Zeitschrift: Schweizerische Bauzeitung

Herausgeber: Verlags-AG der akademischen technischen Vereine

Band: 57/58 (1911)

Heft: 2

Artikel: Die Ofenbergbahn

Autor: [s.n.]

DOI: https://doi.org/10.5169/seals-82550

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 29.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

hafter Weise geleitet, der dabei von dem unermüdlichen Generalsekretär, Herrn *T. Serstevens*, trefflich unterstützt wurde. In vier Sitzungen wurden die Verwaltungsgeschäfte erledigt und eine Reihe von Vorträgen angehört.

Es sprachen in der 1. Sitzung, Dienstag, den 6. September, vormittags: Herr C. de Burlet, Generaldirektor der Société nationale des Chemins de fer vicinaux, Brüssel, über: "Die Gesetzgebung für Kleinbahnen in den Hauptstaaten Europas"; Herr E. A. Ziffer, Präsident der Bukowinaer Lokalbahnen, Wien, über: "Die Lebensdauer, Einrichtungen und das Verhalten von Oberbauunterlagen, sowie über die hierbei gewonnenen Erfahrungen"; die Herren Wattmann, Direktor der Strassenbahnen der Stadt Cöln, und J. H. Neiszen, Direktor der städtischen Strassenbahnen, Amsterdam, über: "Die Beziehungen zwischen Strassenbahn und Bebauungsplan".

In der 2. Sitzung, Donnerstag, den 8. September, vormittags, hielten Vorträge: die Herren Spängler, Direktor der städtischen Strassenbahnen, Wien (Wagenuntergestelle), Delmez, Oberingenieur der Antwerpener Strassenbahnen (Wagenkasten und Plattformen), und Stahl, Direktor der städtischen Strassenbahnen, Düsseldorf (Nebeneinrichtungen), über: "Neuere Erfahrungen und Verbesserungen des rollenden Materials elektrischer Strassenbahnen"; Herr Otto, Oberingenieur der Grossen Berliner Strassenbahn, Berlin, über: "Ueberwachung und Unterhaltung der Oberleitungen bei elektrischen Strassenbahnen"; die Herren Bouton, Generaldirektor der Compagnie des Tramways de l'Est Parisien, Paris, und Battes, Direktor der städtischen Strassenbahnen, Frankfurt a. M., über: "Praktische Ergebnisse aus der Verwendung von Wagenstromzählern".

In der 3. Sitzung, Donnerstag, den 8. September, nachmittags, berichteten: die Herren Ch. Rochat, Generaldirektor der Genfer elektrischen Strassenbahn Gesellschaft, Genf, und A. Busse, Oberingenieur der Grossen Berliner Strassenbahn, Berlin, über: "Neuere Erfahrungen und Verbesserungen auf dem Gebiete des Geleisbaues der innerstädtischen Strassenbahnen (Unter- und Oberbau)"; Herr A. Busse, Oberingenieur der Grossen Berliner Strassenbahn, Berlin, über: "Riffelbildung auf Schienenfahrflächen"; und Ch. Thonet, Generaldirektor der Société d'Entreprise générale de Travaux, Lüttich, über: "Neuere Betriebsmaschinen für elektrische Zentralen, insbesondere Kraftgasmaschinen, Dieselmotoren, usw."

In der 4. Sitzung, Freitag, den 9. September, vormittags, sprachen: Herr A. Mariage, Generaldirektor der Compagnie Générale des Omnibus, Paris, über: "Die Anwendung von Feldspulen aus Aluminiumdraht in Strassenbahnmotoren"; Herr Schörling, Oberingenieur der Strassenbahn, Hannover, über: "Wirtschaftlichkeit der Reinigung der Rillenschienen bei Strassenbahnbetrieben und die verschiedenen bezüglichen Reinigungsmethoden"; und Herr H. Géron, Aufsichtsratsmitglied der Compagnie Générale des Chemins de fer secondaires, Brüssel, über: "Entwicklung und Verbreitung des einheitlichen Buchungsschemas des internationalen Vereins".

Da nur in Vollversammlungen beraten wurde und zudem einige Berichte gar nicht gedruckt vorlagen und andere erst am Kongresse selbst erhältlich waren, fanden nur beschränkte Diskussionen statt.

Die bis jetzt erschienenen Berichte bilden einen stattlichen Band und enthalten wertvolle Arbeiten über die verschiedenen Gebiete des Strassen- und Kleinbahnwesens.

In der Schluss-Sitzung wurde Herr Generaldirektor Rochat von Genf als Mitglied des Direktionskomitees des Verbandes gewählt. Für die im Jahre 1912 stattfindende nächste Session lagen Einladungen von Madrid, Budapest und Moskau vor. Das Direktionskomitee wurde mit der Wahl des Kongressortes betraut.

An gesellschaftlichen Veranstaltungen fanden statt:

Montag, den 5. September: Begrüssungsabend im Festsaale der Stadt Brüssel; Dienstag, den 6. September, nachmittags: Besuch der Ausstellung, Empfang im deutschen Pavillon durch den kaiserl. Generalkommissär; abends: Festvorstellung in der königlichen Oper (Théâtre royal de la Monnaie); Mittwoch, den 7. September: Ausflug nach Antwerpen; Donnerstag, den 8. September: Festbankett, gegeben von der belgischen Regierung im Festsaale der Stadt Brüssel; Freitag, den 9. September: Abendgesellschaft (Raoût) auf dem Brüsseler Rathause, gegeben von der Stadt Brüssel; Samstag, den 10. September: Ausflug nach Brügge-Ostende.

