**Zeitschrift:** Schweizerische Bauzeitung

Herausgeber: Verlags-AG der akademischen technischen Vereine

**Band:** 57/58 (1911)

Heft: 4

**Artikel:** Der kontinuierliche Balken auf elastisch drehbaren Stützen

Autor: Ritter, Max

**DOI:** https://doi.org/10.5169/seals-82553

# Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

## **Conditions d'utilisation**

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

### Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

**Download PDF:** 30.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

INHALT: Der kontinuierliche Balken auf drehbaren Stützen. - Schulhaus Niederurnen. — Das Wasserkraftwerk Adamello. — Städtebau-Ausstellung Zürich 1911. — Eidgenössische polytechnische Hochschule. — Miscellanea: Neue Seewasserversorgung der Stadt Zürich. Schweizerischer Wasserwirtschafts-Verband. Oesterreichische Einphasenbahnen. Gasheizung für Backöfen. Eidgenössisches Polytechnikum. Schweizerische Binnenschiffahrt. Schweizerische Bundesbahnen, Ingenieur H. Bleuler-Hüni in

Zürich. Ergänzungsbau des Theodosianums in Zürich. Kubelwerk St. Gallen. Vereinsnachrichten: Bernischer Ingenieur- und Architekten-Verein. Zürcher Ingenieurund Architekten-Verein. Schweizerischer Ingenieur- und Architekten-Verein. Gesellschaft ehemaliger Studierender: Stellenvermittlung.

Tafel 9 bis 12: Schulhaus Niederurnen.

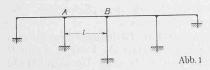
Nachdruck von Text oder Abbildungen ist nur mit Zustimmung der Redaktion und unter genauei Quellenangabe gestattet. Band 57.

Nr. 4.

# Der kontinuierliche Balken auf elastisch drehbaren Stützen.

Von Dr.-Jng. Max Ritter in Zürich.

Die folgenden Untersuchungen beziehen sich auf die in Abbildung I skizzierte Tragkonstruktion, die im Eisenbau und namentlich im Eisenbetonbau häufig zur Anwendung gelangt. Ein vollwandiger Balken ruht auf beliebig vielen, mit ihm starr verbundenen Stützen oder Säulen und wird derart beansprucht, dass sich die Deformation in der Ebene des Systems vollzieht. Die Stützen können unten eingespannt oder gelenkartig gelagert sein; ihre Widerlager mögen als unnachgiebig vorausgesetzt werden.



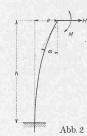
Das System ist vielfach statisch unbe-stimmt. Die statische Untersuchung kann nach der allgemeinen Methode der techni-

schen Elastizitätslehre erfolgen; man erhält aber, sobald die Zahl der Stützen ein bescheidenes Mass übersteigt, so viele Elastizitätsgleichungen, dass sich die zahlenmässige Durchführung der Berechnung äusserst zeitraubend und mü hevoll gestaltet. Um zu praktisch brauchbaren Rechnungsmethoden zu gelangen, wollen wir in der Folge bei der Berechnung der Formänderungen den unbedeutenden Einfluss der Normalkräfte und der Querkräfte vernachlässigen. Diese Vereinfachung, die auch bei manchen andern Aufgaben der Elastizitätslehre üblich ist (Knicktheorie, Bogenträger mit grossem Pfeilverhältnis), erleichtert die Untersuchung des Systems sehr wesentlich. Das Problem ist jetzt nahe verwandt mit der Theorie des kontinuierlichen Balkens auf frei drehbaren Auflagern; der Unterschied besteht nur darin, dass die Säulen einer Drehung des Balkens einen elastischen Widerstand entgegensetzen, wodurch beide Teile Nebenspannungen erleiden. Die Ueberschrift der vorliegenden Arbeit findet hierin ihre Rechtfertigung.

In der Literatur ist der kontinuierliche Balken auf elastisch drehbaren Stützen schon mehrfach behandelt worden. Am bekanntesten ist wohl die elegante, graphische Lösung von W. Ritter im dritten Bande seiner "Anwendungen der graphischen Statik", die neuerdings im Eisenbetonbau ausgedehnte Anwendung gefunden hat; auch die bemerkenswerten Arbeiten von Prof. A. Ostenfeld in Kopenhagen haben sich Eingang in die Praxis verschafft. Es muss indessen bemerkt werden, dass diese und andere Lösungen sich auf die vereinfachende Annahme stützen, das obere Ende jeder Stütze bleibe während der Deformation in Ruhe. Diese Voraussetzung trifft wohl zu bei symmetrischer Anordnung des Systems und der Belastung, oder dort, wo ein festes Endauflager vorhanden ist; sie versagt aber vollständig, wenn die Wirkung einer wagrechten Last, z. B. einer Bremskraft, oder der (meist beträchtliche) Einfluss einer Wärmeänderung verfolgt werden soll. Um die letztgenannten Einflüsse näher zu untersuchen, stehen zwar zur Zeit verschiedene Verfahren zur Verfügung (W. Ritter, G. Mantel, H. Müller-Breslau), die aber alle die Auflösung einer grössern Zahl von Gleichungen erfordern und in der Anwendung zum mindesten unbequem sind.

Die folgenden, zum grössern Teil analytischen Untersuchungen beruhen auf neuen, jedoch ganz elementaren Betrachtungen. Von den allgemeinen Deformationsgleichungen des an beiden Enden elastisch eingespannten Stabes ausgehend, wird zunächst eine anschauliche Definition der

"Festpunkte" gegeben, die in der Theorie des kontinuierlichen Balkens bekanntlich eine wichtige Rolle spielen. Zur Bestimmung der Lage der Festpunkte werden einfache, auch bei veränderlichem Trägheitsmoment anwendbare Formeln abgeleitet. Es wird sodann die Anwendung der Festpunkte zur Ermittlung der Momentenflächen infolge einer lotrechten und einer wagrechten Belastung, als auch einer Wärmeänderung des Balkens gezeigt. Ein Beispiel erläutert die zahlenmässige Durchführung der Untersuchung.



