Zeitschrift: Schweizerische Bauzeitung

Herausgeber: Verlags-AG der akademischen technischen Vereine

Band: 57/58 (1911)

Heft: 11

Artikel: Elektrische Schmelzöfen der Stahlindustrie

Autor: [s.n.]

DOI: https://doi.org/10.5169/seals-82663

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 11.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

einen Hebel von der auf Bodenhöhe liegenden Regulier-

welle aus gesteuert.

Zur Regulierung dient je ein automatischer Oeldruck-Regulator, wie er von der Firma Escher Wyss & Co. bereits wiederholt in andern Anlagen zur Verwendung gelangt und verschiedentlich beschrieben worden ist. 1) Er arbeitet mit Oeldruck und wird mittels Riemen von der Turbinenwelle aus angetrieben. Jeder Regulator ist mit separater Oelpumpe versehen. Um die Druckschwankungen zu dämpfen, ist an jeder Turbine, und zwar in der Verlängerung des Zulaufrohrs zu den Düsenabzweigungen, ein Druckregulator eingebaut. Beim plötzlichen Schliessen der Turbine wird die in der Düse versperrte Wassermenge annähernd genau durch den Druckregulator abgeführt, der hierauf langsam wieder zu schliessen beginnt, sodass die Durchflussgeschwindigkeit im Zulaufrohr nur langsam abnimmt. Für die Druckschwankungen ist bei totaler Entlastung einer Turbine eine maximale Druckerhöhung von 15% garantiert. Zwecks Kontrolle der Druckverhältnisse sind an den Hauptleitungen beim Beginn der Verteilleitungen selbstregistrierende Manometer eingebaut (Abb. 25 und 26, S. 140 und 141).

Um den sehr grossen Stoss des aus der Druckregulator mit rund 100 m/sek Geschwindigkeit austretenden Wassers aufzunehmen, ist die von ihm betroffene Stelle des Fundaments mit einer dickwandigen, soliden Ankerplatte armiert. Im Weitern sind die Wände des untern Beton-Turbinen-

gehäuses mit Eisenblech gepanzert, um das von den Schaufeln abgeschleuderte Spritzwasser unschädlich abzuleiten. Der Oberteil des Gehäuses kann zur Freileitung des Laufrades rasch und leicht abgehoben werden.

Die Turbinenwelle ist aus Siemens Martin-Stahl hergestellt und auf zwei Ringschmierlagern von 220 mm Bohrung in Weissmetallschalen gelagert. Diese Lager ruhen ihrerseits auf einer im Fundament eingelassenen Platte. Die Kupplungen mit den angeschlossenen Generatoren bestehen in einer elastischen Isolierkupplung, System Zodel; die Bolzen der beiden Kupplungshälften sind durch kurze Lederstränge verbunden.

Die Nutzeffekte der Generator-Turbinen wurden mit $77\,^0/_0$ bei Vollast, $77\,^0/_0$ bei $^3/_4$ Last und $74\,^0/_0$ bei Halblast garantiert. Es sei noch ergänzend hinzugefügt, dass das Schwungmoment GD^2 des rotierenden Teils der Gleichstrom-Generatoren rund 22000 kgm^2 beträgt

Die nähere Beschreibung der Hülfsturbinen zum Antrieb der Gleich- und Drehstrom-Maschinen für die Betriebskraft der diversen Motoren und für die Beleuchtung der Fabrik und des Dorfes Chippis bietet kein besonderes Interesse (Abbildung 27). Alle drei Turbinen sind Pelton-Turbinen mit je einer Düse und Druckregulator; ihre Schaufeln sind angeschraubt.

Die ganze Fläche des Turbinenhauses (Abbildunggen 28 und 29, Seite 140 und 141) wird von zwei Kranen mit Handantrieb bestrichen; der kleinere, tiefer liegende Kran von 8 t dient für kleinere, leichtere Reparaturen; der grössere Kran, der über die ganze Breite des Turbinenhauses führt, ist für 20 t Tragkraft gebaut und dient zum Transport der schweren Stücke.

Elektrische Schmelzöfen der Stahlindustrie¹).

Es ist eine interessante Tatsache, dass der erste elektrische Schmelzofen zu einer Zeit patentiert wurde, als die andern bekannten Verfahren der Eisen- und Stahlerzeugung, wie Bessemer-, Thomas- und Siemens-Martin-Verfahren, noch nicht das Licht der Welt erblickt hatten.

Im Jahre 1853 wurde dem Franzosen Pichon ein Patent auf einen Lichtbogenofen erteilt. Selbstverständlich blieb es aber bei den kühnen Plänen des Erfinders, denn die damalige "Elektrotechnik" war noch unendlich weit davon entfernt, die für jenen Ofen nötige elektrische Energie zu liefern. Immerhin ist der Ofen von Pichon bemerkenswert, da wir sein Prinzip ziemlich genau im ersten brauchbaren Lichtbogenofen, dem Stassanoofen (1898), wiederfinden.

Neues im Bau elektrischer Oefen brachten dann erst wieder die Patente von William v. Siemens im Jahre 1878. Es sind ebenfalls Lichtbogenöfen, die bereits alle Merkmale moderner Oefen aufweisen. Ihre praktische Anwendung scheiterte aber ebenfalls an der Unvollkommenheit der damaligen Elektrotechnik.

