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Der kontinuierliche Balken
auf elastisch drehbaren Stützen.

Von Dr.-Jng. Max Ritter in Zürich.

i
Abb.l

Die folgenden Untersuchungen beziehen sich auf die
in Abbildung i skizzierte Tragkonstruktion, die im Eisenbau

und namentlich im Eisenbetonbau häufig zur Anwendung

gelangt. Ein vollwandiger Balken ruht auf beliebig
vielen, mit ihm starr verbundenen Stützen oder Säulen
und wird derart beansprucht, dass sich die Deformation
in der Ebene des Systems vollzieht. Die Stützen können
unten eingespannt oder gelenkartig gelagert sein; ihre
Widerlager mögen als unnachgiebig vorausgesetzt werden.

A R
Das System ist vielfach

statisch
unbestimmt. Die statische
Untersuchung kann
nach der allgemeinen
Methode der technischen

Elastizitätslehre erfolgen; man erhält aber, sobald
die Zahl der Stützen ein bescheidenes Mass übersteigt, so
viele Elastizitätsgleichungen, dass sich die zahlenmässige

Durchführung der Berechnung äusserst zeitraubend und
mü hevoll gestaltet. Um zu praktisch brauchbaren
Rechnungsmethoden zu gelangen, wollen wir in der Folge bei
der Berechnung der Formänderungen den unbedeutenden
Einfluss der Normalkräfte und der Querkräfte vernachlässigen.

Diese Vereinfachung, die auch bei manchen andern
Aufgaben der Elastizitätslehre üblich ist (Knicktheorie,
Bogenträger mit grossem Pfeilverhältnis), erleichtert die

Untersuchung des Systems sehr wesentlich. Das Problem
ist jetzt nahe verwandt mit der Theorie des

kontinuierlichen Balkens auf frei drehbaren Auflagern ; der
Unterschied besteht nur darin, dass die Säulen einer Drehung
des Balkens einen elastischen Widerstand entgegensetzen,
wodurch beide Teile Nebenspannungen erleiden. Die Ueber-
schrift der vorliegenden Arbeit findet hierin ihre
Rechtfertigung.

In der Literatur ist der kontinuierliche Balken auf
elastisch drehbaren Stützen schon mehrfach behandelt
worden. Am bekanntesten ist wohl die elegante, graphische
Lösung von IV. Ritter im dritten Bande seiner „Anwendungen

der graphischen Statik", die neuerdings im
Eisenbetonbau ausgedehnte Anwendung gefunden hat; auch die
bemerkenswertenArbeitenvonProf.yi.Osfew/èWinKopenhagen
haben sich Eingang in die Praxis verschafft. Es muss
indessen bemerkt werden, dass diese und andere Lösungen
sich auf die vereinfachende Annahme stützen, das obere
Ende jeder Stütze bleibe während der Deformation in Ruhe.
Diese Voraussetzung trifft wohl zu bei symmetrischer
Anordnung des Systems und der Belastung, oder dort, wo
ein festes Endauflager vorhanden ist ; sie versagt aber voll- '

ständig, wenn die Wirkung einer wagrechten Last, z. B.
einer Bremskraft, oder der (meist beträchtliche) Einfluss
einer Wärmeänderung verfolgt werden soll. Um die
letztgenannten Einflüsse näher zu untersuchen, stehen zwar
zur Zeit verschiedene Verfahren zur Verfügung (W. Ritter,
G. Mantel, H. Müller-Breslau), die aber alle die Auflösung
einer grössern Zahl von Gleichungen erfordern und in der
Anwendung zum mindesten unbequem sind.

Die folgenden, zum grössern Teil analytischen
Untersuchungen beruhen auf neuen, jedoch ganz elementaren
Betrachtungen. Von den allgemeinen Deformationsgleichungen

des an beiden Enden elastisch eingespannten Stabes
ausgehend, wird zunächst eine anschauliche Definition der

„Festpunkte" gegeben, die in der Theorie des kontinuierlichen

Balkens bekanntlich eine wichtige Rolle spielen. Zur
Bestimmung der Lage der Festpunkte werden einfache,
auch bei veränderlichem Trägheitsmoment anwendbare
Formeln abgeleitet. Es wird sodann die Anwendung der
Festpunkte zur Ermittlung der Momentenflächen infolge einer
lotrechten und einer wagrechten Belastung, als auch einer
Wärmeänderung des Balkens gezeigt. Ein Beispiel erläutert
die zahlenmässige Durchführung der Untersuchung.