1. Die Formänderung der Stützen.

Eine lotrechte, unten vollständig eingespannte Säule (Abb. 2) werde am Kopfe durch die horizontale Kraft H und das Moment M beansprucht; wir fragen nach der Bewegung des Endquerschnittes. Das Gesetz der Superposition liefert die horizontale Verschiebung

$$e=H\,e_H+M\,e_M\,,$$
 und die Drehung  $lpha=H\,lpha_H+M\,lpha_M\,,$ 

wobei  $e_H$  und  $lpha_H$  die Bewegungen infolge  $H={\,{ ext{I}}}\,$  ,  $e_M$  und  $\alpha_M$  diejenigen infolge M=1 bezeichnen. Nach dem Satze von der Gegenseitigkeit der Formänderungen ist  $e_M=\alpha_H$ . Eliminiert man H, so erhält man

$$\alpha = e \frac{\alpha_H}{\epsilon_H} + M \left( \alpha_M - \frac{\alpha_H^2}{\epsilon_H} \right) \dots$$
 (1

 $\alpha = e^{\frac{\alpha_H}{\epsilon_H}} + M\left(\alpha_M - \frac{\alpha_{H^2}}{\epsilon_H}\right) \quad . \quad . \quad (1)$  Wenn das Moment von H entgegengesetzt zu M wirkt, und M < H h ist, so besitzt die elastische Linie einen Wende-

punkt 
$$R$$
, der vom Säulenkopf den Abstand
$$r = -\frac{M}{H} = \frac{\epsilon_H}{\alpha_H - \frac{e}{M}} . . . . (2)$$

hat. Meist ist das Trägheitsmoment  $J_s$  längs der Säulenachse konstant; dann ist nach bekannten Formeln  $e_H = \frac{h^3}{3 \ E \ J_s}, \ \alpha_H = \frac{h^2}{2 \ E \ J_s}, \ \alpha_M = \frac{h}{E \ J_s},$  und die obigen Beziehungen gehen über in

$$e_H = \frac{h^3}{2 E I_s}, \, \alpha_H = \frac{h^2}{2 E J_s}, \, \alpha_M = \frac{h}{E J_s}$$

$$\alpha = \frac{3}{2} \frac{e}{h} + M \frac{h}{4 E L}, \quad (3)$$

$$\alpha = \frac{3}{2} \frac{e}{h} + M \frac{h}{4EJ_s}, \qquad (3)$$

$$r = \frac{2}{3} \frac{h}{-\frac{6EJs}{Mh^2}} \qquad (4)$$

Bleibt der Säulenkopf während der Deformation in Ruhe, e=o, so liegt der Wendepunkt R im untern Drittel der Säule. Das Moment M = 1 erzeugt in diesem Falle

$$\alpha = \varepsilon_s = \alpha_M - \frac{\alpha_H^*}{\epsilon_H}$$

der Wendepunkt ins Gelenk und man erhält für konstantes 

$$\alpha = \varepsilon_s = \frac{h}{3 E J_s} \quad . \quad . \quad . \quad (7)$$

 $\alpha = \varepsilon_s = \frac{h}{3 E J_s} .....(7)$ h bedeutet den Abstand des Einspannungsquerschnittes bezw. des Gelenkes von der Balkenachse. Streng genommen sollte man das Trägheitsmoment der Säule von der Balkenunterkante bis zur Balkenachse unendlich gross annehmen; die obigen einfachen Formeln sind aber praktisch stets genau genug.

2. Die Grundgleichungen.

Wir denken uns irgend eine Oeffnung AB = l des kontinuierlichen Balkens unmittelber an den Stützen durchgeschnitten und an den Endquerschnitten die unbekannten Momente  $M_1$  und  $M_2$ , die vorher dort gewirkt haben, als äussere Kräfte angebracht. Die elastische Linie bildet an den Enden mit der Horizontalen die Winkel  $\alpha$  und  $\beta$ , die wir positiv rechnen, wenn sie, wie in Abbildung 3 geöffnet sind. Bezeichnen dann am frei aufliegenden Balken

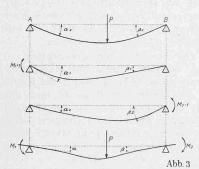
 $\alpha_0$ ,  $\beta_0$  die Winkeldrehungen der elastischen Linie infolge der Belastung,

 $\alpha_1, \beta_1$  diejenigen infolge  $M_1 = 1$ ,

 $\alpha_2, \beta_{\tilde{2}}$  diejenigen infolge  $M_2 = 1$ , so ist nach dem Gesetze der Superposition

$$\alpha = \alpha_0 + M_1 \alpha_1 + M_2 \alpha_2, \dots (8_a)$$

$$\beta = \beta_0 + M_1 \beta_1 + M_2 \beta_2, \dots (8_b)$$



Diese Beziehungen, die unsern Betrachtungen zu Grunde liegen, ermöglichen die Berech- $\begin{array}{cccc} nung & der & Momente & M_1 \\ und & M_2, & sofern & die \end{array}$ Winkel α und β bekannt oder ander-weitig als Funktionen von  $M_1$  und  $M_2$  darstellbar sind.

Wir unterscheiden drei Fälle.

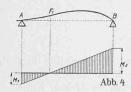
Erster Fall:

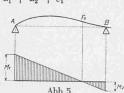
Die Ursache der Winkeldrehung α liegt rechts vom Punkte A, der während der Deformation in Ruhe bleibt. Dann ist  $\alpha$  eine Funktion von  $M_1$  allein, was man erkennt, wenn man den Teil der Konstruktion links von A betrachtet (vergl. Abbildung 1). Er steht unter dem alleinigen Einflusse des Momentes  $M_1$ ); somit ist, wenn das Superpositionsgesetz gilt,

 $\alpha = -\epsilon_1 \ M_1, \ldots \ldots (9_a)$  wo  $\epsilon_1$  die Drehung des Eckpunktes A nach Wegnahme des Balkenstückes AB infolge  $M_1 = -1$  bezeichnet. In Verbindung mit Gleichung (8a) ergibt sich

 $\alpha_0 + M_1 (\alpha_1 + \epsilon_1) + M_2 \alpha_2 = 0$  . . (10a) Wenn die Oeffnung AB unbelastet ist, so ist  $\alpha_0 = 0$ . Die Momentlinie verläuft dann gerade (Abbildung 4); der Abstand a des Momentennullpunktes  $F_1$  vom Auflager A folgt aus obiger Gliederung zu

 $a = \frac{M_1}{M_1 - M_2} l = \frac{\alpha_2}{\alpha_1 + \alpha_2 + \varepsilon_1} l .$ 