1) Antrittsvorlesung von Dr. sc. techn. Sigm. Guggenheim, Privat-dozent an der Eidg. Techn. Hochschule Zürich.

Das Navizance-Kraftwerk der A. I. A. G. in Chippis.

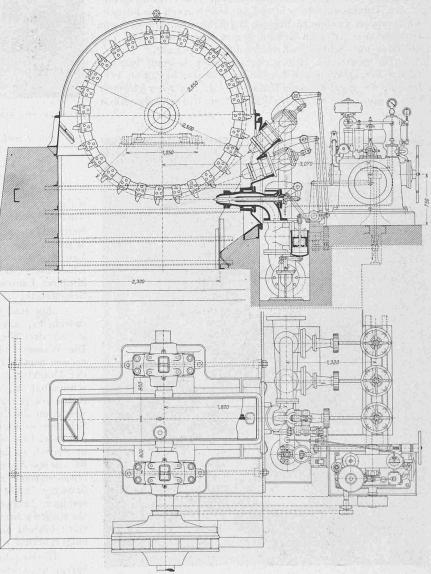
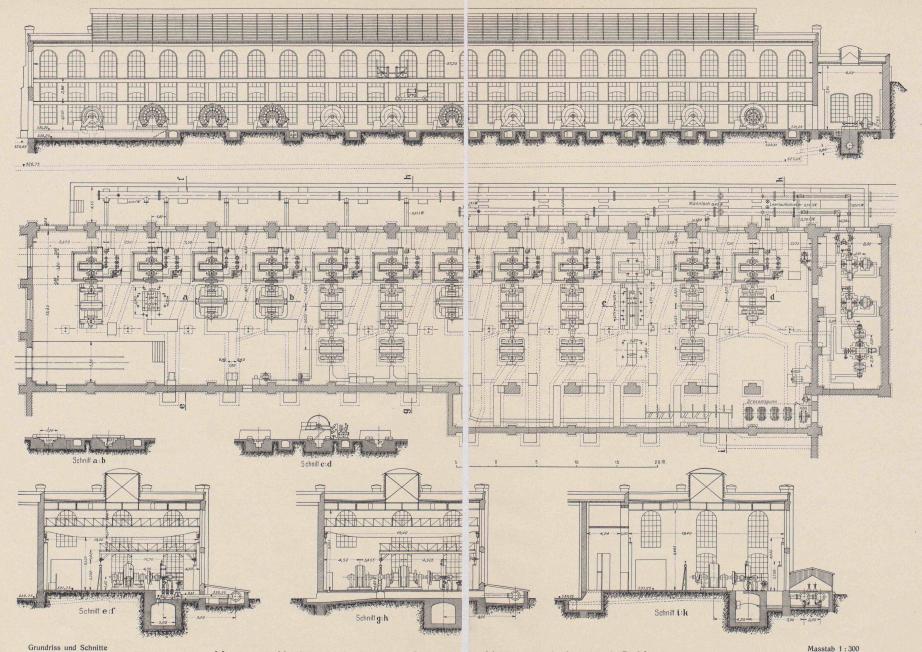



Abb. 20. 2500 PS-Hochdruckturbine von Escher Wyss & Cie., Zürich. + 1:50.

¹⁾ z. B. in Band LVII, Seite 163.

SCHWEIZERISCHE BAUZEITUNG 1911. Band LVIII (Seite 137) Tafel 29

Navizance-Kraftwerk der Anlage Chippis (er Aluminium-Industrie-A.G. Neuhausen

Masstab 1:300

Seite / page

leer / vide / blank Bis in die Mitte der Neunziger-Jahre des vorigen Jahrhunderts konnte sich der elektrische Ofen in der Eisenindustrie nicht bemerkbar machen, obgleich man auf andern Gebieten, speziell in der Aluminium-Industrie, den elektrischen Ofen bereits seit 1888 mit Erfolg verwendete.

Der Grund dieser Rückständigkeit des Elektro-Stahlofens lag darin, dass die andern Stahlerzeugungverfahren inzwischen so vollkommen ausgebildet waren, dass niemand an eine Konkurrenzfähigkeit des elektrischen Ofens glaubte.

Erst im Jahre 1898 entstand der erste brauchbare elektrische Ofen, der Lichtbogenofen von Stassano. Ihm folgt 1900 der Héroult-Ofen, ebenfalls ein Lichtbogentypus, und der Kjellin-Ofen, der erste brauchbare Induktionsofen, dessen Prinzip bereits 1887 durch Ferranti patentiert worden war. Als dann mit Beginn dieses Jahrhunderts die Beschaffung elektrischer Energie immer bequemer und wirtschaftlicher wurde, setzte sich der Elektroofen allmählig in der Eisenindustrie fest.

Seit 1906 besteht der Lichtbogenofen von Girod 1), sowie der kombinierte Induktionsofen von Röchling-Rodenhauser. Diese beiden Typen sind schon so vollkommen ausgebildet, dass sie nur schwer zu übertreffen sein werden.

1) Siehe Band LIII, Seite 165.