i. Die Formänderung der Stützen.
Eine lotrechte, unten vollständig

eingespannte Säule (Abb. 2) werde am Kopfe
durch die horizontale Kraft H und das
Moment M beansprucht; wir fragen nach
der Bewegung des Endquerschnittes. Das
Gesetz der Superposition liefert die
horizontale Verschiebung

e HeH-\- MeM,
und die Drehung

a H ah -f- M am

wobei eH und aH die Bewegungen infolge H — 1 eM und

aw diejenigen infolge M 1 bezeichnen. Nach dem Satze

von der Gegenseitigkeit der Formänderungen ist eM =aH •

Eliminiert man H, so erhält man

a e^. + M(aM-^) (1)
en \ CHI

_

'
Wenn das Moment von H entgegengesetzt zu M wirkt,
und M <^ H h ist, so besitzt die elastische Linie einen Wendepunkt

R, der vom Säulenkopf den Abstand
M tB * • • • • (2)

Abb. 2

r H a-H-

hat. Meist ist das Trägheitsmoment Js längs der Säulenachse

konstant; dann ist nach bekannten Formeln
h« Ä2 h

eH aH — «m
3 E Js ' " 2 £ Js' m £ Js

und die obigen Beziehungen gehen über in

2 h 4 £ Js

2 h

r 6 £ Js g

(3)

(4)

Bleibt der Säulenkopf während der Deformation in Ruhe,
e 0, so liegt der Wendepunkt R im untern Drittel der
Säule. Das Moment M 1 erzeugt in diesem Falle

Off'
a ss ajjf

und bei konstantem Trägheitsmoment
h

a f,

en

4EJs
(5)

Wenn die Säule unten gelenkartig gelagert ist, so fällt
der Wendepunkt ins Gelenk und man erhält für konstantes

Trägheitsmoment die leicht abzuleitende Formel

a ; l.-^M—t-r- (6)lEJ,
und für e ¦= 0 und M 1

a — es ZE Ja¬
il)

h bedeutet den Abstand des Einspannungsquerschnittes
bezw. des Gelenkes von der Balkenachse. Streng genommen
sollte man das Trägheitsmoment der Säule von der
Balkenunterkante bis zur Balkenachse unendlich gross annehmen;
die obigen einfachen Formeln sind aber praktisch stets

genau genug.
2. Die Grundgleichungen.

Wir denken uns irgend eine Oeffnung AB l des

kontinuierlichen Balkens unmittelber an den Stützen durch-.
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geschnitten und an den Endquerschnitten die unbekannten
Momente Mi und M2, die vorher dort gewirkt haben, als
äussere Kräfte angebracht. Die elastische Linie bildet an
den Enden mit der Horizontalen die Winkel a und ß, die
wir positiv rechnen, wenn sie, wie in Abbildung 3 geöffnet
sind. Bezeichnen dann am frei aufliegenden Balken

a0, ß0 die Winkeldrehungen der elastischen Linie in¬

folge der Belastung,
ttu ßi diejenigen infolge Mi 1,
aa,/?2 diejenigen infolge M2 1,

so ist nach dem Gesetze der Superposition
« «0 + Mi «! + Mt «a, • • • (8a)
ß ß0 + Mi ßi + M% ß2, (8b)

Diese Beziehungen, die
unsern Betrachtungen
zu Grunde liegen,
ermöglichen die Berechnung

der Momente M!
und M2, sofern die
Winkel « und ß
bekannt oder anderweitig

als Funktionen
von Mi und M2
darstellbar sind.

Wir unterscheiden
drei Fälle.

Erster Fall:
Die Ursache der Winkeldrehung a liegt rechts vom

Punkte A, der während der Deformation in Ruhe bleibt.
Dann ist « eine Funktion von Mi allein, was man erkennt,
wenn man den Teil der Konstruktion links von A betrachtet
(vergl. Abbildung 1). Er steht unter dem alleinigen Einflüsse des
Momentes M\>) ; somit ist, wenn das Superpositionsgesetz gilt,

a — | Mu (9a)
wo £, die Drehung des Eckpunktes A nach Wegnahme
des Balkenstückes AB infolge Mi — — 1 bezeichnet. In
Verbindung mit Gleichung (8a) ergibt sich

a0 + Mj (aj + fi) -t- M2 <*a o (ioa)
Wenn die Oeffnung AB unbelastet ist, so ist a0 o. Die
Momentlinie verläuft dann gerade (Abbildung 4); der
Abstand a des Momentennullpunktes ^i vom Auflager A folgt
aus obiger Gliederung zu

(*¦/

>

y
Abb. 3

Mx — M, l
«1 + «2 + Et

l ("a)

Abb. 1 Abb. 5 """UD«»

Zweiter Fall:
Die Ursache der Winkeldrehtmg ß liegt links vom

Punkte B, der während der Deformation in Ruhe bleibt.
Dann ist

ß — e2M2, (9b)
wo fa die Drehung des Eckpunktes B infolge M% — 1

bezeichnet. Gleichung (8b) geht über in
ßü -f- Mi ßi + Mt (ßi + et) ¦= o (iob)

Ist die Oeffnung A B unbelastet, so ist ß0 o. Die
Momentenlinie verläuft gerade (Abbildung 5) ; das Moment
verschwindet in einem Punkte F2, der vom Auflager B
um die Strecke

b M„ l (Hb)Mt—Mx ft + ft + e»
entfernt liegt.

