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Berechnung gewölbter Platten.
Von Dipl. Ing. Dr. Huldreich Keller in Zürich.

(Fortsetzung von Seite 114.)

An Hand von Abbildung 4, d. i. der Seitenansicht
des Plattenelementes, kann man für dieses Element folgende
Gleichgewichtsbedingung für die an ihm wirkenden Kräfte
aufstellen: Wir vergleichen die in Richtung der Normalkraft

(S -4- d S) fallenden Komponenten :

S -f- d S — S cos d cp -4- Seh sin d cp + P sin —-—[_
-f- 2 T' cos (cp -\~ d cp).

Berücksichtigt man wiederum, dass d cp sehr klein,
sodass cos d cp ç/3 1, sin d cp 00 dcp, cos (cp -+- d cp) CtO cos cp, so

¦ -|- 2 T' cos cp.bleibt d S Seh d cp -f- P
Hierin ist 7" die in Richtung des Halbmessers x

fallende Komponente von T

T T sin — 00 T — ; (vergl. Abb. 5).

?5'"r

Üi

TSKü
t/JC

Abb. 4. Abb. 5.

Nach Gl. (5) ist S (x h) art d a,
folglich d S =[(x h) d o^-^-o^d (x h)] d a.

Unter Verwendung der Gleichungen (6) bis (8) erhält
man nach Kürzung des Faktors da:
(x h) dorfl-\- or0 (x h)

-\-h

(xh) dcp ~\-p
dx

d X

cos cp

cos cp

*+-dx\ dq> +
(9)-

Abb. 6.

COS cp

Abbildung 6 zeigt die Möglichkeit,

die mittlere Schubspannung
%m durch die Normalspannung 0^ und
die äussere Belastung p auszudrücken
und sie hierdurch aus der Rechnung
zu eliminieren.

Um die Rechnung nach Möglichkeit

zu verallgemeinern, wollen wir
eine gewölbte Platte betrachten,
welche in der Mitte eine gleichaxige

Bohrung vom Halbmesser x, hat. Aus dieser Platte schneiden
wir ein Ringteil mit dem äussern Halbmesser x und dem
Zentriwinkel da heraus. Dieser Ringausschnitt ist in
Abbildung 6 in der Seitenansicht dargestellt. Aus ihr lassen
sich folgende Beziehungen ablesen :

(x% — xf) n (—— )p x d ah (xm cos cp -\- or0 sin cp)

{xh)Jl^(^^l\_.{xh)J^9_ .(lo)v ' m 2 V cos cp ] x ' cos 9>

Die rechte Seite dieser Gleichung werde in Gl. (9)
eingesetzt :

Hieraus finden wir:
' d (x h)

dOrO

Oro
x h sin

d x
Q COS2 9 J

dx

d x Jx2^.xß^.dx(x+~\\

I.

Hauptgleichung.

2 (x h) Q cos8 cp

Diese I. Hauptgleichung hat die Form:
do^ — or0 (15) -+ om (16) -|- (24) (1 a),

wo die Ziffern in Zahlenwerte bedeuten, die abhängig
sind von der Form und der äussern Belastung der Platte
und der Lage des augenblicklich zu untersuchenden Punktes A
auf der Mittelfaser des Meridianschnittes.

Würde man für den Halbmesser x die mittlere
Radialspannung drox kennen, so lieferte die Hauptgleichung (I)
den Wert für die mittlere Radialspannung o>0 ix+dX) im
Halbmesser (x -\- dx)

x -\- dx

Or0 (X + dx) °r0 x + d Or0 (II)

H Berechnung von om, hergeleitet aus der Dehnung
der Platte.

Der Parallelkreis mit dem Halbmesser x, der die
gestreckte Länge (2 n x) hat, dehnt sich um das Stück A (271 x),
wenn in Richtung der Tangente die spezifische Spannung 0°,
senkrecht dazu die Spannung ar0 wirkt, und zwar ist :

2 11X f Oro\A(2nx) =_|o,8-— j,
darnach

jjjH
Die Differenzierung dieser Gleichung liefert die

Dehnung des Halbmesserelementes (dx)
dx l aro \ x 1 daroA (d x) IläHHi (.2)

Für diese Dehnung können wir noch einen zweiten
Ausdruck aufstellen:

Wir denken uns gemäss Ab-
bildung 7 aus der mittlem Meri

4ü
dianfaser im Abstand x von der
Symmetrieaxe bei A ein Element
von der Länge A D ds
herausgegriffen

Weil d x d s cos cp,

so ist auch die durch die Belastung

erfolgte Aenderung von dx,
das ist:

dx

Abb. 7.