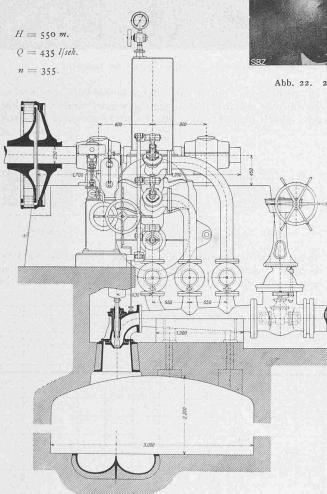


Abb. 21. 2500 PS-Hochdruckturbine mit Druckregulierung. - 1:50.

Das Navizance-Kraftwerk der A. I. A. G. bei Chippis.

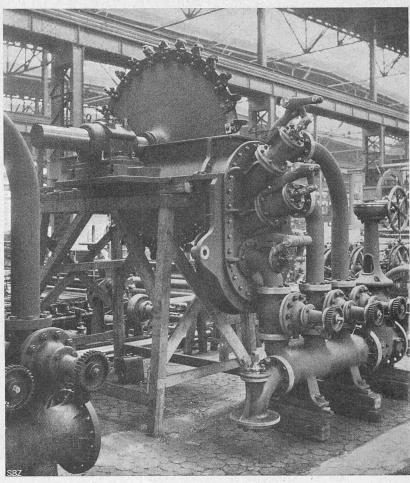


Abb. 22. 2500 PS-Turbine in den Werkstätten von Escher Wyss & Cie., Zürich.

Der elektrische Ofen macht heute dem Konverter und dem Siemens-Martin-Ofen bereits ernstliche Konkurrenz. Es ist erwiesen, dass man im elektrischen Ofen auf einfache Art und Weise und aus minderwertigem Rohprodukt hervorragende *Qualitätsstähle* herstellen kann, die denen anderer Oefen bei weitem überlegen sind. Wo es sich also um die Erzeugung eines hochwertigen Materials handelt, dürfte der elektrische Ofen in kürzester Zeit alle andern Oefen verdrängt haben.

Die Statistik zeigt, mit welcher Energie der elektrische Ofen seinen Einzug in die Stahlindustrie hält.¹) Im Jahre 1903 waren im Ganzen drei kleine Stahlöfen mit zusammen 8 t Inhalt im Betrieb, sieben Jahre später, Ende 1910, zählte man schon 67 Oefen mit total 200 t im Betrieb und 40 mit 150 t im Bau, sodass man für 1911 bereits mit einer Jahresproduktion von rund 500 000 t Elektrostahl rechnen darf.

Im ganzen zählt man etwa 17 verschiedene Systeme. Von diesen ringen heute eigentlich nur noch vier um den ersten Platz: der *Héroult-* und der *Girodofen* als Lichtbogenöfen einerseits und der *Kjellin-* und der *Röchling-Rodenhauser-Ofen* als Induktionsöfen anderseits.

Es lässt sich jetzt noch nicht entscheiden, welches dieser Systeme sich in Zukunft am meisten verbreiten wird; wahrscheinlich ist aber, dass Girod- und Röchling-Rodenhauser-Ofen schliesslich nebeneinander die erste Stelle einnehmen werden.

Die wichtigsten Lichtbogenöfen sind schematisch in den Abb. 1 bis 3 (S. 140) dargestellt.2) Beim Stassano-Ofen,

¹⁾ Siehe »Stahl und Eisen» 1910, Nr. 12.

²⁾ Vergl. u. a.: Viktor Engelhardt in der Z. d. österr. I. & A. V. 1909 Heft 47 bis 49, sowie: W. Bodenhauser u. J. Schoenawa «Elektrische Oefen der Eisenindustrie».

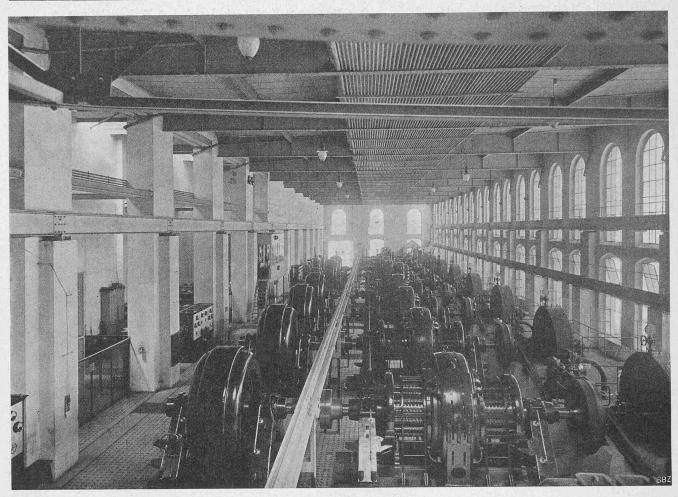
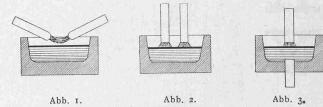



Abb. 28. Kraftzentrale der Navizance-Anlage in Chippis der Aluminium-Industrie-A.-G. Neuhausen (rechts die Turbinen).