Dritter Fall:
Die Ursache der Winkeldrehungen a und ß liegt

zwischen den Punkten A und B, die während der Defor-

') In der Regel wird ausser dem Momente Mx noch eine horizontale
Kraft H wirken, die aber zufolge unserer Annahme, dass der Punkt A in
Ruhe bleibt, ausser Betracht fällt.

mation in Ruhe bleiben. Dieser Fall schliesst die frühern
in sich und ist nur denkbar, wenn die Oeffnung A B
belastet ist. Die Gleichungen (ioa) und (iOb) gelten gleichzeitig.

Sie lassen sich leicht nach Mi und M% auflösen;
man findet

«0 (£2 + ft) — ft «t IMi

M2

(e» + «i)(£2+r?2) —
ßo ih + «1) — «0 (")

Abb. 6

(El + «l) («2 + ft) — °» -
Bei konstantem Trägheitsmoment lassen sich mittelst dieser
Gleichungen jene eleganten, graphischen Konstruktionen zur
Bestimmung der Schlusslinie der Momentenfläche ableiten,
die Prof. W. Ritter auf Grund ganz anderer Erwägungen
gefunden und in seinem bereits zitierten Buche veröffentlicht
hat. In Abbildung 6 ist die
bekannte Konstruktion für
gleichmässig verteilte Belastung
vorgeführt. Dass diese
Konstruktion auch gilt, wenn das
Trägheitsmoment des Balkens
von der Balkenmitte gegen die Auflager nach einer
beliebigen Potenzfunktion zunimmt (Balken mit Vouten), ist
vom Verfasser in Band 53, Nr. 18 der „Schweizer.
Bauzeitung" ausführlich bewiesen worden.

Wie bereits erwähnt, sind die Gleichungen (9) bis (12)
an die Voraussetzung gebunden, dass die Punkte A und B
während der Deformation in Ruhe bleiben. Darnach könnte
es zunächst scheinen, diese Beziehungen wären nur zur
Untersuchung lotrechter Lasten geeignet; wir werden
indessen zeigen, wie sie auch bei der Untersuchung des
Einflusses einer wagrechten Last oder einer Wärmeänderung
sehr wertvolle Dienste leisten.

j. Die Festpunkte.
Wir nennen die durch die Gleichungen (11) in jeder

Oeffnung festgelegten Punkte Fi und Ft die „Festpunkte"
des kontinuierlichen Balkens. Um die Lage der Festpunkte
zu bestimmen, be- „trachten wir zwei
aufeinander folgende
Oeffnungen / und
/' (Abbildung 7).
Nach Gleichung( 1 ia)
hat der Festpunkt
Fi in der Oeffnung
t vom benachbarten linken Auflager den Abstand

M.1

Abb.

«1 +«2 + £1

darin bezeichnet çjj den Winkel, der nach Wegnahme des
Balkenstückes /' am Auflager B infolge M — 1 entsteht.
Bei dieser Deformation muss natürlich der rechte Winkel,
den die Balkenachse bei B mit der Säulenachse bildet,
erhalten bleiben. Bezeichnet daher

Ms das Moment, das die Säule deformiert,
es den Drehwinkel des Säulenkopfes infolge M* 1,
Mi das Moment, das den Balken A B deformiert,
£i den Drehwinkel des Balkens bei B infolge Mi 1,

so gelten die Beziehungen
Ms + Mi — 1,
M, es Mi eâ — fx', (13)

voraus durch Elimination von Mi und M,
1 _

es es
fl ~ ÏTTel

folgt. Für et lässt sich aber nach Gleichung (8b) schreiben

Si — ß — Mi ßi — M2 ßt

&— T^r- ft; • • • (14).
also ist

*(fc--rh-&)
¦Pi«r + Pa - •

Dieser Ausdruck, in Gleiohung (ii„) eingesetzt, liefert die
wichtige Beziehung
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(IS.)

°i' + «t' + **-
Pa

mit deren Hilfe die Lage jedes Festpunktes Fi aus der
des benachbarten linken Fi berechnet werden kann. Der
Abstand a des dem linken Endauflager zunächst liegenden
Festpunktes Fi wird aus Gleichung (na) gewonnen.

