeit erzielen, sodass die
im vorigen Abschnitt angegebene Interpolation wegfallen
kann.

Ganz besonders einfach wird das Verfahren, wenn
es sich um gewdhnliche Quadratur handelt, d. h. wenn
die Ableitung p (#) = f(#) der gesuchten Funktion bekannt
ist. Nach Friherm ist damit auch die Evolute C’ des
gesuchten Liniendiagramms C gegeben, daher konstruiert
man C als Evolvente von C’, indem man an C’' Tangenten
in geniigender Anzahl zieht, und diejenige Kurve C zeichnet,
welche von P, ausgehend, alle diese Tangenten rechtwinklig
durchsetzt. Dies ist praktisch sehr schnell und genau aus-
fihrbar. Auch ist leicht einzusehen, wie sich durch einen
um C’ geschlungenen Faden ein mechanisches Quadratur-
verfahren verwirklichen lassen wiirde. Man vergleiche im
tibrigen Beispiel 4.

die wegen (7) in

6. Praktische Ausfithrung der graphischen Integration.

Bei der Anwendung der Methode muss in der prak-
tischen Durchfithrung eine Reihe von Dingen beobachtet
werden.

Zunichst wird man sich zu tiberlegen haben, welcher
Langenmasstab fiir die p-Werte zu wihlen ist. Im allge-
meinen ist ein grosser Masstab im Interesse der Genauig-
keit; jedoch ist durch die Art der Zeichenmittel selbst-
redend eine obere Schranke hieftir gegeben. Alsdann hat
man sich fir die Wahl der Winkeldifferenz a zu entscheiden.
Man wird sich dabei vorbehalten, im Verlauf der Kon-
struktion a zu verkleinern, wenn die Ungenauigkeit zu gross
wird, zu vergrdssern im Interesse der Kiirze des Ver-
fahrens, wenn die Genauigkeit es erlaubt. Als Mass fir
diese wird man die Grosse der Korrektur betrachten, die
die Interpolation liefert.

Das Verkleinern der Intervalle o ist nur oberhalb
einer gewissen Grenze zweckmissig. Denn mit sehr kleinen
Winkeln zu operieren wird wegen der Zeichenfehler un-
genau, und ist auch sehr mthsam. In den ausgefiihrten
Beispielen ist nie unter 5° hinabgegangen worden; der
grosste fiir a beniitzte Wert war 150. Wenn die mit ¢ = 5°
erzielte Genauigkeit nicht geniigt, so transformiert man
zweckmissig die zu integrierende Differentialgleichung

#" (4) = F (u, p, 5

indem man statt # die neue Verdnderliche v — £ # ein-
fithrt. Hier bedeutet 4 eine geniigend grosse (zweckmassig
eine ganze) Zahl. [Man vergleiche Beispiel 6, wo £ =3
gesetzt wurde.] p (#) geht tber in eine Funktion ¢ (v),
fiir welche die Differentialgleichung :

" I v /

a =7F<7,q,k([)
erfillt ist. Schwankt nun # in einem bestimmten Intervall,
so schwankt o in einem Intervall von #k-facher Grosse,
und einer Winkeldifferenz a fir # entspricht die Differenz
ka fir v.

Einer Erwahnung wert ist weiter der Fall, wo wih-
rend der Konstruktion der Kriimmungsradius o (#) durch
null geht. Die Kurve C hat an jener Stelle eine Spitze.
Allerdings kann dies stets vermieden werden, indem man
statt p (#) die Funktion ¢ (#) = p (#) | a bestimmt, wo a
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geniigend gross gewahlt wird. Das Liniendiagramm dieser
Funktion ¢ (#) hat namlich den Kriimmungsradius
W =q+q =pt+at+p =o@W+a
der bei passender Wahl von a in einem gegebenen Inter-
vall von #-Werten nicht durch null geht. Aber selbst
wenn an einer Stelle P, o (#) das Zeichen wechselt, so
versagt die Konstruktion praktisch keineswegs. Die Kurve C
hat dann in P, eine Spitze, die in unmittelbarer Umgebung
von P, mit der Spitze einer Kreisevolvente identisch ist.
Und zwar ist der zugehorige Kreis der Kriimmungskreis %
der Evolute C’ in P, (Abbildung 4), also ein Kreis vom
Radius p' (u) + p" (#). (Man vergleiche auch Beispiel 3).
Auch Spitzen und Singularititen hoherer Ordnung
lassen sich auf #hnliche Weise konstruieren.

Abb. 4.

Abb. 5.

Eine Abinderung der allgemeinen Konstruktion ist
auch erforderlich, wenn die Zentra der Kreisbogen P, P;;
P, P, etc. ausserhalb des Zeichnungsblattes fallen. Ist
z. B. o der Bogenradius fiir P, P;, a der Zentriwinkel, so
tragt man etwa (Abbildung 5) von P, aus nach R auf der

Tangente g, die Strecke o Zg %) auf, und von R aus die-

selbe Strecke unter dem Winkel a; ihr Endpunkt ist dann
‘der zweite Endpunkt P, des Bogens P, P;.