(Abbildung 1) erzeugt der elektrische Strom zwischen den Kohlenelektroden analog wie bei einer Bogenlampe einen Lichtbogen, von dem die Wärme durch Strahlung auf das darunter liegende Schmelzgut übertragen wird 1). 1910 standen von ursprünglich 12 Stassano-Oefen nur noch 5 im Betrieb und ein kleiner befand sich im Bau. Obschon der Ofen einige ausgezeichnete Eigenschaften besitzt, bildet sein Prinzip heute doch einen überwundenen Standpunkt.

Abbildung 2 stellt den Héroult-Ofen dar. Auch hier wird die im Lichtbogen erzeugte Wärme zur Heizung benützt. Im Lichtbogen herrscht eine Temperatur von rund 3500 °C; zum Unterschied vom Stassano-Ofen verläuft er hier aber zum Teil im Schmelzgut selbst. Dieses muss daher, um die Aufnahme von Kohlenstoff aus dem Bogen

zu verhindern, durch eine Schlackenschicht vor direkter Berührung mit dem Lichtbogen geschützt werden. Es sei hier gleich bemerkt, dass alle Lichtbogenöfen mit Wechsel-

strom betrieben werden müssen, um elektrolytische Wirkungen auszuschalten. Beim Héroult-Ofen wendet man gewöhnlich eine Klemmenspannung von 100 Volt an bei

1) Die Wärmeverluste sind infolgedessen bei diesem Ofen sehr gross.

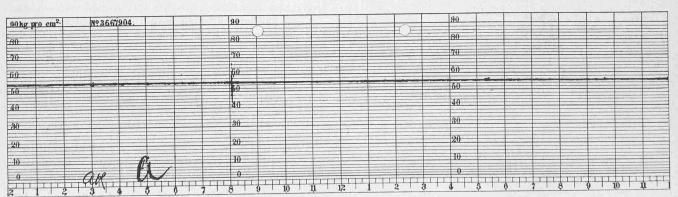


Abb. 25 u. 26. Druck-Diagramme der Registriermanometer der Navizance-Anlage vom 10./11. Juli 1911. — Rohrstrang links.

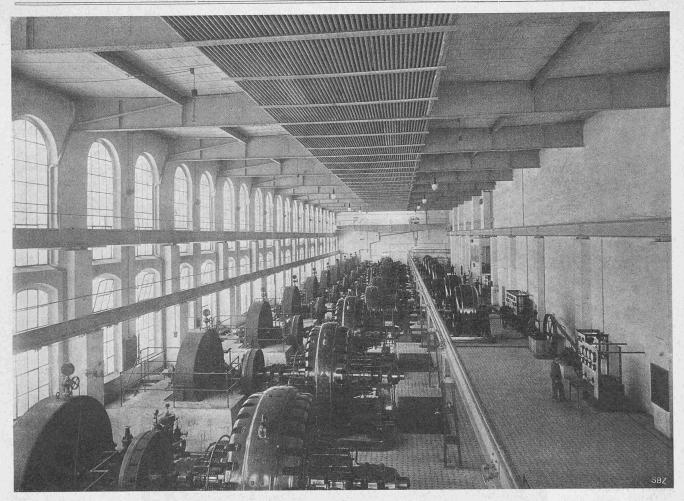


Abb. 29. Kraftzentrale der Navizance-Anlage in Chippis der Aluminium-Industrie-A.-G. Neuhausen (rechts das Ofenhaus).

25 bis 35 Perioden. Dabei nimmt der Ofen je nach der Grösse Ströme von 4000 bis 16 000 Ampère auf.

Da nun der Héroult-Ofen nicht mit jeder gerade vorhandenen Spannung und Periodenzahl betrieben werden kann, sind fast immer Transformatoren oder rotierende Umformer notwendig, sodass der elektrische Wirkungsgrad einer Anlage 80 % kaum übersteigen wird. Im Uebrigen besitzt der Héroult-Ofen die Unannehmlichkeiten aller Lichtbogen-Oefen, d h. die grossen Stromstösse beim Niederschmelzen von kaltem Einsatz. Gerade bei diesem Typus sind die Belastungsschwankungen so gross, dass die automatische Regulierung oft gänzlich versagt.

Wegen seiner Einfachheit und der Möglichkeit, auch mit Drehstrom arbeiten zu können, ist der Héroult-Ofen aber doch sehr verbreitet. Im Jahre 1910 waren 17 Oefen im Betrieb, ausser Betrieb keiner und 12 im Bau.

Der Girod-Ofen wird durch Abbildung 3 im Prinzip dargestellt. Hier befindet sich eine Elektrode über, die andere unter dem Eisenbad. Der Strom durchdringt also den ganzen Einsatz. Dies ist beim Niederschmelzen von Schrott (Eisenabfälle) von ganz besonderem Vorteil, weil dadurch die Stromschwankungen viel geringer werden wie beim Héroultofen. Dass die untere Elektrode aus Eisenstäben besteht, also nur eine abbrennende Kohlenelektrode vorhanden ist, bildet einen weitern Vorzug dieser Konstruktion. Der Girod-Ofen wird nur mit Einphasenstrom von 60 bis 75 Volt und 25 bis 35 Perioden betrieben. Man wird daher in den meisten Fällen Transformatoren und Umformer benötigen, sodass der totale elektr. Wirkungsgrad der Anlage 80 % kaum erreicht. Da der Heizstrom das ganze Schmelzgut durchdringt, wird dasselbe beim Girodofen sehr gleichmässig erwärmt. Das Urteil fällt aus diesen Gründen