Um die Lage der Festpunkte F2 zu ermitteln, beginnt
man am rechten Trägerende, berechnet zuerst mit Gleichung
(iib) den Abstand b des Festpunktes der rechten
Endöffnung und hierdurch die Lage aller übrigen Festpunkte
durch fortgesetzte Anwendung der Beziehung

Mi'; dann ist Ms '== Mi — M, das Moment, das die Säule
deformiert. Die Bedingung dafür, dass bei der Deformation
der rechte Winkel zwischen Säule und Balken erhalten
bleibt, lautet (analog Gleichung 13).

— M2Si {M2 — Mi)es,
wo für et der Wert aus Gleichung (14) einzusetzen ist.
Das gibt

M, I / o \ft (l8a)Mi'
I +

ft (I5l
Pi + Pa + es

Ss + ai—jrZi.'H'
die sich analog wie Gleichung (15a) ableiten lässt.

In der Regel ist das Trägheitsmoment / des Balkens
konstant oder darf ohne wesentlichen Fehler als konstant
betrachtet werden. Dann ist bei Vernachlässigung des
Einflusses der Schubkräfte nach bekannten Formeln :

Mit diesem Koeffizienten ist das Moment im Balken beim
Uebersch reiten einer Stütze, die links von der belasteten
Oeffnung liegt, zu multiplizieren. Für eine Stütze rechts
der belasteten Oeffnung, etwa für die Stütze R in Abbildung 8

ergibt eine analoge Betrachtung
M,' 1

ft' j, (i8b)M~

1 +

ß-2
l

Für den Fall konstanten Trägheitsmomentes J des Balkens
gelten die Gleichungen (16) und man erhält einfacher

1

(i —

lEJ' a2 Pl 6 EJ>

3 + l'(l—a)
l(2l-ia) + 6EJ,

3 +

(.6)

(I7a)

(I7b)

1 + l(2l—3g) '

6 EJes{f—<*)

r* /' (2 f 3*')

(19)

ip—*) +l> (2V — 3*9 ' 6 EJ ss

Auch für die Gleichungen (12) lassen sich vereinfachte
Ausdrücke hinschreiben. Wir verzichten darauf, weil man die
Schlusslinie der Momentenfläche der belasteten Oeffnung
besser mit Hilfe der erwähnten, graphischen Verfahren
ermittelt. Die Festpunkte lassen sich ebenfalls auf
graphischem Wege finden, worüber das bereits zitierte Werk
von Prof. W. Ritter Auskunft gibt; die analytische
Berechnung nach den Gleichungen (17) führt jedoch rascher
zum Ziel, namentlich bei Benutzung des Rechenschiebers.
Natürlich gelten diese Gleichungen auch für den
kontinuierlichen Balken auf frei drehbaren Stützen; man hat nur
fs 00 zu setzen, d. h.

die

' 6£Jes{!'—i)
Die Momentenfläche lässt sich nach Berechnung von
ft und ft' leicht auftragen (vergl. Abbildung 8).

Der Balken wird indessen nicht nur durch Biegungsmomente,

sondern auch durch die horizontalen Kräfte H
beansprucht, die infolge der Deformation der Stützen
entstehen (Abbildung 2) und sich mit Hilfe der Gleichung
(2) leicht berechnen lassen. Es ist

— Msa.nH
'H

Glieder /
6 E J ss

strei-zu

-TTTTTTTTTT

-" -6V

W/M

und
6 E J e.

chen. Zur Berechnung
des Winkels «j infolge
Ms 1 dient die Formel

(5) bezw. (7).

4. Lotrechte Belastung.
Nachdem die Festpunkte aller Oeffnungen ermittelt

sind, lässt sich das Momentendiagramm für eine lotrechte
Belastung ohne grosse Mühe aufzeichnen. Man geht am
besten wie beim kontinuierlichen Balken auf frei drehbaren
Stützen vor, behandelt also die Belastung jeder Oeffnung
für sich und addiert schliesslich die Momentenordinaten in
jedem Schnitte.

Die Oeffnung AB des in Abbildung 8 skizzierten
Trägers sei belastet, während alle andern Oeffnungen von
Lasten frei seien. Dann ist das Biegungsmoment in allen
Festpunkten Fx links von A und in allen Festpunkten Ft
rechts von B gleich Null, denn die Voraussetzungen der
Grundgleichungen (11) sind erfüllt. Die Schlusslinie der
Momentenfläche der belasteten Oeffnung lässt sich mit
Hilfe des bekannten graphischenVerfahrens leicht aufzeichnen.

Ueber den Stützen ändert sich das Moment sprungweise.