Endlich ist noch zu bemerken, dass vielfach schon
durch Transformation der Funktion und des Argumentes in
der Differentialgleichung selbst sich Vereinfachungen erzielen
lassen, die fiur die graphische Integration von Vorteil sind
(Beispiel 2, 6).

Im Folgenden wird das entwickelte Integrationsver-
fahren von einigen Beispielen erprobt, die sich auch rein
rechnerisch behandeln lassen. Man wird sich so ein Urteil
tiber seine Genauigkeit bilden konnen.

7. Integration der Differentialgleichung p”’ = p.
(Abbildung 6).

Es soll zunachst die Funktion p (#) = 4 - ¢* kon-
struiert werden, indem man sie als Integral der Differential-
gleichung zweiter Ordnung

, ) —p )
mit den Anfangsbedingungen p, = p', = A auffasst.

Abbildung 6 enthilt die

gen, wihrend die unberichtigte Normale, wie sie sich
zunichst durch das direkte Verfahren des Abschnittes 3
ergibt, durch eine strichpunktierte Linie dargestellt ist.
Die Tafel zeigt deutlich, wie stark die Grosse von p’ ()
durch die Interpolation abge#indert wird, wiahrend die von
? () nur kleine Korrekturen erleidet. In der nachfolgenden
Tabelle sind der Reihe nach die unkorrigierten, die ver-
besserten und die genau berechneten Werte von p (#) und
von p’ (4) zusammengestellt. In den in ¢m ausgedriickten
Angaben bedeuten die zweiten Stellen nach dem Komma
Zehntelsmillimeter; sie wurden beim Abmessen nur noch
geschitzt, sodass sie nur bis auf eine oder zwei Einheiten
genau sind.

Die Tabelle zeigt, dass im Verlauf der Konstruktion

T
die Fehler sich hiaufen, und dass der Wert ¢35 noch auf
1,2 9/, genauist. Das ist in Anbetracht der grossen Winkel-
differenz a = 15° der Kiirze der Konstruktion und der
Tatsache, dass die Kriimmung des Diagramms hier sehr
stark sich dndert, ein sehr befriedigendes Resultat. Ferner
lehrt die Zusammenstellung, insbesondere der Vergleich
der letzten Kolonnen, wie ausserordentlich stark die
p'-Werte durch die Interpolation verbessert werden. Fir
die p-Werte ergibt sich eine systematische, wenn auch ge-

ringfiigige Abweichung nach oben. Die Verhaltnisse je

zweier aufeinander folgender p-Werte, die gleich ex= sein
sollten, sind ebenfalls eingetragen. Sie entfernen sich von
einem Mittelwert 1,303 sehr wenig. Der genaue Wert ist
1,299, sodass diese Grosse auf zirka 3°[o genau bestimmt
ist. Beachtet man, dass es sich um die Integration einer
Differentialgleichung zweiter Ordnung handelt, indem die
Relation p = p' nicht beniitzt wurde, so diirfen die Resultate
zufriedenstellend genannt werden.

e . e — — P T
G e e el 2 [l [ et LG
S ) unkorrig.| korrig. | berechnet [unkorrig. korrig. | 2 —p /o pi-

Es gn(fr%e: :bfic(t?ziich il o iz Bieel S Biet 800 1] SR g 2 G e
o der grosse Wert 150 ge- } Ao
wahlt. Die Konstante A 150 10,34 | 10,40 10,39 9,79 | 10,39 | + o1 |4 o1 — 0,60 0,00
wurde gleich 8 ¢m genom- | } 1,305
TS i d et aic e imdRan AR S Sreiar il el B s e il s S e o8 S ol — 073 | + 0907
gegeben die Punkte P, P, } T508
11, fir w — o, der Punkt P, i
der korrigierte Punkt P,* 45° 17,59 | 17,70 17,55 16,60 17,66 -+ o,15 |+ 0,8 — 0,95 | + o,Ir
u.s. w. Dabei ist die durch } 1,303
Interpolation gefundene Nor- 600 | 2290 | 23,07 22,80 |: 21,67 | ‘230t | 20,27 1,2 Mittel : i A @
male jeweilen voll ausge- 1,303
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8. Integration der genawmen Pendelgleichung.
(Abbildung 7, 8, 9).

Bedeutet / die reduzierte Pendellange, g die Beschleu-
nigung der Schwere, ¢ der Ausschlagwinkel und ¢ die Zeit,
so lautet die Gleichung fir ebene Pendelschwingungen
bekanntlich

a2 20
o I A Tk
Fihrt man die neue Verinderliche # — /%' - ¢ ein, so geht

@ (¢) in eine Funktion p («) tber, die der Differentialgleichung
2 2 .
# el oL sin p (8)

du?