Nun ist

A (d x) J (d s cos 95)

— A (d s) ¦ cos cp || d s A (cos cp).

A(ds)= ~(o™-^r) •

demnach

A (dx)

A (cos cp)

\Oro
ds

E

sin

«to

A(dx) -^r

< A cp — — sin cp ¦ yj

cos cp — ds sin cp • \p

— d x tg cp • ip

(13),

(14),

I(X h) d Or0 h Oro d (x h) +- (x2

— (x ö,n sin I
d x p

Ev d x-xA t—
ç cos* cp

d

Q COS2 Cp p CO

Die Aenderung von (d x) ist das Ergebnis zweier
dx\ Formänderungen, nämlich der Längenänderung und der

\^j;\xJr~)+hdxa>°- Richtungsänderung des Meridian-Elementes ds.



124 SCHWEIZERISCHE BAUZEITUNG [Bd. LXI Nr. 10

Durch Gleichsetzen der rechten Seiten der Gl. (12)
und (15) erhalten wir
dx

~E~
i <*ro\ X I daro\ dx t at0\

—• d x ¦ S t|
Es werden beide Seiten dieser Gleichung mit

cp.
E

multipliziert und die Klammern aulSBöst :

dx dx ffro ¦ döy,
~T °to — —T + « Olo —

dx
Wro

dx a,o I
x m

zr dx
— E -—y> tg

Daraus finden wir

d ato (oro — om) |iH- -^-j
rf#

dtSrH

II.
Hauptgleichung.

Diese Gleichung hat die Form :

dar0
d om (or0 — ol0) (17) — ip (27) 4- ||g (IIa)

Für die nur durch Fliehkräfte beanspruchte
umlaufende Scheibe fand ich in meiner diesbezüglichen,
eingangs erwähnten Arbeit die Ausdrücke (in die hier
gewählte Bezeichnungsweise übersetzt) :

d or0 — o,.0 -\- an +
d an (ort — am) [1 + —j — +|||

Der Aufbau der Formel für d art ist genau der gleiche
wie derjenige der hier gefundenen Formel (1) für die Platte,
nur dass natürlich für die Ausdrücke andere Werte
in Frage kommen. Zu der Gleichung für dot0 kommt laut
Gleichung (IIa) für die Platte gegenüber derjenigen für die
umlaufende Scheibe nur noch der Summand [— ip (27)]
hinzu. Es ist also möglich, beide Rechnungen miteinander
zu vereinigen, wodurch das Mittel an die Hand gegeben
wird, eine umlaufende Scheibe zu berechnen, die ausser
durch Fliehkräfte auch noch durch einen einseitig wirkenden,
gleichmässig verteilten Druck p belastet wird. Derartige
Fälle kommen vor in Reaktions-, seltener auch in
Aktionsdampfturbinen.

Unter der vorläufig noch unzutreffenden Annahme,
man kenne von der Platte für den Halbmesser x die mittlere

Tangentialspannung ot0x, liefert Hauptgleichung (II) den
Wert für die mittlere Tangentialspannung im Halbmesser
(x-\-dx), indem man die Gleichung aufstellt:

f -\- d x

Ott (x+dx) — Ot0x + d Ot0

' d rp

(l6)

6. Berechnung von -~r~- und rp unter Benutzung der

Momentengleichung.
Wir stellen zu diesem Zwecke für das in Abb. 3 (S. 113)

axonometrisch dargestellte Körperelement CDEFGHIK
die Momentengleichung auf. Als Momentenaxe greifen
wir die Axe O — O heraus, welche im Abstand (x-\-dx)
von der Symmetrieaxe z — z und senkrecht zu ihrer Richtung

mitten durch die äussere Begrenzungsfläche GH1K
des Plattenelementes läuft. Bei Gleichgewicht muss die
Summe der Momente aller äussern Kräfte, bezogen auf die
Axe O — O, gleich null sein.

An dem Plattenelement wirken folgende äussere Kräfte
auf Verdrehung um die Axe O— O:

a) auf die der Symmetrieaxe zugekehrte Begrenzungsfläche
CDEF:

Die Normalspannungen, deren Wirkung ersetzt werden
kann :

1. durch eine im Mittelpunkt der Fläche angreifende
Einzelkraft S x d a h o«,, wirkend am Hebelarm
d s sin (d cp) ;

2. ein Moment „Meru, auf welches später einzugehen ist;
3. die Schubkraft Seh x d a h xm am Hebelarm

d s cos (d cp)

b) Auf die beiden Seitenflächen G C D H und E F KI
wirken Normalspannungen, deren Einfluss ersetzt
werden kann:

1. durch die Normalkraft T 00 d s h ot0.