Wir betrachten zunächst eine Stütze, die links der
belasteten Oeffnung liegt, also etwa die Stütze L in
Abbildung 8 und bezeichnen das Moment unmittelbar links
davon mit M2, das Moment unmittelbar rechts davon mit

Abb. 8

Bei lotrechter Belastung stehen die Kräfte H aller Stützen
unter sich im Gleichgewicht; ein festes Endwiderlager hat
demnach die Summe der Kräfte H aller Zwischenstützen
zu übertragen. Fehlt ein festes Endwiderlager, so liefert
die vorstehend beschriebene Rechnungsmethode nur bei
symmetrischer Anordnung des Systems und der Belastung
Ê H o ; in jedem andern Falle bekommt man den end¬

lichen Wert EH A H,
der eben daran
erinnert, dass die gemachte

Voraussetzung, das
obere Ende jeder Stütze
bleibe in Ruhe, nicht
zutrifft. Vielmehr muss
sich, damit
Gleichgewicht bestehen kann,

der Balken ein wenig wagrecht verschieben, um so viel,
dass die dadurch an den Stützenenden erzeugten
Horizontalschübe die Summe — AH ergeben. Der folgende
Abschnitt liefert die Unterlagen für diese Rechnung. Wenn
man ein Beispiel durchrechnet, erkennt man, dass schon
eine ganz geringe Verschiebung genügt, um den Horizontalschub

— A H zu erzeugen und dass diese Verschiebung
nur sehr geringe Biegungsmomente hervorruft. In
praktischen Fällen darf man also bei Untersuchung einer
lotrechten Belastung mit genügender Genauigkeit die
Annahme treffen, die Stützenköpfe bleiben in Ruhe.

/. Wagrechte Verschiebung der Säulenenden.
Das obere Ende einer Säule S (Abbildung 9)

verschiebe sich um eine sehr kleine wagrechte Strecke e

(positiv nach rechts) ; wir wollen die dadurch entstehenden
Biegungsmomente berechnen. Das System deformiert sich
in der in Abbildung 9 (S 50) angedeuteten Weise. In allen
Oeffnungen und Säulen entstehen Biegungsmomente, über
die wir auf Grund der bisherigen Darlegungen folgendes
aussagen können: Das Biegungsmoment verschwindet in
allen Festpunkten Fi links der Stütze S, in allen Fest-
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punkten Ft rechts der Stütze S und in den untern
Drittelspunkten aller Stützen, mit Ausnahme der Stütze S, deren

Wendepunkt nach Gleichung (2) zu bestimmen bleibt. Die
Richtigkeit dieses Satzes erhellt ohne weiteres, wenn wir
auf die Voraussetzungen achten, die den Gleichungen (11)
zugrunde liegen. In der Tat liegt für jede Oeffnung
links von S die Ursache der Winkeldrehung a rechts
vom linken Auflager, das während der Deformation seine

Lage beibehält; Gleichung (na) gilt also für alle Felder
links von S; sinngemässes gilt für die Felder rechts von
S. Ueber den Stützen ändert sich das Moment sprungweise,

und zwar ist für alle Stützen links von S der
Koeffizient u, (Gleichung i8a bezw. i9a), für alle Stützen
rechts von S der Koeffizient ft' (Gleichung i8b bezw. 19b)
anzuwenden.

Wir fassen jetzt die
Stütze S ins Auge,
bezeichnen mit M2 das
Moment unmittelbar

links, mit Mi das
Moment unmittelbar rechts
von ihr (vergl. Abbildung

9) ; dann ist
Ms M2 — Mi' das
Moment, das die Stütze
deformiert. Der Kopf
der Stütze verschiebt sich um die Strecke e nach rechts
und dreht sich nach Gleichung (3) um den Winkel :

3 «

worin zur Abkürzung

?> ** + (A — j^ra ßi

V=i'a*) 1 m

i "2'al
Ê.

— i-

a
PlP2 / „

(21)

gesetzt ist. Bei konstantem Trägheitsmoment J des Balkens

ergibt sich mit Benützung der Formeln (16)

<P — Ss

9>' *«

1 +
1 +

/ (2/-3«) C —*0"
V 2/' — 3i>) (/ -

/' (2/' -3*') (/-

H2 1—3«)
6£J(l—a)'
l'(2l' — jf)
6EJ(t'—b')

'

(22)

ïïfflimmmmunwm,-^—

- b

^fe

/ (2 / — 3 a) (/' — *')_

Ist die Stütze S unten nicht eingespannt, sondern

gelenkartig gelagert, so ändert sich die vorstehende Ab¬

leitung nur in soweit,
e~iv* als für den elastischen

Drehwinkel der Stütze
statt Gleichung (3) die
Gleichung (6) in Betracht
kommt. Man erhält
alsdann