Abb:7

und entweder mit Reihenentwicklung, oder besser nach
der Gauss'schen Methode des arithmetisch-geometrischen
Mittels den Wert des bestimmten elliptischen Integrals
rechter Hand ausrechnen. Es ergibt sich der genaue Wert
u* = 107,052

sodass auch im ungiinstigsten Fall der Abbildung 8 der
Febler in der Ermittlung der Schwingungsdauer kleiner
als 1/, 9/, ausfallt. Zu beachten ist hierbei noch, dass die
Theorie kleiner Schwingungen auf diesen Fall ausgedehnt,
an Stelle von #* den Wert 9o? ergeben wiirde.

Unser Verfahren hat aber gegeniiber der rechnerischen
Bestimmung der Schwingungsdauer den weitern Vorteil,
dass es uns nun in Stand setzt, den ganzen Schwingungs-

tocm

A | | 0 N p
L ar T u
geniigt. Man hat graphisch das Liniendiagramm dieser

Funktion p (#) zu konstruieren. Dabei sollen nicht etwa
kleine Pendelausschldge angenommen werden. Vielmehr
wollen wir geradezu voraussetzen, dass anfangs das Pendel
horizontal stehe und sich dort in der Umkehrlage befinde,
so dass es in einem gestreckten Winke! hin- und her-

schwingen wird. Man hat dann fir / =0¢ = 'ZE, % =©
o K .
bezw. fiir U— 0 ip— =, p—10 (9)

Der Kriimmungsradius ¢ (%) des Diagramms C wird nach (8)
o (#) = p — sin p.
Demgeméss hat man in Abbildung 7 zunichst eine unter
45° geneigte Linie 4 B und eine Sinuslinie 4 C aufgetragen,
sodass nun zu jeder Abszisse p = 4 D in der Strecke £ F
der Wert von 9 = p — sin (p) sofort abgegriffen werden
kann. Als Langeneinheit wurde die Strecke 1 dm gewihlt.
Die Abbildung 8 zeigt die Konstruktion. wobei der Dif-
ferenzenwinkel o = 15° gew#hlt wurde. P, liegt wegen (9)

auf der Axe # — o0 im Abstand g: 1,570 von O entfernt.

Die Kriimmungsradien fir die Punkte P, P;, P; . . nehmen
schnell ab, sodass das Liniendiagramm C in S eine Spitze
aufweist. Die von O aus an C gehende Tangente kann
daher ziemlich genau gezogen werden. Bezeichnet man

. 3 T . . . .
mit z* ey den Winkel, den sie mit der Axe # — o ein-

schliesst, so ist #* der Wert, fir den p (#) gleich null
wird, p (#*) = 0. Demgemiss erreicht das Pendel seine
tiefste Lage nach der Zeit
]/7 p
- u

£ =
und £ ist daher die halbe Schlagdauer.

Abbildung 8 ergibt fiir #* den Wert #* — 106,60 = 1,177
absolut. In Abbildung ¢ ist die Konstruktion wiederholt,
indem der kleinere Differenzenwinkel a = 71/,0 verwendet
wurde. Sie ergab fiir #* den Betrag 106,7. Endlich wurde
noch mit @ = 50 operiert, und #* = 107,1° erhalten. Ander-
seits kann man fir #»* (in Graden gemessen) leicht die
Formel herleiten :

180
CE,
iy nvz\

o

sy

ap

VCOS(p

AbbI9

vorgang zu beschreiben. Denn aus dem Diagramm C kann
2 als Funktion von #, und damit der Ausschlagswinkel ¢
als Funktion der Zeit ¢ entnommen werden. Der Ueber-
sichtlichkeit wegen ist im Koordinatensystem der Abbildung 7
nachtraglich noch das gewdhnliche Punktdiagramm von p («),
wie es aus C sich ergibt, abgetragen worden. Man erhilt
als Schaubild die Kurve G H, die einem elliptischen Funk-
tionsgesetze folgt. Zum Vergleich ist die Kosinuslinie G /
noch eingetragen, die sich ergibt, wenn man die Schwingung
als rein harmonisch auffasst. Man erkennt deutlich, dass
der Ausschlagwinkel mit wachsender Zeit viel weniger
schnell abnimmt, als die N&herungstheorie harmonischer
Schwingungen ergeben wiirde. (Schluss folgt.)

Saalbau zur ,,Sonne“ in Kiisnacht bei Ziirich.
Architekt Z£. Wipf in Zirich.
(Mit Tafeln 32 und 3s.)

Dem Architekten war die keineswegs leichte Aufgabe
gestellt, an die bestehenden Gebaulichkeiten des alten
Gasthofs zur ,Sonne“ cinen grossen Saal anzuschliessen,
der, moglichst nahe dem vorhandenen Tanzsaal gelegen,
fiir Konzerte und gelegentliche Theaterauffiihrungen, sowie
bei Tanzbelustigungen als Restaurant und Speisesaal zu

Abb. 1.

Grundriss vom I Stock des Saalbaues. — 1 :400.

dienen hitte. Es wurde zudem eine Office fir die vor-
handenen und die neuen Raume verlangt (Grundriss Abb. 1).

Der Saal ist in die Dachform hineingezogen und mit
einer Tonne tberdeckt, er hat sich als sehr gut akustisch
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