Zweiter Fall:

Die Ursache der Winkeldrehung β liegt links vom Punkte B, der während der Deformation in Ruhe bleibt. Dann ist

 $\beta = - \ \epsilon_2 \ M_2, \ \ldots \ \ldots \ (9_b)$  wo  $\epsilon_2$  die Drehung des Eckpunktes B infolge  $M_2 = -$  I

bezeichnet. Gleichung (8<sub>b</sub>) geht über in  $\beta_0 + M_1 \beta_1 + M_2 (\beta_2 + \epsilon_2) = 0 \quad . \quad (10_b)$  Ist die Oeffnung AB unbelastet, so ist  $\beta_0 = 0$ . Die Momentenlinie verläuft gerade (Abbildung 5); das Moment verschwindet in einem Punkte  $F_2$ , der vom Auflager Bum die Strecke

$$b = \frac{M_2}{M_2 - M_1} l = \frac{\beta_1}{\beta_1 + \beta_2 + \epsilon_2} l$$
 . . (II<sub>b</sub>)

entfernt liegt.

Dritter Fall:

Die Ursache der Winkeldrehungen α und β liegt zwischen den Punkten A und B, die während der Deformation in Ruhe bleiben. Dieser Fall schliesst die frühern in sich und ist nur denkbar, wenn die Oeffnung AB belastet ist. Die Gleichungen (10a) und (10b) gelten gleichzeitig. Sie lassen sich leicht nach  $M_1$  und  $M_2$  auflösen; man findet

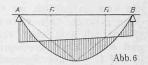
$$M_{1} = -\frac{\alpha_{0} (\epsilon_{2} + \beta_{2}) - \beta_{0} \alpha_{2}}{(\epsilon_{1} + \alpha_{1}) (\epsilon_{2} + \beta_{2}) - \alpha_{2} \beta_{1}},$$

$$M_{2} = -\frac{\beta_{0} (\epsilon_{1} + \alpha_{1}) - \alpha_{0} \beta_{1}}{(\epsilon_{1} + \alpha_{1}) (\epsilon_{2} + \beta_{2}) - \alpha_{2} \beta_{1}},$$

$$(12)$$

Bei konstantem Trägheitsmoment lassen sich mittelst dieser Gleichungen jene eleganten, graphischen Konstruktionen zur Bestimmung der Schlusslinie der Momentenfläche ableiten, die Prof. W. Ritter auf Grund ganz anderer Erwägungen gefunden und in seinem bereits zitierten Buche veröffentlicht

hat. In Abbildung 6 ist die Konstruktion bekannte für gleichmässig verteilte Belastung vorgeführt. Dass diese Konstruktion auch gilt, wenn das Trägheitsmoment des Balkens



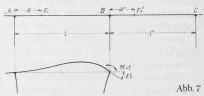
von der Balkenmitte gegen die Auflager nach einer beliebigen Potenzfunktion zunimmt (Balken mit Vouten), ist vom Verfasser in Band 53, Nr. 18 der "Schweizer. Bauzeitung" ausführlich bewiesen worden.

Wie bereits erwähnt, sind die Gleichungen (9) bis (12) an die Voraussetzung gebunden, dass die Punkte A und B während der Deformation in Ruhe bleiben. Darnach könnte es zunächst scheinen, diese Beziehungen wären nur zur Untersuchung lotrechter Lasten geeignet; wir werden indessen zeigen, wie sie auch bei der Untersuchung des Einflusses einer wagrechten Last oder einer Wärmeänderung sehr wertvolle Dienste leisten.

### 3. Die Festpunkte.

Wir nennen die durch die Gleichungen (11) in jeder Oeffnung festgelegten Punkte F1 und F2 die "Festpunkte" des kontinuierlichen Balkens. Um die Lage der Festpunkte

zu bestimmen, betrachten wir zwei aufeinander folgende Oeffnungen 1 und (Abbildung 7). Nach Gleichung(11a) hat der Festpunkt  $F_1'$  in der Oeffnung



l' vom benachbarten linken Auflager den Abstand  $a' = \frac{\alpha_2'}{\alpha'_1 + \alpha_2' + \varepsilon_1'} \cdot l';$ 

$$l'=rac{lpha_2'}{lpha_1'+lpha_2'+arepsilon_1'}\cdot l';$$

darin bezeichnet ε1' den Winkel, der nach Wegnahme des Balkenstückes l' am Auflager B infolge M = -1 entsteht. Bei dieser Deformation muss natürlich der rechte Winkel, den die Balkenachse bei B mit der Säulenachse bildet, erhalten bleiben. Bezeichnet daher

Ms das Moment, das die Säule deformiert,

 $\varepsilon_s$  den Drehwinkel des Säulenkopfes infolge  $M_s = 1$ ,  $M_b$  das Moment, das den Balken A B deformiert,

 $\varepsilon_b$  den Drehwinkel des Balkens bei B infolge  $M_b = 1$ ,

so gelten die Beziehungen

$$M_s + M_b = -1,$$
  
 $M_s \varepsilon_s = M_b \varepsilon_b = -\varepsilon_1', \dots (13)$ 

voraus durch Elimination von Mb und Ms

$$\varepsilon_1' = \frac{\varepsilon_s \; \varepsilon_b}{\varepsilon_s + \varepsilon_b}$$

folgt. Für  $\varepsilon_b$  lässt sich aber nach Gleichung ( $8_b$ ) schreiben

$$\epsilon_{\delta} = -\beta = -M_1 \beta_1 - M_2 \beta_2$$

$$= \beta_2 - \frac{a}{l-a} \beta_1; \quad ... \quad (14).$$

also ist

$$\varepsilon_1' = \frac{\varepsilon_s \left(\beta_2 - \frac{a}{l-a} \beta_1\right)}{\varepsilon_s + \beta_2 - \frac{a}{l-a} \beta_1}$$

Dieser Ausdruck, in Gleichung (11a) eingesetzt, liefert die wichtige Beziehung

<sup>1)</sup> In der Regel wird ausser dem Momente  $M_1$  noch eine horizontale Kraft H wirken, die aber zufolge unserer Annahme, dass der Punkt A in Ruhe bleibt, ausser Betracht fällt.

$$a' = \frac{a_2' l'}{a_1' + a_2' + \epsilon_s}, \qquad (15a)$$

$$a' = \frac{\beta_2 - \frac{a}{l-a} \beta_1}{\epsilon_s + \beta_2 - \frac{a}{l-a} \beta_1}, \qquad (15a)$$
Hilfo, die Lage iedes Festpunktes  $E'$  aus der

mit deren Hilfe die Lage jedes Festpunktes F1' aus der des benachbarten linken  $F_1$  berechnet werden kann. Der Abstand a des dem linken Endauflager zunächst liegenden Festpunktes  $F_1$  wird aus Gleichung (11a) gewonnen.