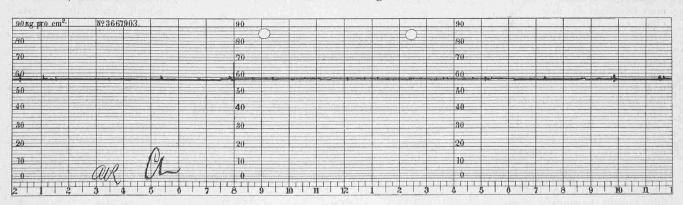


Abb. 26. Druck-Diagramm, Rohrstrang rechts. Die Anschläge beider Diagramme um 8 Uhr rühren vom Auswechseln der Streifen her.

meistens zu Gunsten des Girodofens gegenüber dem Héroult-Ofen aus, was auch die Statistik bestätigt. Obschon das Girod-Prinzip kaum halb so alt ist wie dasjenige von Héroult, waren 1910 doch schon 10 Girodöfen im Betrieb, ausser Betrieb keiner und 7 im Bau.

Von den vielen Ausführungsformen reiner *Induktions-*öfen ist der älteste, der *Kjellin-Ofen*, in Abb. 4 schematisch veranschaulicht.

Prinzipiell ist der Induktionsofen ein Spezialtransformator, dessen sekundäre Seite durch das Schmelzgut gebildet wird. Schickt man durch die primäre Bewicklung einen Wechselstrom, so wird in dem ringförmigen Schmelzgut ein starker Heizstrom induziert. Da sich Primär- und Sekundärstrom bekanntlich angenähert umgekehrt wie die entsprechenden

Windungszahlen verhalten, kann man durch passende Wahl der primären Windungen jeden beliebigen Sekundärstrom erzeugen.

Dabei dient also das Schmelzgut als Heizwiderstand: Die Schmelzwärme wird somit im Schmelzgut selbst erzeugt, was als grosser Vorzug des Induktionsofens angesehen werden kann. Ist der Quer-

schnitt des Eisenbades konstant, dann wird überall dieselbe Temperatur erzeugt und durch Variation der Klemmenspannung kann diese Temperatur beliebig geändert werden; es lassen sich Temperaturen bis gegen 3500°C erzielen. Der Induktionsofen kann direkt mit Spannungen von 5000

bis 10000 Volt betrieben werden. Es wird also in vielen Fällen ein besonderer Transformator entbehrlich sein und man bekommt in diesem Fall einen erheblich bessern elektrischen Wirkungsgrad als beim Lichtbogenofen. Im weitern fallen die Stromstösse, die beim Lichtbogenofen so unangenehm sind, hier gänzlich weg, sodass man zuerst nur Vorzüge des Induktionsofens sieht. Bei näherem Zusehen machen sich aber sehr bald auch schwerwiegende Nachteile bemerkbar. In metallurgischer Beziehung ist der ringförmige Herd des Kjellin-Ofens nicht besonders günstig, abgesehen davon, dass

er die Uebersicht erschwert. Die Raffination des Rohprodukts lässt sich im konzentrierten Herd besser durchführen. Im weitern sind die Bewegungserscheinungen im Bad des Kjellin-Ofens so heftig, dass ihnen die Ofenwandungen nur schwer Stand halten können und häufige Reparaturen nötig

Das Navizance-Kraftwerk der A. I. A. G. bei Chippis.

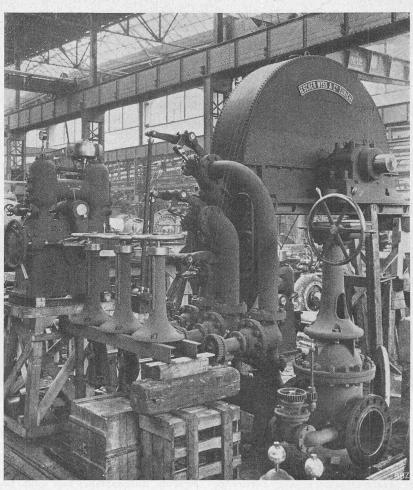


Abb. 23. 2500 PS-Hochdruckturbine in den Werkstätten von Escher Wyss & Cie., Zürich.

Elektrische Schmelzöfen der Stahlindustrie.

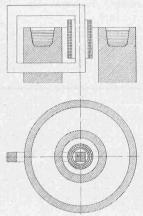


Abbildung 4.

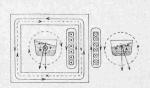


Abbildung 5.

werden. Die Ursache dieser Bewegungsvorgänge kann aus Abbildung 5 ersehen werden. 1) Die Streukraftlinien der primären

linien der primären und sekundären Seiten verlaufen im Raum zwischen primärer Wicklung und Schmelzrinne in derselben Richtung, stossen sich also gegenseitig ab. Infolgedessen wirkt auf das Bad eine horizontal nach aussen gerichtete Kraft. Diese bildet zusammen mit der Schwerkraft eine Resultierende, welche die Badoberfläche schief stellt (Abbildung 5). Der Neigungswinkel kann bis 35° betragen. Dabei stellt sich ein Fliessen des Materials von der äussern höhern Badkante nach innen ein. Das Bad wird dadurch allerdings gut gemischt, zerstört aber die innere Ofenwandung sehr bald.