Von ihr kommt als drehend um die Axe O — O

nur die Komponente T' T sin — co T — in
Betracht (vergl. Abbildung 5). Die beiden andernAbbildung 5).

Komponenten T" —- T cos verlaufen parallel zur

Axe O — O und ergeben daher kein Drehmoment
(vergl. Abbildung 5 und Abbildung 3). Die beiden

Komponenten T' wirken je am Hebelarm

ds ds
— sin (cp -f- d cp) co — sin

2. durch das Moment ,,MG.

cp (siehe Abbildung 4).

der Spannungen at. auf
welches wir später zurückkommen,

c) Normal zur untern Begrenzungsfläche HDEI und in
die Mitte derselben konzentriert gedacht, wirkt die

(dx\ ds
x -\ 1 dadsp am Hebelarm—. [Auch

hier wollen wir mit Rücksicht auf die spätere Rechnung
mit kleinen Differenzen statt Differentialen von einer

Vernachlässigung des Wertes — absehen.]

Alle die unter a, b und c genannten Momente
versuchen, das Plattenelement im einen oder andern Sinn
um die Axe O — 0 (Abbildung 3) zu drehen. Es kann in
seiner Lage, d. h. im Gleichgewicht, nur dadurch gehalten
werden, dass auf die äussere Begrenzungsfläche GHIK
das bisher noch nicht berücksichtigte Moment M0r-\-/iar
wirkt, welches gleich ist der algebraischen Summe jener
vorgenannten Spannungsmomente und entgegengesetztes
Vorzeichen hierzu hat. Wir wollen jene Momente zuerst
nach der Grösse, sodann nach dem Vorzeichen bestimmen:

Zu a) 1.

Nun ist

M, S d s sin (d cp)cyrj S
d x

cos cp
dcp.

:cp
ds

e

Ms d a (x h) o

d x
Q COS Cp'

d x^

Q COS2 <p

Zu a) 3. Msch Sch d s cos (d cp) &o Sch d s.

Aus Gl. (10) finden wir für Sch (xh) xmda
- p 1 *2_^2 '

(i7)-

Sch — da K^dr)-^)^^}
M» : da— (x2 — x,2)

dx da(xh) or0 sin cp
d x

(18).

%

COS2!/) ' COS^<jp

Zu a) 2. In Abbildung 8 ist das Plattenelement in
gleicher Weise dargestellt wie in Abbildung 3, und es

sind an dem einen Rand der innern Begrenzungsfläche
CDEF in einem gewissen
Masstab die Spannungen ar der
Grösse und Richtung nach
aufgetragen. In der Mitte der
Kante EF herrscht die Spannung

a„, im Abstand r\ von
der Mitte die Spannung or. Sie
darf über dem gestrichelten
Flächenstreifen von der Höhe
dr\ und der angenäherten Breite
xda als unveränderlich
angenommen werden. Das Moment der Spannungsdifferenzen
(or — or0), welches auf die Begrenzungsfläche CDEF wirkt,
und welches wir abkürzungsweise mit Mor bezeichnen
wollen, ist gleich der Summe aller Produkte, die aus der
Multiplikation nachstehender drei Faktoren entstehen :

1. dem in Abbildung 8 gestrichelten Flächenelement df,
2. dem Unterschied der in diesem Flächenelement df

herrschenden Spannung or gegenüber der in der
Mittelfaser herrschenden Spannung or0, also der Differenz

(or — an),

3. dem Abstand rj des Flächenelementes von der Mittel¬
faser,

Abb 8
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nämlich : mmI df(or
h

or0) m

Hierin ist

Für (or
setzen

wo

df (x'-\-r\ sin cp) d a dr\.
or0) wollen wir an Hand von Gl. (3) ein-

(or — or,,) c tj cos cp u,
dip ip
d X + (19),

M„ c >] cos cp u (x A- tq sin cp) da- drj • rj.

Hierin ist nach Abbildung 9

df (d s -\- rj d cp) drj.
Gl. (4) besagt:

(ot — p c rj cos cp j -£- -4- m M|
Setzen wir vorübergehend als Abkürzung

|JhBH_~H-_-Idx
SO ist

+ -

Ma 2 I (^s-(-?y d cp) d rj c rj cos2 93 • z> rj.

In diesem Integral ist nur rj als Veränderliche, alle
übrigen Grössen sind als Konstante zu betrachten.

Mor da ¦ c cos cp

+4
I rj2 drj -\- sin cp j rj3 drj ;

4--

I «rfl
fr1

12 rji d rj — o.

Mar d a • c cos 93

A»

Setzen wir den Wert für u wieder ein aus Gl. (19),
so erhalten wir :

hs
Ma da-c- x— cos cp°r' 12 T

d ip
d x 1] (20).