Mt —
!.<p-

Abb. 9
Mi' +~

und

(23)

cc =fj + Ss(M2 — Mi'), wo es
¦ EJs'

im Sinne des Uhrzeigers. Um denselben Winkel drehen

und hat in die Gleichungen

(22) für es den Wert aus Gleichung (7) einzusetzen. Hat
man M2 und Mx'berechnet, so kann man die Momentenfläche
für die Verschiebung e einer Stütze S leicht aufzeichnen.
Um die Momentenfläche für die Verschiebung mehrerer
Stützen zu erhalten, bestimmt man die Momentenfläche für

f\ \f
* ba-237 >r6-3,^ß7-. *

F: \F
r.-~d3'2.95*T*~*34:-Z33>.

H \F

¦ 1,-10

7m.?m

¦ L,.io~

f*"mTnmnmTTTTTTIIL r111111 iTTTT 111

sich die beiden Balkenstücke l und /'. Daher gelten gemäss
den Gleichungen (8) und mit Beachtung, dass in unserm

b'
Falle Mi — M2

tern Gleichungen
l — a

vmAMt' — Mi' ist, diewei-

« _ M, l—a ß.

Durch Elimination von a folgt weiter

f. (M2 — Mx') + M2 {ßt — ~2h
3 f
2h

und daraus

A) o,

-f- 6j(M2 — Mi') — Mi'(at<—- u2

M*** 3 *
2 h (p ; Mi>= +¦ 3. '

2 h<p'
(20)

Abb.12

die Verschiebung jeder Stütze gesondert und addiert die
Momentenordinaten in jedem Schnitte. Das Verfahren
gestaltet sich bei der zahlenmässigen Durchführung sehr
einfach, wie das Beispiel am Schlüsse dieser Arbeit
zeigen wird.

6. Wagtechte Belastung.
Mit Hilfe der vorstehenden Darlegungen lassen sich

leicht die Biegungsmomente berechnen, die durch eine
horizontale Kraft H (Bremskraft, Winddruck bei Rahmen-
Bindern) erzeugt werden (vergl. Abbildung io). Man
verfährt zu diesem Zwecke wie folgt :

Man denkt sich zunächst das obere Ende jeder Stütze
(also den ganzen Balken) um die Strecke e i wagrecht
verschoben und berechnet nach dem in Nr. 5 erläuterten
Verfahren die Biegungsmomente, sowie die Horizontalschübe
in den Stützen. Die Summe dieser Horizontalschübe sei
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Hi. Multipliziert man das Biegungsmoment für e — 1 mit

-rf-, so erhält man das durch die Kraft H erzeugte Biegungs-
**i
moment.

Die Abbildung 10 zeigt den Verlauf der Momentenlinie

für einen Balken auf 4 unten eingespannte Stützen.

7. Wärmeänderung.

Der Einfluss einer Wärmeänderung lässt sich mittelst
der in Nr. 5 enthaltenen Untersuchungen ohne Schwierigkeit
verfolgen. Wenn der Träger ein festes Endauflager besitzt,

so verschiebt eine Wärmeänderung um /° das obere Ende

jeder Stütze um die Strecke e w t°. L, wo tu den Wärme-
ausdehnungs-Koeffizienten (für Eisenbeton w 0,000012)

Eine Wärmeänderung und ebenso eine Belastung
erzeugen in dem Balken nichtnurBiegungsmomente, sondern
auch Normalkräfte. Deren Ermittlung wird man sich in
der Regel ersparen, weil die davon berührenden Zug- und
Druckspannungen gegenüber den Biegungsspannungen stark
zurücktreten.

8. Zahlenbeispiel.
¦ Es soll der in Abb. 12 skizzierte Träger mit vier

Oeffnungen untersucht werden. Die Stützen sind unten fest
eingespannt und besitzen das Trägheitsmoment Js= 0,0025 m*;
der Balken besitzt das konstanteTrägheitsmomentJ= o,oi»«4.
Die Höhen der Mittelstützen sind hi —h3 6,0m, h2 =8,0 m ;

die Stützweiten/j 4 10,0 m, 4 4 12,0 m. Das linke
Endwiderlager ist fest, das rechte beweglich.

rtinnnn IJOB*
TTTTTnrmnTT

Abb.10

^mtffllTIIliil ""'J±

M

Abb. 11

und L den Abstand der Stütze vom festen Endauflager
bezeichnet. Um die Momentenfläche zu erhalten, zeichnet
man die Momentenflächen für die Verschiebung e jeder
einzelnen Stützen auf und addiert die Ordinaten in jedem
Schnitte. Man kann sich die Verschiebung e u> t° L
einer Stütze S (vergl. Abbildung 11) dadurch entstanden

a) Elastizitätsmasse der Stützen

EJ-eSl

EJ • fe

AJs

4 Js

6.4 6 EJe„

beweg/

'• rnmnmpWWWIfïï

m>.r's'