Jene Eigenschaft des Kjellin-Ofens aber, die seine Existenzberechtigung in

Frage stellt, ist der *geringe Leistungsfaktor* bei grössern Ausführungen. Mit wachsendem Einsatz nimmt der Leistungsfaktor rasch ab, da der Querschnitt des Bades vergrössert und damit der Widerstand verkleinert wird. $tg \alpha = \frac{2 \pi n L}{\tau}$

nimmt zu, da w kleiner wird und L nahezu konstant bleibt; also geht der $\cos \alpha$ zurück. Abbildung 6 zeigt den experimentell ermittelten Verlauf von $\cos \alpha$ als Funktion des Einsatzes für einen bestimmten Kjellin-Ofen. Um den Leistungsfaktor zu vergrössern, d. h. um tg α herunterzudrükken, muss man bei grössern

Oefen mit der *Periodenzahl heruntergehen*. Abbildung 7 zeigt die praktisch verwendeten Periodenzahlen für verschiedene Ofengrössen.²) Man sieht daraus, dass man bei rund 8 t Einsatz schon auf 5 Perioden heruntergegangen ist, um einen annehmbaren $\cos \alpha$ zu erhalten. Man darf bei 2 t Einsatz und 15 Perioden höchstens auf ein $\cos \alpha = 0.7$ rechnen. Würde man denselben Ofen mit 50 Perioden betreiben, so käme höchstens ein $\cos \alpha = 0.3$ heraus unter

¹⁾ Vergl. V. Engelhardt, E. T. Z. 1907, S. 1086.
2) Vergl. V. Engelhardt, E. T. Z. 1907, S. 1105.

sonst gleichen Verhältnissen und man käme zu ganz abnorm grossen Konstruktionseinzelheiten. Ueberdies würde kein Elektrizitätswerk einen solchen Ofen an seinem Netz zulassen. Man trifft daher bei allen Kjellin-Oefen Periodenzahlen kleiner als 25 an. Da aber die meisten Werke 40-50 periodigen Strom produzieren, braucht man für grössere Kjellin-Oefen entweder besondere, schwere und teure Generatoren oder rotierende Umformer. Diese Gründe verhindern daher die weitere Verbreitung des Kjellin-Ofens für grössere Einsätze vollständig. Von Kjellin-Oefen waren 1910 nur 10 im Betrieb, 2 ausser Betrieb und nur 2 kleinere Oefen im Bau.

Im Röchling-Rodenhauser-Ofen ist nun seit 1907 ein Ofen entstanden, der die allgemeinen Vorteile der Induk-

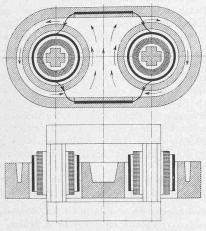
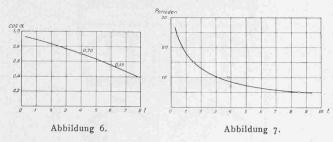



Abbildung 8.

tionsöfen ohne die schwerwiegenden Nachteile des Kjellinofens besitzt. Der Röchling-Rodenhauser-Ofen weist einen viel bessern Leistungsfaktor auf als der erstere, ohne dass man mit der Periodenzahl weit herunter zu gehen braucht. Im weitern besitzt er einen konzentrierten Herd und ist aus diesen Gründen dem Kjellin-Ofen weit überlegen. Sein Prinzip ist in Abb. 8 dargestellt.

Es geht daraus hervor, dass hier beide Schenkel des Transformatorkerns bewickelt sind. Wir haben dementsprechend zwei Schmelzrinnen, die sich in der Mitte zu einem geräumigen Arbeitsherd vereinigen. In diesem wird die Raffination durchgeführt, während die Rinnen nur zur Führung der induzierten Heizströme dienen. Um den Leistungsfaktor des Kjellin-Ofens zu verbessern, war schon früher vorgeschlagen worden, den Transformator durch eine sekundäre Kurzschlusswicklung aus starken Kupferbändern mehr zu belasten. Mit diesem Mittel würde man aber ein bestehendes Uebel durch ein grösseres vertreiben. Der Leistungsfaktor würde allerdings erhöht, aber der Wirkungsgrad müsste beträchtlich sinken, da dieser sekundäre Effekt in der Kurzschlusswicklung nur eine schädliche Erwärmung des Transformators bewirkte. Die Neuerung am Röchling-Rodenhauser-Ofen besteht nun darin, dass eine solche sekundäre Wicklung vorhanden ist; nur ist sie nicht kurzgeschlossen, sondern sie wird mit dem Ofeninhalt in Serie geschaltet, sodass der in der sekundären Wicklung induzierte Strom den Ofeninhalt ebenfalls als Heizstrom, als Nutzstrom durchfliesst (Abbildung 8). Dass dadurch der Leistungsfaktor vergrössert wird, ist dem Elektrotechniker ohne weiteres klar.