Wir werden später sehen, dass wir noch des Wertes
dMar bedürfen, d. h. des Betrages, um den sich WÊ

ändert, wenn wir von x um dx vorwärts gehen. Wir
erhalten, indem wir die Gl. (20) nach x differenzieren :

I I (m xh3 cos cp) -—¦ dx -\- d (mxh3 cos cp)-r-*
=da—l v dx2 dx

2

+ h3 cos cp d ip + d (h3 cos cp) ip

Zu b) 1.

dM„ (21).

SMT=2T' ds
sin cp — 2 T sin da d s

2 ' 22
Statt 2' MT wollen wir einfach setzen MT.

ds
MT d a (d s h) ot0 — sin cp,

sin

M, da I- dx*
cos2 cp

sin cp ] Ott, ¦ (22).

Zu b) 2. Das Moment Ma, der Spannungen 07, oder

was das Gleiche besagt, der Spannung'sipferenzen^, — ool),

welches auf jede der beiden Seitenflächen G HD C und

KIEF von Abbildung 3
wirkt, ist gleich der Summe
aller Produkte, die aus der
Multiplikation nachstehender
drei Faktoren entstehen
(vergl. Abbildung 9) :

1. dem Flächenelement df
von der Höhe drj,
welches im Abstand rj von
der Mittel-Meridianfaser
zur Kante G C parallel
verläuft,

2. von dem Unterschiede der in diesem Flächenelement
herrschenden Spannung ot gegenüber der Spannung o/0

in der Mittelfaser die in die Richtung senkrecht zur
Symmetrieaxe entfallende Komponente, also

da .da
(ot — o,o) sin — co (a. — ot0) —,

3. dem Abstand rj des Flächenelementes von der Mittel¬
faser, multipliziert mit cos cp

+4

Abb. 9.

M-Vt 2 j df(o,
\ da

0,0) -—rjcos,

Auch hier, wie bei der Ausrechnung von M„r sind bei
der Integration alle Grössen ausser rj als Konstante zu
betrachten.

+ A +±
d a c v cos2 cp \d s I tq2 d rj -\- d cp \ rj3 drj

h h

Ma

Durch analogen Rechnungsgang wie für M0r finden wir:

(24)-¦ da c
h? V dipdx — r-~12 L dx + m m co

u

MP P ds

2
— d s lx-\~- d x

2
-) dap

ds
2

Mf da^-(x +
d X dx*

C032 qp
(25)-

Nunmehr sind von diesen Momenten noch die
Vorzeichen zu bestimmen. Sie erhalten bei der Summierung
das positive oder negative Vorzeichen, je nachdem sie
verstärkend oder verschwächend auf die Plattenkrümmung in
dem Querschnitt hinwirken, der die Drehaxe O — O,
Abbildung 3, enthält. Es wirken auf diese Krümmung:

Ms verstärkend, also Vorzeichen +,
MSch verschwächend, also Vorzeichen —,
Mar verstärkend, wenn die Spannungsunterschiede

(ör — 0rO) über der Mitte des Querschnittes positiv
sind, somit dann MCr -\-,

MT verstärkend, also +,
MCt analog MQr, also +,
MP verschwächend, also —.

M{Qr + dj i MZr + MS — gl + MT + Mat - MP.

Nun kann auch geschrieben werden:

Mtar + dQr) Mar + dMc,r,

und daraus ergibt sich

d MQr MS- MSch + MT JE MQt - MP (26).

Hierin setzen wir die Werte ein aus den
Gl. (21), (17), (18), (22), (24), (25).

Alle diese Werte enthalten da, welchen Wert wir
besonders vorangestellt haben als Hinweis darauf, dass

man damit kürzen kann. Es bleibt:
c \~ d*ip 7 \ d y— Umxh3 cos cp) -j^- d x + d (m x h3 cos cp) -^—-

-4- h3 cos cp d ip -4- d (h3 cos 95) ip aus (21)

Oro (X h)
dx*

o cos2 cp

JL(*2_^)^-
2 v ' COSJ <p

Or0(xh)sin cp —
d x

Oto
h dx*
2 cos* cp

sin cp

+ c — d ip cos cp-\-c — dxm-^- cos

2,mm. dx\ dx*
2 j COS2 cp

aus (17)

aus (18)

aus (22)

aus (24)

aus (25).
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Die Multiplikation dieser Gleichung mit

dip d(mxh3 cos cp)

c dx gibt

d*ip
d X* mxh3cosip

dx

¦ip

Or0

d X
d{h$ ras cp) m h3

d x
x h

cos2 cp |

h dx
2 COS

I
<«p|_

d x
0

sin cp

2 — x?