Wärmeerhöhung 20

denken, dass die Oeffnung / eine Wärmeänderung

t°i — H r i die Oeffnung /' eine solche 4° irml1 ° d) V

erleidet, während alle andern Oeffnungen ihre Wärme
beibehalten. Nun ist zwar dieser Zustand von einer gleich-
massigen Wärmeänderung weit entfernt; wir bekommen
indessen die letztere, indem wir den beschriebenen Zustand
bei allen Stützen herstellen und dessen Wirkungen addieren.

Ist kein festes Endauflager vorhanden, so nimmt man
zunächst diejenige Stütze, die sich augenscheinlich am
wenigsten verschieben wird, als fest an und berechnet die
Biegungsmomente und die Horizontalschübe aller Stützen.
Ergibt sich die Summe der Horizontalschübe zu A H, so
verschiebt man den Balken wagrecht um so viel, dass A H o
wird. Durch diese Verschiebung entstehen wieder Biegungsmomente,

die zu den erst berechneten zu addieren sind.

b) Bestimmung der Festpunkte:

Aus Symmetriegründen a8 63, «8

Abb. 13

b2, at by.

h(2'i -3%)
ß2 2,95 m bs.

6EJ- 6-6-

aa

3 +
2,87

12 (12 — 2,9s)

12(24 — 3 • 2,9s 6-8

¦= %

3 +
33 *..

10 (12 — 2,87)
13(24 — 3 • 2,87)

10

6-6
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c) Reduktionskoeffizienten :
Aus Symmetriegründen ist ft.

Pi

ft 2

f*3

I 1
h (2k — 3«i)

1

6£Jts,
1

g — ai)

I + 12(24--3 •2.95)

6-8-(i2-
1

2,95)

T
12(24--3 •2>87)

1 +
0,70

0,64

f 3 > f*2 — f 2i f*3 /* 1 •

——— y 0,64 ft'3.

6 • 6 • 10

ft'2.

ft'l-

6-6(12—2,87)
t^ Lotrechte Belastung:

In Abbildung 12 sind die Biegungsmomente infolge
einer Einzellast P in der 3. Oeffnung dargestellt. Das
Verfahren bedarf nach dem in Nr. 4 gesagten keiner
Erläuterung. Auch die Einflusslinien lassen sich ohne Mühe
finden, analog wie beim kontinuierlichen Balken auf frei
drehbaren Stützen.
e) Wagrechte Belastung:

Wirkt die Belastung in der Axe, so bleibt sie ohne
Einfluss, da das linke Endauflager fest ist. Andernfalls
entsteht ein Moment, dessen Wirkung in bekannter Weise
mittelst der Einflusslinien für lotrechte Lasten verfolgt
werden kann.
f) Wärmeänderung:

Es soll der Einfluss einer Wärmeerhöhung von 20 °

verfolgt werden. Wir berechnen zunächst die Koeffizienten q>

in Gleichung (22).
1 h Wi—3<*i)

Vi £si

6

e7

'1(24—3"i) (4- h)
~^~ 4K-3*,)i4-«i)

1 + 10 • 20 • (12—2,87)
öEJ^—aJ

10 • 20
12 (24—3 • 2,87) ¦ 10

EJ<P\ 15.3° EJtpt'.
12 (24—3 • 2,9s) (12—2,95'* "1

EJq>t

EJ<ps 6

19.35
1 +

12 (24—3 • 2,95) (12-2,95) J

EJq>t'.
12 (24 — 3 • 2,87) ¦ IO

6 EJ ¦ 10

12-(24—3.2,95)
6.(12 2,95)

12 (24—3-2,87)
6.(!2—2,87)10 (12 - 2,87) • 20

15.4° EJcpi'.
Ausdehnungskoeffizient tu 0,000012.
Verschiebung der Stütze 1 :

ei cd t° /] 0,000012 • 20 ° • 10 0,0024 m-
Verschiebung der Stütze 2:

22 0,0053 m-e2 co t ° (li -f- 4) 0,000012 • 20 '

Verschiebung der Stütze 3 :

e3 eo*o(/, +/2 + 4) 0,000012 ^o0- 34 0,00816 m.
Biegungsmomente M und M' infolge Verschiebung einer

Stütze, nach Gleichung (20). E 2100000 t/m2.
Stütze 1 :