Auf beiden Seiten des Herdes sind gusseiserne Polplatten mit grosser Fläche gegen das Schmelzgut hin angeordnet, die die Serieschaltung von Sekundärwicklung und Ofeninhalt vermitteln. Um diese Polplatten gegen direkte Berührung mit dem geschmolzenen Eisen zu schützen, ist zwischen beide noch die Herdwandung, die hier aus einem besondern Material besteht, eingeschaltet. Dieses Material, als Stromübertragungsmasse bezeichnet, ist ein Gemisch aus Dolomit und Teer und hat bei gewöhnlicher Temperatur als Leiter zweiter Klasse einen sehr hohen elektr. Widerstand. Beim Beginn der Schmelzung ist daher der sekundäre Strom noch sehr gering. Sobald aber die Stromübertragungsmasse einige 1000 C. warm geworden ist, nimmt ihr Widerstand rasch ab, sodass die in der Sekundärwicklung induzierte elektromotorische Kraft jetzt einen grossen Heizstrom durch das Bad treiben kann, der gleichzeitig den cos α vergrössert.

Da es nun bereits gelungen ist, den Röchling-Rodenhauser-Ofen auch für Zwei- und Drei-Phasenstrom zu bauen, so kann dieses System sozusagen mit jeder beliebigen Stromart, Spannung und Periodenzahl betrieben werden. Besonders die Verwendungsmöglichkeit von 50-periodigem Drehstrom hoher Spannung kann nicht hoch genug angeschlagen werden. Geht man mit dem Einsatz über 3 bis 5 t, dann wird man allerdings auch mit der Periodenzahl vorteilhaft auf 25 heruntergehen, um den cos α über 0,8

zu halten.

Obschon der Röchling-Rodenhauser-Ofen bedeutend komplizierter als die andern Oefen ist, scheint er doch dazu berufen, in der Elektrostahlindustrie mit der Zeit den ersten Platz zu behaupten.

Auch in diesem Ofen treten Zirkulationserscheinungen des Bades auf. Aus dem gleichen Grund, wie beim Kjellin-

Ofen erläutert wurde, wird das Material in der Richtung der Ofenaxe gegen die Mitte des Herdes getrieben. Es tritt also ein Fliessen des Bades von der höher liegenden Herdmitte gegen die Zustellungswandungen ein (Abb. 9). Da sich aber die Kräfte, die von beiden Primärwicklungen ausgehen, teilweise aufheben, ist die besprochene Wirkung hier kleiner als beim Kjellin-Ofen.

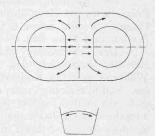


Abbildung o

Eine zweite Ursache der Zirkulation im Röchling-Rodenhauser-Ofen ist der sog. Pinch-Effekt 1), der immer dann auftritt, wenn ein flüssiger Leiter von variablem Querschnitt von einem starken Gleich- oder Wechselstrom durchflossen wird.

Die Erscheinung ist die folgende (Abbildung 10): Der Strom I durchfliesse den zylindrischen Leiter in axialer Richtung und erzeugt dadurch im Leiter selbst ein zirkuläres magnetisches Feld von der Stärke H = f(r); H =innerhalb des Leiters.

Die einzelnen Stromelemente befinden sich daher in einem Magnetfeld und es wird

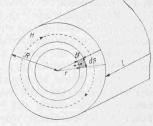


Abbildung 10.

auf sie eine bestimmte, gegen das Zentrum gerichtete Kraft dP ausgeübt. Es ist $dP = H \cdot l \cdot di$ (di =Stromelement).

Aus Abbildung 10 folgt:

$$di = \frac{I}{\pi R^2} dr ds$$
 und hieraus

$$dP = \frac{2 Ir}{R^2} l \frac{I}{\pi R^2} ds ds = \frac{2 I^2}{\pi R^4} lr dr ds$$

Der elementare Druck auf ein Stromelement ist
$$dp = \frac{dP}{df}, dp = \frac{dP}{ds l}$$
$$dp = \frac{2 l^2}{\pi R^4} r dr.$$

¹⁾ Die Bezeichnung wurde von C. Hering eingeführt (to pinch =

Hieraus ergibt sich der totale Druck auf die Leiteraxe:
$$p = \int\limits_{Q}^{R} \frac{2}{\pi R^4} r \ dr = \frac{I^2}{\pi R^2} \ \text{oder} \ p = \frac{I^2}{Q}$$

wenn der Leiterquerschnitt =
$$Q$$
 gesetzt wird.
Bedeutet $\sigma = \frac{I}{Q}$ die Stromdichte, so ist $p = I\sigma$.

Ist σ über die ganze Leiterlänge konstant, dann ist der Druck auf die Leiteraxe überall derselbe und es besteht Gleichgewicht. Sobald aber der Leiterquerschnitt an einer Stelle kleiner ist, wird dort σ und damit p grösser (Abbildung 11). Dadurch wird aber die schon vorhandene

Einschnürung solange vergrössert, bis der Gegendruck der benachbarten Massen infolge der Schwerkraft dem Druck p das Gleichgewicht hält. Die bestehenden Niveaudifferenzen bewirken nun ein stetiges Fliessen des Materials gegen Stellen grösserer Stromdichte hin.