cos cp

sin cp]

¦(*+ -?)«**]

be
a
jdo
'3
"3d
¦4-1

CL,
3
Rj

Diese Hauptgleichung hat die schematische Form:

¦(42)-Sr + ^9)v-(5 0}(nia),S=(e){(32)ö-+(36H° ||Mwo die in den runden Klammern stehenden Ziffern
Faktoren bedeuten, welche lediglich abhängig sind von der
Form und der äusseren Belastung p der Platte, nicht aber
z. B. von der Randbedingung, d. h. davon, ob die Platte
am Rand eingespannt sei oder frei aufliege. Ob die Platte
in der Mitte eine Bohrung hat oder nicht, kommt lediglich
im Summand (51) zum Ausdruck, indem dort der Summand
xt* einen von null verschiedenen Wert erhält oder nicht.
Da ferner die Platte nicht eben zu sein braucht, sondern in
jedem Punkt der Meridianmittelfaser eine andere Krümmung
mit dem veränderlichen Halbmesser q und ausserdem eine
von Punkt zu Punkt etwas veränderliche Dicke h haben
kann, so ist dieses Rechnungsverfahren anwendbar auf
gewölbte wie ebene (q go, cp o) Platten, volle und in
der Mitte gelochte, am Aussenrand frei aufliegende oder
eingespannte Platten von veränderlicher Dicke.

Nach Ausrechnung der Gl. III erhalten wir:
d ip
d X

d ip
d x + d*\p

dx*
d x

Wx-\-
d ip

dx di

(27),

(28).

Hierbei erinnern wir uns stets, dass wir bei der
Ausrechnung statt des unendlich kleinen Differentials eine zwar
kleine, aber endliche Differenz d x x2 — x-. einzusetzen
haben.

Gang der Rechnung.
Für irgend einen Halbmesser x2 der Meridian-Mittelfaser
können mit Hilfe der drei Hauptgleichungen (I), (II)

und (III) und der Nebengleichungen (11), (16) und (27),
(28) die Werte or0, ot0 und ip berechnet werden, wenn die
korrespondierenden Werte für den um das endliche, aber
kleine Stück (d x) verschiedenen Halbmesser Xi bekannt sind.

Um die Werte der Normalspannungen und der
Winkeländerungen für alle Punkte der Mittelfaser zu erhalten,
nehmen wir für irgend einen Punkt dieser Faser Werte an.
und rechnen für alle aufeinanderfolgenden Werte von (dx)
nach den Gl. (I), (II), (III) die Aenderungen der
Normalspannungen und der Winkeländerung und sodann die
Spannungen und Winkeländerung selbst aus. Am besten
beginnt man innen an der Platte.

Stimmt nach der erstmaligen Durchrechnung das
Endergebnis nicht mit den Randbedingungen, so ist die Rechnung

von innen nach aussen zu wiederholen. Während
man aber bei der oben erwähnten Berechnung der
umlaufenden Scheibe beim Beginn einer Durchrechnung nur
mit einer Unbekannten (ot) zu variieren brauchte, sind es
hier deren zwei, wie wir noch sehen werden.

Bezüglich der Regeln für den Beginn der Ausrechnung

und der Berücksichtigung der Randbedingungen muss
auf die ausführliche Arbeit im „Forschungsheft" Nr. 124
des V. D. I. verwiesen werden. Daselbst ist auch gezeigt,
wie eine solche Rechnung vorbereitet und praktisch
durchgeführt wird.

Durchbiegung der gewölbten Platte.
Haben wir im Vorstehenden für jeden Punkt des

Plattenquerschnittes die Radial-, die Tangentialspannung

9Ä-

Abb. 10.

und die Winkeländerung berechnet, so sind wir damit in
der Lage, die Durchbiegung ermitteln zu können. Es
genügt, wenn wir hierbei nur die Mittelfaser in Betracht ziehen,
welche der Radialspannung 0rt und der Tangentialspannung ot0

ausgesetzt ist.
Wir schlagen denselben Weg ein, den v. Bach für die

Ermittlung der Durchbiegung eines gekrümmten Balkens
gezeigt hat1).

In Abbildung 10 sei durch
den Linienzug J — A lediglich
die Mittelfaser einer gewölbten
Platte dargestellt. Aus ihr greifen

wir ein beim Punkt P
gelegenes Element von der Länge
ds heraus.