Um die Lage der Festpunkte F2 zu ermitteln, beginnt man am rechten Trägerende, berechnet zuerst mit Gleichung (IIb) den Abstand b des Festpunktes der rechten Endöffnung und hierdurch die Lage aller übrigen Festpunkte

offnung und hierdurch die Lage aller übrigen Festpunkte durch fortgesetzte Anwendung der Beziehung 
$$b = \frac{\beta_1 l}{\beta_1 + \beta_2 + \varepsilon_s} \frac{\alpha_1' - \frac{b'}{l' - b'} \alpha_2'}{\varepsilon_s + \alpha_1' - \frac{b'}{l' - b'} \alpha_2'}, \quad (15_b)$$

die sich analog wie Gleichung (15a) ableiten lässt.

In der Regel ist das Trägheitsmoment J des Balkens konstant oder darf ohne wesentlichen Fehler als konstant betrachtet werden. Dann ist bei Vernachlässigung des Einflusses der Schubkräfte nach bekannten Formeln:

der Schubkrätte nach bekannten Formeln:
$$\alpha_{1} = \beta_{2} = \frac{l}{3 E J}, \alpha_{2} = \beta_{1} = \frac{l}{6 E J}, \dots (16)$$

$$\alpha' = \frac{l}{3 + \frac{l}{l'(l-a)}}, \dots (17a)$$

$$\frac{l'(l-a)}{l(2l-3a)} + \frac{l'}{6 E J \varepsilon_{s}}$$

$$b = \frac{l}{3 + \frac{l}{l'(l'-b')}}, \dots (17b)$$
Tie Gleichungen (1a) Jaccon eich vereinfachte Aus-

Auch für die Gleichungen (12) lassen sich vereinfachte Ausdrücke hinschreiben. Wir verzichten darauf, weil man die Schlusslinie der Momentenfläche der belasteten Oeffnung besser mit Hilfe der erwähnten, graphischen Verfahren ermittelt. Die Festpunkte lassen sich ebenfalls auf graphischem Wege finden, worüber das bereits zitierte Werk von Prof. W. Ritter Auskunft gibt; die analytische Berechnung nach den Gleichungen (17) führt jedoch rascher zum Ziel, namentlich bei Benutzung des Rechenschiebers. Natürlich gelten diese Gleichungen auch für den kontinuierlichen Balken auf frei drehbaren Stützen; man hat nur  $\varepsilon_s = \infty$  zu setzen, d. h.

$$\varepsilon_s = \infty$$
 zu setzen, d. h. die Glieder  $\frac{l}{6 E J \varepsilon_s}$  und  $\frac{l'}{6 E J \varepsilon_s}$  zu streichen. Zur Berechnung des Winkels  $\varepsilon_s$  infolge  $M_s = 1$  dient die Formel (5) bezw. (7).

4. Lotrechte Belastung. Nachdem die Festpunkte aller Oeffnungen ermittelt sind, lässt sich das Momentendiagramm für eine lotrechte Belastung ohne grosse Mühe aufzeichnen. Man geht am besten wie beim kontinuierlichen Balken auf frei drehbaren Stützen vor, behandelt also die Belastung jeder Oeffnung für sich und addiert schliesslich die Momentenordinaten in jedem Schnitte.

Die Oeffnung AB des in Abbildung 8 skizzierten Trägers sei belastet, während alle andern Oeffnungen von Lasten frei seien. Dann ist das Biegungsmoment in allen Festpunkten  $F_1$  links von A und in allen Festpunkten  $F_2$  rechts von B gleich Null, denn die Voraussetzungen der Grundgleichungen (11) sind erfüllt. Die Schlusslinie der Momentenfläche der belasteten Oeffnung lässt sich mit Hilfe des bekannten graphischen Verfahrens leicht aufzeichnen.

Ueber den Stützen ändert sich das Moment sprungweise. Wir betrachten zunächst eine Stütze, die links der belasteten Oeffnung liegt, also etwa die Stütze L in Abbildung 8 und bezeichnen das Moment unmittelbar links davon mit  $M_2$ , das Moment unmittelbar rechts davon mit

 $M_1'$ ; dann ist  $M_s = M_2 - M_1'$  das Moment, das die Säule deformiert. Die Bedingung dafür, dass bei der Deformation der rechte Winkel zwischen Säule und Balken erhalten bleibt, lautet (analog Gleichung 13).

 $-M_2 \varepsilon_b = (M_2 - M_1) \varepsilon_s,$ wo für  $\varepsilon_b$  der Wert aus Gleichung (14) einzusetzen ist. Das gibt

$$\frac{M_2}{M_1'} = \mu = \frac{1}{1 + \frac{\beta_2 - \frac{\alpha}{l - \delta} \beta_1}{\varepsilon_s}}...(18_a)$$

Mit diesem Koeffizienten ist das Moment im Balken beim Ueberschreiten einer Stütze, die links von der belasteten Oeffnung liegt, zu multiplizieren. Für eine Stütze rechts der belasteten Oeffnung, etwa für die Stütze R in Abbildung 8

ergibt eine analoge Betrachtung
$$\frac{M_1'}{M_2} = \mu' = \frac{1}{1 + \frac{a_1' - \frac{b'}{l' - b'} a_2'}{\varepsilon_s}}...(18_b)$$

Für den Fall konstanten Trägheitsmomentes J des Balkens gelten die Gleichungen (16) und man erhält einfacher

$$\mu = \frac{1}{1 + \frac{l (2 \ l - 3a)}{6 \ E J \varepsilon_s (l - a)}},$$

$$\mu' = \frac{1}{1 + \frac{l' (2 \ l' - 3 \ b')}{6 \ E J \varepsilon_s (l' - b')}}.$$

$$\text{"ache lässt sich nach Berechnung von}$$

Die Momentenfläche lässt sich nach Berechnung von  $\mu$  und  $\mu'$  leicht auftragen (vergl. Abbildung 8).