3«, 3.0,0024.2100000.0,01M
2*1 9>i

M' 4- 3 ''
Stütze 2 :

M —

2ii?i
3 «2

-t-

2 ¦ 6 • 15,30
3 • 0,00 24.2100000 • 0,0 r

2 • 6 • 15.40

3 -0,0053 • 2100000- 0,01
2h2<pi 2 -8- 19,35

M' =: — M — -4- 1,07 mt.
Stütze 3 :

3'8
2*8 9"s

3<a

3 .0,00816.2100000.0,01
2-6-1 5,40

3 .0,00816 .2IOOOOO.O.OI

M —

M + 2 «8 9>S 2-6- 15,30
Abstand der Wendepunkte von der Balkenachse :

— 0,83 mk

-f- 0,82 mt.

— — 1,07 ;/;/.

— 2,78 ;;//.

6EJst
Msh*

n

n —

2 -6

H

3 -
6 2100000 ¦ 0,01 ¦ 0,0024

-t 1.65 • 4 • 36
2- 8

3 ~
6 2100000 ¦ 0,01 - 0 0053

— 2,14 • 4 • 64
2 - 6

3 - 6 2100000 ¦ 0,01 - 0,00816
C C« A if.

-j- 2,80 ;/;/.

ac

(Gleichung 4).

2,81 m.

3,80 m.

2,81 m.

In Abbildung 13 ist das in Nr. 7 abgeleitete Verfahren
zur Anwendung gelangt. Es sind die Momentendiagramme
für die Verschiebung e jeder einzelnen Stütze aufgezeichnet;
durch Summation ergab sich die Momentenfläche infolge-
der Wärmeerhöhung 20 °. Man erkennt, wie die Biegungsmomente

mit dem Abstände vom festen Auflager stark
anwachsen; das grösste Biegungsmoment im Balken beträgt
— 3,2 mt an der Stütze 3. Am untern Ende der Stütze 3
entsteht ein Moment von -(- 6,6 mt. Wären die Stützen
gelenkartig gelagert, so hätten sich im Balken nur etwa
24 so grosse Momente ergeben.

Zürich, im Oktober 191 o.

Schulhaus Niederurnen.
Erbaut von Architekt Emil Faesch in Basel.

(Mit Tafel 9 bis 12.)

Die Gemeinde Niederurnen hat sich einen Schulhausplatz

zugelegt, wie ein besserer kaum gefunden werden
kann. Nur wenige Meter über dem Dorfniveau gelegen,
bietet die durch Benützung abgesprengter Felsmassen
gewonnene Terrasse ein weites, gegen Norden geschütztes,
ebenes Gelände mit bezauberndem Fernblick. Die durchaus
trockene Lage sichert die hygienisch besten Bedingungen
für Schulhaus und Spielplätze.

Dank der Einsicht der Schulbehörden von Kanton und
Gemeinde war Gelegenheit gegeben, das Schulhaus, wenngleich

in grösster Einfachheit, doch allen heutigen
Anforderungen entsprechend zu gestalten. Elf grosse
Schulzimmer mit Süd- und Ostlicht: drei im Erdgeschoss, vier
im I. Stock und vier im Dachgeschoss, mit weiter
Lichtquelle, Schulratsitzungszimmer im Parterre, Schulküche mit
Zubehör und die Handfertigkeitsklasse nebst Gemeinde-
Archiv, Schulbad, Einzelbäder, Heiz- und Kohlenraum im
Kellergeschoss, weite Treppen und Gänge, geräumige Klosettanlagen

sind zu einem grössern Bau verbunden, mit der
breiten Front gegen Süden. Anschliessend, bei gemeinsamem

Eingang auf der Ostseite, liegt die Turnhalle, in den
stattlichen Abmessungen von 12 auf 23,5 m, auf der Westseite

als Anbau die Abwartwohnung mit eigenem Eingang
vom Hof aus und in direkter Verbindung mit dem Schulhaus

im Erdgeschoss und I. Stock.
Zur Erzielung möglichst weiträumiger Dachgeschossklassen

bezw. zur Vermeidung in den Raum einspringender
Binder wurde eine bewährte Kombination von Holz- und
Eisenkonstruktion gewählt (Abbildung 1).

I
Hill

Abb. 1. Klassenzimmer im Dachstock (vergl. Schnitte auf Tafel 11).

Bezüglich Bauweise ist zu bemerken, dass Westphal-
konstruktion (Hess & Co., Zürich) für die Decken über
Kellergeschoss, Erdgeschoss und 1. Stock Anwendung
gefunden hat, die nach sorgfaltiger Prüfung und vergleichenden

Aufstellungen, als die billigste der^ zweckmässigen
massiven Deckenkonstruktionen befunden werde.
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