Wir berechnen vorerst die Verschiebung des zweiten
Endpunktes C dieses Elementes gegenüber dem Punkt P.
Während der Belastung der Platte durch die äussere
spezifische Spannung p gelangt das Faserelement aus der
Lage P — C vom unbelasteten Zustand in die Lage P— C"
des endgültig belasteten Zustandes. Diese Veränderung kann
als in zwei Phasen ausgeführt gedacht werden :

1. Verschiebt sich das Element aus der Lage P—C
zu sich selbst parallel und dehnt sich unter dem
Einfluss der Längsspannuug 0^ und der Querspannung
ot0 um den Betrag

A(ds)=,^(or0--^-).
Hierbei gelangt es in die Lage P' — C¦

2. Dreht es sich aus dieser Lage um den Winkel ip in
die Lage P' — C". Wie wir schon bei Berechnung
der Spannung ot0 sahen, ändert sich hierbei die ^-Koordinate

des Punktes C gegenüber dem Punkt P um den
Betrag

A (dx) A (ds) cos cp — C C" sin cp
ds I ato \ 1

cos cp — ds • ip sin cp
Qt0\

A(dx) d-^ OrO —
GtO

dy • I (29).

Die y-Koordinate des Punktes C ändert sich gegenüber

dem Punkt P um den Betrag
A (dy) A (ds) sin cp + C C" cos cp

ds I 0«, \ t„-^{Oro-—)smcp + ds. COS 1

à (dy) - % °«>_^ -\-dx-ip (30).

(Hierbei setzen wir als Regel, die jy-Koordinate in
Abbildung 10 von der Höhe des Punktes / aus von oben
nach unten positiv zu zählen.)

Der Punkt C ändert während der allmählich vor sich
gehenden Durchbiegung der Platte seine Koordinaten gegenüber

dem Punkt / um die Werte
A xcj Scj A (d x)
AycJ 2'eJA(dy)

• • • • (31)
(32).

Gemäss unserer bisher geübten Rechnungsweise setzen
wir statt der unendlich kleinen Differentiale dx und dy
die endlich kleinen Intervalle dx und dy ein.

Will man die Aenderung der ^-Ordinate des Punktes C
in bezug auf die Symmetrieaxe z — z, Abbildung 10,
berechnen, so ist zu berücksichtigen, dass die Ordinate des
Punktes / sich bereits ändert um den Betrag

^-^(¦•-•ï) • ¦ ¦ ¦ (33)-

Dieser Wert ist zu dem in Gl. (31) aufgestellten Wert
zu addieren, um die Gesamtzunahme der ^-Ordinate des
Punktes C gegenüber der Symmetrieaxe zu erhalten.

Wir finden also für diesen Punkt

lBfp9
— Zj [ip dy] (34).

XJ t
_

Oro\
SE E V'° m)x=*j\

Siehe Bach, «Elastizitäts- und Festigkeitslehre», 1902, Seite 485.
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¦ZHydx) (35).

Hat die Platte in der Mitte kein Loch, so fällt der
letzte Summand natürlich weg, weil dann xj o.

Ayc 25 [-=- (or0 - |
Man schafft sich ein anschauliches Bild von der

Formänderung der Platte, wenn man die Koordinatenänderung
eines jeden Punktes der Meridian-Mittelfaser in viel grösserem,
und zwar dem 20- bis ioofachen Masstab aufzeichnet gegenüber

den Koordinaten selbst.

Zahlenbeispiele.
Das entwickelte Rechnungsverfahren soll nun

angewendet werden auf einige Zahlenbeispiele :

Wir wählen als erstes Beispiel den in Abbildung 11
dargestellten gewölbten gusseisernen Deckel, wie ein solcher
in den Werkstätten von Escher Wyss & Cie. in Zürich
dazu verwendet wird, die Gehäuse von Dampfturbinen
probehalber abzupressen. Es ist dies also ein Hilfsboden,
der nicht zur Lieferung der Turbine gehört.

Ah-S

5 cm fronst

X-.-90

Abbildung 11.

Der Boden ist gemäss Abbildung 11 in der Mitte voll,
hat eine gleichmässige Wölbung mit einem Krümmungshalbmesser

q 143 cm und soll laut Werkstattzeichnung
eine stets gleiche Dicke h — 6 cm haben.

Wir baben diese gewölbte Platte als Beispiel gewählt,
weil sie als Teil einer Hohlkugel vom Hohlmesser q 143 cm
und von stets gleicher Dicke einen wertvollen Vergleich
mit der vollständigen Hohlkugel für den Fall gleicher
spezifischer Belastung zulässt.

Die nachstehende Rechnung wurde durchgeführt für
einen auf der konvexen Seite wirkenden Ueberdruck von 20 at

p (— 20) kg/cm2.
Dieser Druck wurde für die Rechnung so hoch

gewählt, um sie zuverlässlicher zu gestalten. Für kleinere
Ueberdrücke ändern sich die Ergebnisse proportional.