Der Balken wird indessen nicht nur durch Biegungsmomente, sondern auch durch die horizontalen Kräfte H beansprucht, die infolge der Deformation der Stützen entstehen (Abbildung 2) und sich mit Hilfe der Gleichung (2) leicht berechnen lassen. Es ist

$$H = \frac{\epsilon - M_s \, \alpha_H}{\epsilon_H}.$$

Bei lotrechter Belastung stehen die Kräfte H aller Stützen unter sich im Gleichgewicht; ein festes Endwiderlager hat demnach die Summe der Kräfte H aller Zwischenstützen zu übertragen. Fehlt ein festes Endwiderlager, so liefert die vorstehend beschriebene Rechnungsmethode nur bei symmetrischer Anordnung des Systems und der Belastung  $\Sigma H = 0$ ; in jedem andern Falle bekommt man den end-

lichen Wert  $\Sigma H = \Delta H$ , der eben daran erinnert, dass die gemachte Voraussetzung, das obere Ende jeder Stütze bleibe in Ruhe, nicht zutrifft. Vielmehr muss sich, damit Gleichgewicht bestehen kann,

der Balken ein wenig wagrecht verschieben, um so viel, dass die dadurch an den Stützenenden erzeugten Horizontalschübe die Summe —  $\Delta H$  ergeben. Der folgende Abschnitt liefert die Unterlagen für diese Rechnung. Wenn man ein Beispiel durchrechnet, erkennt man, dass schon eine ganz geringe Verschiebung genügt, um den Horizontalschub - 1 H zu erzeugen und dass diese Verschiebung nur sehr geringe Biegungsmomente hervorruft. In praktischen Fällen darf man also bei Untersuchung einer lotrechten Belastung mit genügender Genauigkeit die Annahme treffen, die Stützenköpfe bleiben in Ruhe.

Abb. 8

5. Wagrechte Verschiebung der Säulenenden. Das obere Ende einer Säule S (Abbildung 9) verschiebe sich um eine sehr kleine wagrechte Strecke e (positiv nach rechts); wir wollen die dadurch entstehenden Biegungsmomente berechnen. Das System deformiert sich in der in Abbildung 9 (S 50) angedeuteten Weise. In allen Oeffnungen und Säulen entstehen Biegungsmomente, über die wir auf Grund der bisherigen Darlegungen folgendes aussagen können: Das Biegungsmoment verschwindet in allen Festpunkten F1 links der Stütze S, in allen Festpunkten  $F_2$  rechts der Stütze S und in den untern Drittelspunkten aller Stützen, mit Ausnahme der Stütze S, deren Wendepunkt nach Gleichung (2) zu bestimmen bleibt. Die Richtigkeit dieses Satzes erhellt ohne weiteres, wenn wir auf die Voraussetzungen achten, die den Gleichungen (11) zugrunde liegen. In der Tat liegt für jede Oeffnung links von S die Ursache der Winkeldrehung  $\alpha$  rechts vom linken Auflager, das während der Deformation seine Lage beibehält; Gleichung (11a) gilt also für alle Felder links von S; sinngemässes gilt für die Felder rechts von S. Ueber den Stützen ändert sich das Moment sprungweise, und zwar ist für alle Stützen links von S der Koeffizient  $\mu$  (Gleichung 18a bezw. 19a), für alle Stützen rechts von S der Koeffizient  $\mu'$  (Gleichung 18b bezw. 19b) anzuwenden.

Wir fassen jetzt die Stütze S ins Auge, bezeichnen mit  $M_2$  das Moment unmittelbar links, mit  $M_1$  das Moment unmittelbar rechts von ihr (vergl. Abbildung 9); dann ist  $M_s = M_2 - M_1$  das Moment, das die Stütze deformiert. Der Kopf

der Stütze verschiebt sich um die Strecke e nach rechts und dreht sich nach Gleichung (3) um den Winkel:

$$\alpha = \frac{3e}{2h} + \varepsilon_s (M_2 - M_1'), \text{ wo } \varepsilon_s = \frac{h}{4EJ_s},$$

im Sinne des Uhrzeigers. Um denselben Winkel drehen

worin zur Abkürzung

orin zur Abkurzung
$$\varphi = \varepsilon_s + \left(\beta_2 - \frac{a}{l-a}\beta_1\right) \left(1 + \frac{\varepsilon_s}{\alpha_1' - \frac{b}{l'-b'}\alpha_2'}\right)$$

$$\varphi' = \varepsilon_s + \left(\alpha_1' - \frac{b'}{l'-b'}\alpha_2'\right) \left(1 + \frac{\varepsilon_s}{\beta_2 - \frac{a}{l-a}\beta_1}\right)$$
(21)

gesetzt ist. Bei konstantem Trägheitsmoment J des Balkens ergibt sich mit Benützung der Formeln (16)

$$\varphi = \varepsilon_{s} \left[ \mathbf{I} + \frac{l (2l - 3a) (l' - b')}{l' (2l' - 3b') (l - a)} \right] + \frac{l (2l - 3a)}{6EJ(l - a)}, 
\varphi' = \varepsilon_{s} \left[ \mathbf{I} + \frac{l' (2l' - 3b') (l - a)}{l (2l - 3a) (l' - b')} \right] + \frac{l' (2l' - 3b')}{6EJ(l' - b')}$$
(22)

Ist die Stütze S unten nicht eingespannt, sondern gelenkartig gelagert, so ändert sich die vorstehende Ab-

leitung nur in soweit, als für den elastischen Drehwinkel der Stütze statt Gleichung (3) die Gleichung (6) in Betracht kommt. Man erhält alsdann