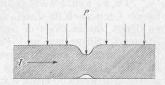


Abbildung II

Beim Röchling-Rodenhauser-Ofen tritt infolge des Pinch-Effektes ein Fliessen des Bades gegen die Schmelzrinnen und von den Polplatten gegen die Herdmitte hin ein. Man hat es durch richtige Wahl der Badquerschnitte aber in der Hand, die Bewegungserscheinungen in bestimmten Grenzen zu halten.

Der Röchling-Rodenhauser-Ofen scheint sich in die Praxis sehr gut einzuführen. Drei Jahre nach Erteilung des Patentes waren schon 6 Oefen im Betrieb, einer ausser Betrieb und 8 im Bau.

Der gemeinsame und grösste Vorteil aller Elektrostahlöfen gegenüber den andern Oefen ist der folgende: Während man im Konverter und im Siemens-Martin-Ofen zur Stahlerzeugung von einem sehr guten Rohprodukt, d. h. von einem schon teilweise raffinierten Rohmaterial ausgehen muss, kann man im elektrischen Ofen aus ganz minderwertigem Schrott in wenigen Stunden den besten Qualitätstahl erschmelzen. Ueberall wo es sich also um die Herstellung von Spezialstählen handelt, weist der elektrische Ofen neben der ausgezeichneten Qualität seiner Produkte auch die beste Oekonomie auf.

Da die elektrische Energie heutzutage immer noch relativ teuer ist, zeigt sich der elektrische Ofen zur Herstellung von minderwertigen Produkten weniger geeignet. Für solche Stähle behalten die wirtschaftlicheren Konverterund Siemens-Martin-Verfahren vorläufig ihre Bedeutung.

Man wendet aber auch mit Vorteil eine Kombination von Siemens-Martin- und elektrischem Ofen an. Die primäre Raffination des Rohmaterials wird dem erstern zugewiesen, während dann die letzte Veredelung des Stahls im elektrischen Ofen stattfindet.

Es ist heute noch nicht vorauszusehen, wie weit sich der elektrische Ofen die Stahlindustrie erobern wird; sollte aber die Beschaffung der elektrischen Energie in der Zukunft noch bedeutend wirtschaftlicher werden, als heute, so dürfte dadurch dem berühmten Konverter- und Siemens-Martin-Ofen sein weites Arbeitsfeld allmählich eingeschränkt werden.

Das Zunfthaus zu Zimmerleuten in Bern.

Erbaut durch Ed. Joos, Architekt in Bern. (Mit Tafeln 30 und 31).

Nachdem die beidseitig an das alte Zunfthaus anstossenden Gebäude an der Marktgasse in Bern einen Umbau im Sinne einer den heutigen Anforderungen besser entsprechenden Raumausnützung erfahren hatten und dabei um ein Stockwerk erhöht worden waren, schritt auch die "Gesellschaft zu den Zimmerleuten" dazu, ihr Haus im gleichen Sinne umzugestalten. Bei dem bezüglichen Beschluss, den das "Grosse Bott" der Gesellschaft am 7. Juni 1906 fasste, wurde grundsätzlich festgestellt, "dass ein

Geschäftshaus mit Wohnungen, kein Hotel mit Wirtschaftsbetrieb zu erstellen sei"

Durch Rundschreiben vom 16. Februar 1907 1) lud das Vorgesetztenbott die Herren F. & A. Bürgi, K. InderMühle, Ed. Joos, Lindt & Hofmann und A. Gerster zu einem engern Wettbewerb ein, an dem die Genannten bis auf A. Gerster sich beteiligten. Das aus den Architekten F. Trachsel, O. Lutstorf und R. von Wurstemberger gebildete Preisgericht erkannte einstimmig, es sei der Entwurf des Architekten Ed. Joos der Ausführung zu Grunde zu legen und dessen Urheber mit der Ausarbeitung der Baupläne, eventuell mit der Bauleitung zu betrauen; für die innere Einteilung des II. Stockwerkes sei das Projekt der Architekten Lindt & Hofmann in erste Linie zu stellen und sollte als Grundlage für die endgültige Grundrissanordnung dienen.

Das "Grosse Bott" der Gesellschaft beschloss am 14. März 1907, im Sinne des Antrages des Preisgerichtes vorzugehen, und genehmigte im Juli 1907 die von Architekt Ed. Joos ausgearbeiteten endgültigen Pläne, zu deren Ausführung es einen Kredit von 150000 Fr. bewilligte.

Der alte Bau wurde gänzlich abgetragen. Aus dessen Fassade fanden nur das Standbild des Zimmermanns, das die Fassade im ersten Stocke ziert, und das Wappen der Gesellschaft Wiederverwendung, das den Giebel der Strassen-Front des Zunftsaales im II. Stocke krönt (Tafel 30). Das Standbild stammt aus dem Jahre 1846, während das Gesellschaftswappen um die Mitte des XVIII. Jahrhunderts erstellt worden sein dürfte.

Unsere 11 Abbildungen auf den Seiten 144 bis 146 und die beiden Tafeln 30 und 31 bringen den Neubau in

1) Wir entnehmen diese Angaben der "Festschrift auf die Einweihung des neuen Gesellschaftshauses am 15. Oktober 1909" von Dr. A. Zeliger.

Abb. 8. Hauptfassade, nach Originalzeichnung des Arch. - 1:150.