Vergleich mit der Hohlkugel.
Bei (— 20) at Ueberdruck würde die vollständige

Hohlkugel vom mittlem Halbmesser q 143 cm, der Dicke
h 6 cm eine mittlere Druckspannung ak erfahren, die sich
nach der Formel berechnen lässt:

ak (R2 Tip) : (2 R n h)
Rp
2 h

143 • (— 20)
— 239 kglcm2 (36).

Unter dieser spezifischen Belastung würde sich der
Halbmesser verändern um den Betrag

Hierin ist R 143 cm ; E für Gusseisen 900 000
kg/cm2 ; m für dieses Material rund 5 >) ; at,c ork ok

— 239 kg/cm2.

AR 143 0 — Vs) (— 239) ü — 0,0305 cm,.900 000
A R — 0)305 mm (37)-

Wie bereits bemerkt, ist es nun höchst lehrreich,
festzustellen, wie sich die Hohlkugelkalotte in ihrer
Beanspruchung und Formänderung der vollständigen Hohlkugel
gegenüber verhält.

') Siehe Föppl, Band III, Seite 43, Zeile 5 von unten.

Untersuchung der Platte nach Abbildung 11
für p (— 20) kg/cm2.

Diese Platte von der Form einer Hohlkugelkalotte hat
einen äussern Halbmesser

xa 90 cm.
Weil sie in der Mitte nicht durchbrochen, so ist

x, o.
Der Boden liegt bei der Verwendung auf einer im

Turbinengehäuse vorgesehenen Randfläche auf, welche einer
Ebene angehört, die zur Turbinenwelle, also zur Symmetrieaxe

der Platte senkrecht steht. Diese Auflage vermag demnach

auf die Platte nur Reaktionskräfte in Richtung parallel
zur Symmetrieaxe zu übertragen.

Der Meridianquerschnitt erfährt eine mittlere
Tangentialspannung

s seitliche Projektion des Bodens auf die Bildfläche X Ueberdruck

Meridianquerschnitt.

Die seitliche Projektion des Bodens auf die Bildfläche
berechnet sich wie folgt (vergl. Abbildung 1) :

Fläche A, JA2 JxAi=-F ^-(^ i8o°
sin (2 cp„°) 1.

sin cpa°

<Pa* 39° ;

9° A-¦-—-=: 0,03,
143 ' -3'

• <jP« O.681,

sin (2 cpa°) — sin 780 0,978,

i8o"

^f (1,36a

Meridianquerschnitt / 2 cpa q h,

/= 2- o,68i
FJ_ __ 392° (—2°)

F

oc

2 <Pa I>362-

-0,978) 3920 cm2.

143 6 1170 cm2.

(—67) kg/cm2 (38)

statt 0* (— 239) kg/cm2, wie wir in Gl. (36) für die
vollständige Hohlkugel gefunden hatten. Diese Verschiedenheit

lässt bereits vermuten, dass in dem zu berechnenden
Boden die Beanspruchung von Punkt zu Punkt der Mittelfaser

(und in noch höherem Mass der Aussenfaser) stark
veränderlich sein werde. Es ist nämlich anzunehmen, dass
die Beanspruchung des Bodens in der Nähe der Symmetrieaxe

von derjenigen in der vollen Hohlkugel nicht sehr
abweicht. Damit aber die mittlere Beanspruchung des Bodens,
d. i. a* nur etwa i/4 (d. 1 „—67" gegenüber „—239")
von derjenigen der Hohlkugel sei, muss am Aussenrand
eine grosse Beanspruchung auftreten, welche ein entgegengesetztes

Vorzeichen zu derjenigen in der Mitte des Bodens
hat. Die in später folgenden Abbildungen und in der
dazugehörenden Zahlentafel wiedergegebenen Rechnungswerte
bestätigen denn auch die Richtigkeit dieser Vermutung.

Die aussen frei aufliegende Platte erfährt daselbst
eine mittlere sogenannte Radialspannung

I xap sin cpa 90 (— 20) • 0,63
°n çn ï 2-6

a„ (— 94) kg/cm2 (Druckspannung) (39).
Nunmehr stellen wir uns das Schema für die Haupttafel

auf:
Dabei beginnen wir nicht mit xt o, wie wir dies

eigentlich tun sollten, sondern-gt x 10 cm. Wir müssten
nämlich sonst die ersten Intervalle dx so klein nehmen,
damit sie gegenüber x vorschriftsmässig klein genug sind,
dass dadurch die Rechnung sehr weitläufig würde, ohne
besondern Gewinn zu ergeben. So schätzen wir die zu
machenden Annahmen statt für x o für x 10 cm und
extrapolieren nach erfolgter Durchrechnung rückwärts auf
x o.