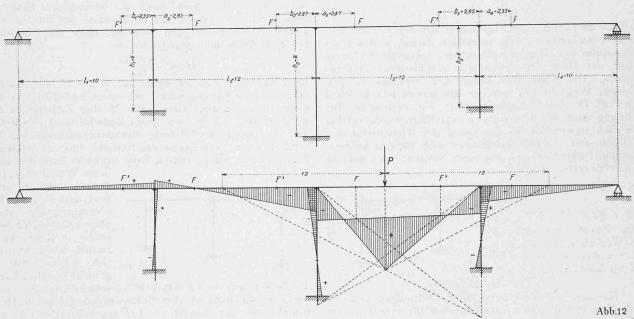
$$M_2=-rac{e}{\hbar \cdot arphi}$$
, und

$$M_1' = +\frac{e}{h \cdot \varphi'}$$
 (23)

und hat in die Gleichun-

gen (22) für  $\varepsilon_s$  den Wert aus Gleichung (7) einzusetzen. Hat man  $M_2$  und  $M_1$ 'berechnet, so kann man die Momentenfläche für die Verschiebung e einer Stütze S leicht aufzeichnen. Um die Momentenfläche für die Verschiebung mehrerer Stützen zu erhalten, bestimmt man die Momentenfläche für

Abb.9



sich die beiden Balkenstücke l und ll. Daher gelten gemäss den Gleichungen (8) und mit Beachtung, dass in unserm

Falle  $M_1=-M_2\frac{a}{1-a}$  und  $M_2'=-M_1'\frac{b'}{l'-b'}$  ist, die weitern Gleichungen

$$\alpha = -M_2 \left(\beta_2 - \frac{a}{l-a}\beta_1\right),$$

$$\alpha = M_1' \left(\alpha_1' - \frac{b'}{l'-b'}\alpha_2'\right).$$

Durch Elimination von α folgt weiter

$$\begin{array}{l} \frac{3}{2}\frac{\epsilon}{h} + \varepsilon_s \left(M_2 - M_1^{\prime}\right) + M_2 \left(\beta_2 - \frac{a}{l-a}\beta_1\right) = \mathrm{o}, \\ \frac{3}{2}\frac{\epsilon}{h} + \varepsilon_s \left(M_2 - M_1^{\prime}\right) - M_1^{\prime} \left(\alpha_1^{\prime} - \frac{b^{\prime}}{l^{\prime} - b^{\prime}}\alpha_2^{\prime}\right) = \mathrm{o}, \end{array}$$

und daraus

$$M_2 = -\frac{3 \epsilon}{2 h \varphi}, M_1' = +\frac{3 \epsilon}{2 h \varphi'}, \dots$$
 (20)

die Verschiebung jeder Stütze gesondert und addiert die Momentenordinaten in jedem Schnitte. Das Verfahren gestaltet sich bei der zahlenmässigen Durchführung sehr einfach, wie das Beispiel am Schlusse dieser Arbeit zeigen wird.

#### 6. Wagrechte Belastung.

Mit Hilfe der vorstehenden Darlegungen lassen sich leicht die Biegungsmomente berechnen, die durch eine horizontale Kraft H (Bremskraft, Winddruck bei Rahmen-Bindern) erzeugt werden (vergl. Abbildung 10). Man verfährt zu diesem Zwecke wie folgt:

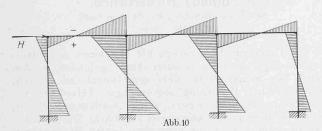
Man denkt sich zunächst das obere Ende jeder Stütze (also den ganzen Balken) um die Strecke e=1 wagrecht verschoben und berechnet nach dem in Nr. 5 erläuterten Verfahren die Biegungsmomente, sowie die Horizontalschübe in den Stützen. Die Summe dieser Horizontalschübe sei

 $\overline{H_1}$ . Multipliziert man das Biegungsmoment für e=i mit  $\frac{H}{\overline{H_1}}$ , so erhält man das durch die Kraft H erzeugte Biegungsmoment.

Die Abbildung 10 zeigt den Verlauf der Momentenlinie für einen Balken auf 4 unten eingespannte Stützen.

## 7. Wärmeänderung.

Der Einfluss einer Wärmeänderung lässt sich mittelst der in Nr. 5 enthaltenen Untersuchungen ohne Schwierigkeit verfolgen. Wenn der Träger ein festes Endauflager besitzt, so verschiebt eine Wärmeänderung um  $t^0$  das obere Ende jeder Stütze um die Strecke  $e=\omega$ .  $t^0$ . L, wo  $\omega$  den Wärmeausdehnungs-Koeffizienten (für Eisenbeton  $\omega=$  0,000012)

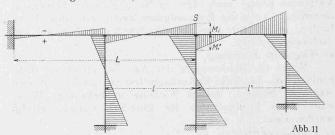


und L den Abstand der Stütze vom festen Endauflager bezeichnet. Um die Momentenfläche zu erhalten, zeichnet man die Momentenflächen für die Verschiebung e jeder einzelnen Stützen auf und addiert die Ordinaten in jedem Schnitte. Man kann sich die Verschiebung  $e=\omega$   $t^0$  L einer Stütze S (vergl. Abbildung 11) dadurch entstanden

Eine Wärmeänderung und ebenso eine Belastung erzeugen in dem Balken nicht nur Biegungsmomente, sondern auch Normalkräfte. Deren Ermittlung wird man sich in der Regel ersparen, weil die davon berührenden Zug- und Druckspannungen gegenüber den Biegungsspannungen stark zurücktreten.

8. Zahlenbeispiel.

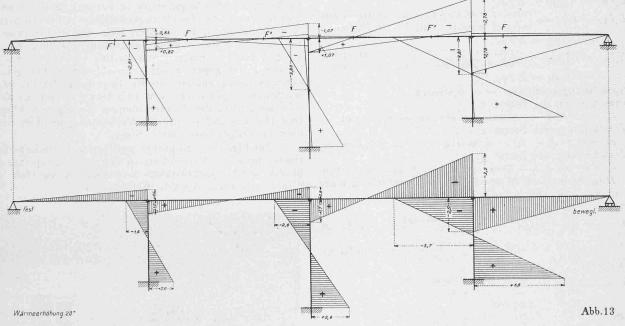
Es soll der in Abb. 12 skizzierte Träger mit vier Oeffnungen untersucht werden. Die Stützen sind unten fest eingespannt und besitzen das Trägheitsmoment  $J_s = 0,0025\,m^4$ ; der Balken besitzt das konstante Trägheitsmoment  $J = 0,01\,m^4$ . Die Höhen der Mittelstützen sind  $h_1 = h_3 = 6,0m, h_2 = 8,0\,m$ ; die Stützweiten  $l_1 = l_4 = 10,0\,m, \ l_2 = l_3 = 12,0\,m$ . Das linke Endwiderlager ist fest, das rechte beweglich.



a) Elastizitätsmasse der Stützen:

$$EJ \cdot \varepsilon_{s_1} = \frac{h_1 J}{4 J_s} = \frac{6 \cdot 4}{4} = 6 = EJ\varepsilon_{s_3}.$$

$$EJ \cdot \varepsilon_{s_2} = \frac{h_2 J}{4 J_s} = \frac{8 \cdot 4}{4} = 8.$$



denken, dass die Oeffnung l eine Wärmeänderung  $t^0{}_1=+\frac{\epsilon}{\omega\;l}$ , die Oeffnung l' eine solche  $t_2{}^0=-\frac{\epsilon}{\omega\;l'}$  erleidet, während alle andern Oeffnungen ihre Wärme beibehalten. Nun ist zwar dieser Zustand von einer gleichmässigen Wärmeänderung weit entfernt; wir bekommen indessen die letztere, indem wir den beschriebenen Zustand bei allen Stützen herstellen und dessen Wirkungen addieren.

Ist kein festes Endauflager vorhanden, so nimmt man zunächst diejenige Stütze, die sich augenscheinlich am wenigsten verschieben wird, als fest an und berechnet die Biegungsmomente und die Horizontalschübe aller Stützen. Ergibt sich die Summe der Horizontalschübe zu  $\Delta H$ , so verschiebt man den Balken wagrecht um so viel, dass  $\Delta H = 0$  wird. Durch diese Verschiebung entstehen wieder Biegungsmomente, die zu den erst berechneten zu addieren sind.

b) Bestimmung der Festpunkte:

Aus Symmetriegründen 
$$a_2 = b_3$$
,  $a_3 = b_2$ ,  $a_4 = b_1$ .
$$a_2 = \frac{l_2}{3 + \frac{1}{l_2(l_1 - a_1)} + \frac{l_2}{6EJ \cdot s_{s_1}}} = \frac{12}{3 + \frac{12 \cdot 10}{10 \cdot 20} + \frac{12}{6 \cdot 6}}$$

$$a_2 = 2,95 \quad m = b_3.$$

$$a_3 = \frac{12}{3 + \frac{1}{\frac{12 \cdot (12 - 2,95)}{12 \cdot (24 - 3 \cdot 2,95)} + \frac{12}{6 \cdot 8}}} = 2,87 \quad m = b_2$$

$$a_4 = \frac{10}{3 + \frac{10 \cdot (12 - 2,87)}{\frac{10 \cdot (12 - 2,87)}{12 \cdot (24 - 3 \cdot 2,87)} + \frac{10}{6 \cdot 6}}} = 2,33 \quad m = b_1.$$

c) Reduktionskoeffizienten:

Aus Symmetriegründen ist 
$$\mu_1 = \mu'_3$$
,  $\mu_2 = \mu'_2$ ,  $\mu_3 = \mu'_1$ .
$$\mu_1 = \frac{1}{1 + \frac{l_1(2l_1 - 3a_1)}{6E/\epsilon s_1(l_1 - a_1)}} = \frac{1}{1 + \frac{10 \cdot 2 \cdot 10}{6 \cdot 6 \cdot 10}} = 0,64 = \mu'_3.$$

$$\mu_2 = \frac{1}{1 + \frac{12(24 - 3 \cdot 2,95)}{6 \cdot 8 \cdot (12 - 2,95)}} = 0,70 = \mu'_2.$$

$$\mu_3 = \frac{1}{1 + \frac{12(24 - 3 \cdot 2,87)}{6 \cdot 6(12 - 2,87)}} = 0,64 = \mu'_1.$$

$$d) \ \text{Lotrechte Belasting:}$$

d) Lotrechte Belastung:

In Abbildung 12 sind die Biegungsmomente infolge einer Einzellast P in der 3. Oeffnung dargestellt. Das Verfahren bedarf nach dem in Nr. 4 gesagten keiner Erläuterung. Auch die Einflusslinien lassen sich ohne Mühe finden, analog wie beim kontinuierlichen Balken auf frei drehbaren Stützen.

e) Wagrechte Belastung:

Wirkt die Belastung in der Axe, so bleibt sie ohne Einfluss, da das linke Endauflager fest ist. Andernfalls entsteht ein Moment, dessen Wirkung in bekannter Weise mittelst der Einflusslinien für lotrechte Lasten verfolgt werden kann.

f) Wärmeänderung:

Es soll der Einfluss einer Wärmeerhöhung von 200 verfolgt werden. Wir berechnen zunächst die Koeffizienten  $\varphi$ in Gleichung (22).

$$\begin{aligned} \varphi_1 &= \varepsilon_{s1} \left[ 1 + \frac{l_1(2l_1 - 3a_1)(l_2 - b_2)}{l_2(2l_1 - 3b_2)(l_1 - a_1)} \right] + \frac{l_1(2l_1 - 3a_1)}{6EJ(l_1 - a_1)} \\ &= \frac{6}{EJ} \left[ 1 + \frac{10 \cdot 20 \cdot (12 - 2.87)}{12(24 - 3 \cdot 2.87) \cdot 10} \right] + \frac{10 \cdot 20}{6EJ \cdot 10} \\ EJ\varphi_1 &= 15,30 = EJ\varphi_3'. \\ EJ\varphi_2 &= 8 \left[ 1 + \frac{12(24 - 3 \cdot 2.95)(12 - 2.95)}{12(24 - 3 \cdot 2.95)(12 - 2.95)} \right] + \frac{12 \cdot (24 - 3 \cdot 2.95)}{6 \cdot (12 - 2.95)} \\ &= 19.35 = EJ\varphi_2'. \\ EJ\varphi_3 &= 6 \left[ 1 + \frac{12(24 - 3 \cdot 2.87) \cdot 10}{10(12 - 2.87) \cdot 20} \right] + \frac{12 \cdot (24 - 3 \cdot 2.87)}{6 \cdot (12 - 2.87)} \\ &= 15,40 = EJ\varphi_1'. \end{aligned}$$

Ausdehnungskoeffizient  $\omega = 0,000012$ .