Vom Halbmesser x 10 cm ausgehend, wählen wir
die Intervalle dx zuerst nur klein (dx 1), dann immer
grösser, bis zuletzt d x 5 cm wird und bleibt. (Wie sich
jedoch» erst später herausstellte, wäre es für die Genauigkeit

der Rechnung besser gewesen, das Intervall dx gegen
den Aussenrand hin wieder kleiner werden zu lassen, z. B.
dx 5, 4, 3, 2 cm.) Für welche Halbmesser die Einzel-
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rechnungen auszuführen sind, muss eben das praktische
Gefühl und etwas Uebung weisen. In unserem Beispiel1)
wurden sie vorgenommen für x io, ii, 12, 13, 14, 16,
18, 20, 22, 24, 26, 29, 32, 36, 40, 45, 50, 55, 60, 65, 70,
75, 80, 85 und 90 cm. (Schluss folgt.)

auf Seite 27 auch der Lageplan des Bundesplatzes und
seiner Umgebung findet.

Aus dem Vergleich ergibt sich, inwieweit der Architekt
den Wünschen des Preisgerichts entsprechen konnte ; die
Höhen sind vermindert worden am Hauptgesimse des
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Abb. i. Hauptfassade (Westfassade) am Bundesplatz, 1:200 (4bb. 1 und 2 nach Originalplänen).

Die Schweiz. Nationalbank in Bern.
Erbaut durch Arch. Ed. Joos in Bern.

(Mit Tafeln 39 bis 32.)

Als vor fünf Jahren der Wettbewerb um das
Nationalbankgebäude zum Austrag kam, war namentlich auch die
Frage zu entscheiden, ob die Architektur dieses
hervorragenden und im Platzbild wesentlich mitsprechenden
Gebäudes sich den bestehenden Bauten, dem Bundeshaus
und der Bernischen Kantonalbank, anzupassen habe, oder
ob auch hier, zudem für ein nichtbernisches Amtsgebäude,
der für das einheitliche Strassenbild Berns im allgemeinen
massgebende Architektur-Charakter der passende sei. Das
Preisgericht bekannte sich zu der erstem Auffassung, gab
indessen dem Projekt von Architekt Ed. Joos wegen seiner
Grundrisslösung den Vorzug, mit dem Wunsche um
Vereinfachung der Architektur und Verminderung der
Höhenentwicklung der Fassaden und Dächer. So hat nun auch
der Bundesplatz sein ausgesprochenes Bernerhaus'erhalten.
Wir verweisen im übrigen auf die Darstellung des
Wettbewerbs-Ergebnisses in Band LI, Seite 322 u. ff., wo sich

') Zu zeigen, wie die «Haupttafel» und die «Ausrechnungsblätter»
anzuordnen und zu benützen sind, verbietet leider hier der Raummangel.
Interessenten finden hierüber Ausführliches im «Forschungsheft» 124,
insbesondere in den Tafeln I bis 7.

Mittelbaues um rund 4 m, an jenem der Seitenflügel, das

nun in gleicher Höhe durchläuft, um rund 2 m, an der
Dachfirst des Mittelbaues um rund 6 m (Abbildung 1).
Damit dürfte wohl die unterste für diesen Baucharakter noch
zulässige Grenze erreicht sein (vergl. Tafel 32). An der
Amthausgasse musste aus baupolizeilichen Gründen die
Höhe noch mehr vermindert werden, was die
Fassadengestaltung einigermassen erschwert hat (Abb. 2, Seite 129).
Ueber die Aussenarchitektur, die wir in heutiger Nummer
zur Darstellung bringen, in der Absicht, Grundrisse und
Innenaufnahmen in nächster Nummer zu zeigen, äusserte
sich anlässlich der vor Jahresfrist erfolgten Eröffnung des
Gebäudes ein fachmännischer Artikel im Berner I Bund "

u. a. wie folgt:
„Die Grundrissanlage und der Zweck des Gebäudes

bedingte reichliche Lichtquellen der Fassaden und besonders
am Bundesplatze neun Fensteraxen, die massgebend
wurden für die Flächenbehandlung. Die in Korbbogen-
form zum Ausdruck gelangende Bewegung der Hauptgesims-
linie ist in Anbetracht der Fernwirkung des Gebäudes als
Abschluss der Bundesgasse motiviert.

Der Bau ruht auf massivem Hartsteinsockel und löst
sich über dem Stockgurt in eine, die erste und zweite
Etage umfassende jonische Ordnung mit ringsumführenden
Gesimsen auf. Gegen den Bundesplatz bilden Dreiviertel-
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