Verschiebung der Stütze 1:

 $e_1 = \omega t^0 l_1 = 0,000012 \cdot 20^0 \cdot 10 = 0,0024 m.$ Verschiebung der Stütze 2:

 $e_2 = \omega \ t^0 (l_1 + l_2) = 0,000012 \cdot 20^0 \cdot 22 = 0,0053 m.$ Verschiebung der Stütze 3:

 $e_3 = \omega t^0 (l_1 + l_2 + l_3) = 0,000012 \cdot 20^0 \cdot 34 = 0,00816 m.$ Biegungsmomente M und M' infolge Verschiebung einer Stütze, nach Gleichung (20).  $E = 2100000 t/m^2$ .

$$M = -\frac{3 \epsilon_1}{2 h_1 \varphi_1} = -\frac{3 \cdot 0,0024 \cdot 2100000 \cdot 0,01}{2 \cdot 6 \cdot 15,30} = -0,83 \text{ mt.}$$

$$M' = +\frac{3 \epsilon_1}{2 h_1 \varphi_1} = +\frac{3 \cdot 0,0024 \cdot 2100000 \cdot 0,01}{2 \cdot 6 \cdot 15,40} = +0,82 \text{ mt.}$$

$$St \ddot{u} t z e \ 2:$$

$$M = -\frac{3 \epsilon_2}{2 h_2 \varphi_2} = -\frac{3 \cdot 0,0053 \cdot 2100000 \cdot 0,01}{2 \cdot 8 \cdot 19,35} = -1,07 \text{ mt.}$$

$$M' = -M = +1,07 \text{ mt.}$$

$$St \ddot{u} t z e \ 3:$$

$$M = -\frac{3 \ell_3}{2 h_3 \varphi_3} = -\frac{3 \cdot 0,00816 \cdot 2100000 \cdot 0,01}{2 \cdot 6 \cdot 15,40} = -2,78 \text{ mt.}$$

$$M' = +\frac{3 \ell_3}{2 h_3 \varphi_3} = +\frac{3 \cdot 0,00816 \cdot 2100000 \cdot 0,01}{2 \cdot 6 \cdot 15,30} = +2,80 \text{ mt.}$$
Abstand der Wendepunkte von der Balkenachse:

Abstand der Wendepunkte von der Balkenachse:
$$r = \frac{2h}{3 - \frac{6EJ_se}{M_sh^2}} \quad \text{(Gleichung 4)}.$$

$$r_1 = \frac{2 \cdot 6}{3 - \frac{6 \cdot 2100000 \cdot 0,01 \cdot 0,0024}{\sqrt{1.65} \cdot 4 \cdot 36}} = 2,81 \text{ m.}$$

$$r_2 = \frac{2 \cdot 8}{3 - \frac{6 \cdot 2100000 \cdot 0,01 \cdot 0.0053}{-2.14 \cdot 4 \cdot 64}} = 3,80 \text{ m.}$$

$$r_3 = \frac{2 \cdot 6}{3 - \frac{6 \cdot 2100000 \cdot 0,01 \cdot 0,00816}{-5.58 \cdot 4.36}} = 2,81 \text{ m.}$$

In Abbildung 13 ist das in Nr. 7 abgeleitete Verfahren zur Anwendung gelangt. Es sind die Momentendiagramme für die Verschiebung e jeder einzelnen Stütze aufgezeichnet; durch Summation ergab sich die Momentenfläche infolge der Wärmeerhöhung 200. Man erkennt, wie die Biegungsmomente mit dem Abstande vom festen Auflager stark anwachsen; das grösste Biegungsmoment im Balken beträgt 3,2 mt an der Stütze 3. Am untern Ende der Stütze 3 entsteht ein Moment von + 6,6 mt. Wären die Stützen gelenkartig gelagert, so hätten sich im Balken nur etwa 2/3 so grosse Momente ergeben.

Zürich, im Oktober 1910.

#### Schulhaus Niederurnen.

Erbaut von Architekt Emil Faesch in Basel. (Mit Tafel 9 bis 12.)

Die Gemeinde Niederurnen hat sich einen Schulhausplatz zugelegt, wie ein besserer kaum gefunden werden Nur wenige Meter über dem Dorfniveau gelegen, bietet die durch Benützung abgesprengter Felsmassen gewonnene Terrasse ein weites, gegen Norden geschütztes, ebenes Gelände mit bezauberndem Fernblick. Die durchaus trockene Lage sichert die hygienisch besten Bedingungen für Schulhaus und Spielplätze.

Dank der Einsicht der Schulbehörden von Kanton und Gemeinde war Gelegenheit gegeben, das Schulhaus, wenngleich in grösster Einfachheit, doch allen heutigen Anforderungen entsprechend zu gestalten. Elf grosse Schulzimmer mit Süd- und Ostlicht: drei im Erdgeschoss, vier im I. Stock und vier im Dachgeschoss, mit weiter Lichtquelle, Schulratsitzungszimmer im Parterre, Schulküche mit Zubehör und die Handfertigkeitsklasse nebst Gemeinde-Archiv, Schulbad, Einzelbäder, Heiz- und Kohlenraum im Kellergeschoss, weite Treppen und Gänge, geräumige Klosettanlagen sind zu einem grössern Bau verbunden, mit der breiten Front gegen Süden. Anschliessend, bei gemeinsamem Eingang auf der Ostseite, liegt die Turnhalle, in den stattlichen Abmessungen von 12 auf 23,5 m, auf der Westseite als Anbau die Abwartwohnung mit eigenem Eingang vom Hof aus und in direkter Verbindung mit dem Schulhaus im Erdgeschoss und I. Stock.

Zur Erzielung möglichst weiträumiger Dachgeschossklassen bezw. zur Vermeidung in den Raum einspringender Binder wurde eine bewährte Kombination von Holz- und Eisenkonstruktion gewählt (Abbildung 1).

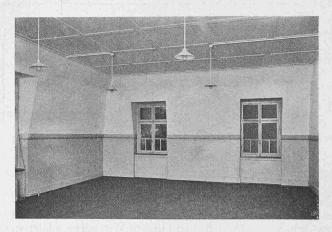


Abb. 1. Klassenzimmer im Dachstock (vergl. Schnitte auf Tafel 11).

Bezüglich Bauweise ist zu bemerken, dass Westphalkonstruktion (Hess & Co., Zürich) für die Decken über Kellergeschoss, Erdgeschoss und 1. Stock Anwendung gefunden hat, die nach sorgfältiger Prüfung und vergleichenden Aufstellungen, als die billigste der zweckmässigen massiven Deckenkonstruktionen befunden werde.