Bei allen diesen Anlässen waren auch die Damen eingeladen; ausserdem war für sie während der Sitzungen vom 8. September

ein besonderer Besuch der Ausstellung mit Déjeuner daselbst angeordnet

Freitag nachmittags wurden die Depots der Brüsseler Strassenbahnen besucht und darin eine Anzahl von Spezialfahrzeugen und Geräten besichtigt und eine Probefahrt mit einem elektrothermischen Motorwagen neuen Systems, der einige bemerkenswerte Eigenschaften aufweist, ausgeführt.

Ueber den Verlauf der verschiedenen Veranstaltungen wird ein von der Leitung des Verbandes herauszugebender Bericht alles Nähere enthalten.

In Zusammenfassung kann gesagt werden, dass der Kongress durch das Zusammentreffen hervorragender Fachmänner auf dem Gebiete des Strassenbahn- und Kleinbahnwesens hochinteressante Veranstaltungen bot. Auch die Ausflüge nach Antwerpen, Brügge und Ostende waren sehr dankbar und die verschiedenen festlichen Anlässe in jeder Beziehung gelungen. Der ganze Kongress war sehr sorgfältig vorbereitet und die Durchführung des Programmes liess nichts zu wünschen übrig.

Die Ofenbergbahn.

Bereits in Band LV auf Seite 41 haben wir, der bundesrätlichen Botschaft an die Bundesversammlung folgend, einige wesentliche Daten über die projektierte Bahn mitgeteilt. Heute sind wir, dank dem freundlichen Entgegenkommen des Ingenieurbureaus *L. Kürsteiner* in St. Gallen, des Mitinhabers der Konzession, in der Lage, unsern Lesern auf den Seiten 26 und 27 das generelle Längenprofil sowie den Lageplan des Bahnprojektes vorzuführen, das nun dem Konzessionsbegehren entsprechend ausgearbeitet vorliegt. Es sind diesen die wichtigsten Daten hinsichtlich Richtungsund Steigungsverhältnissen usw. direkt zu entnehmen.

Wie unsere Leser bemerken werden, haben die von uns vor Jahresfrist gebrachten Zahlen mehrere, wenn auch nicht wesentliche Aenderungen erfahren.

Die Gesamtlänge des Tracés beträgt jetzt von Zernez bis Schluderns 53,212 km; davon liegen in der Geraden 68 %,0, in Kurven von 120 m bis 300 m Halbmesser 28 %,0, in Kurven von grösserem Radius 4 %,0 der gesamten Länge. Im ganzen sind zwölf Stationen bezw. Halt- oder Ausweichstellen vorgesehen, deren Höhenkoten dem Längenprofil zu entnehmen sind. Die 15 Tunnels, deren Längen ebenfalls im Längenprofil verzeichnet stehen, erreichen eine Länge von zusammen 7964 m. An grössern Talübergängen und Brücken sind 20 verzeichnet, die wenn immer möglich als gewölbte Objekte in Aussicht genommen sind; darunter ein Viadukt mit einer Oeffnung zu 40 m und fünf solchen zu 12 m über den Ofenbach, vier gewölbte Brücken von 33 bis 37 m usw.

Für den Oberbau der meterspurigen Bahn sind auf imprägnierte Holzschwellen verlegte Schienen von 27 kg/m gewählt, welches Profil auch die Rhätische Bahn bei ihren Strecken verwendet, die im Gefälle von 30% liegen. Im allgemeinen sind dem Unterbau sowie allen Kunstbauten ebenfalls die Normalien der Rhätischen Bahn zu Grunde gelegt.

Als Betriebsart ist Einphasenwechselstrom in Aussicht gehommen, gleichfalls sich anlehnend an die für die Engadinerlinie der Rhätischen Bahn vorgesehene Anordnung. Dementsprechend wird die Anschaffung sowohl von Motorwagen wie auch von Lokomotiven geplant.

Auf das gründlich ausgearbeitete Projekt hier näher einzutreten, müssen wir uns nach unserer Gepflogenheit versagen. Wir entnehmen ihm nur noch die Schlussummen des Kostenvoranschlages wie folgt:

Verwaltungskosten,	Bauzinse	und				
Grundeinlösung		ridiy ir si			2 130 000	Fr.
Unterbau				10.7	12 918 000	,,
Oberbau		1,1400			1 640 000	,,
Hochbau und Statio	nseinrich	tungen			600 000	11
Elektrische Leitunge	n, Telegra	aph und	Si	gnale	806 000	,,
I. Bahnanlage und f	este Einri	ichtunge	n .	E-lon-	18 094 000	Fr.
II. Rollmaterial .			101	Hall.	1 226 000	"
III. Mobiliar und Ge	rätschafte	en .	17/0	19110	80 000	**
				Total	19 400 000	Fr.

Miscellanea.

Schiffsturbinen mit Rädervorgelege. Das Stirnradgetriebe von W. Melville und J. H. Macalpine für 6000 PS, das wir unsern Lesern seiner Zeit in Wort und Bild vorgeführt haben,1) ist mit einer Westinghouse-Schiffsdampfturbine von 6000 PS im praktischen Betriebe eingehend erprobt worden und hat nunmehr das Versuchsstadium bereits überwunden. Es ergab sich für diese Schiffsdampfturbine samt dem Melville-Macalpine-Vorgelege ein Gewicht von ungefähr 40775 kg, das aber bei geringfügigen Aenderungen der Schaufelung der Turbine nicht nur für die Leistung von 6000 PS bei 300 Uml/min, sondern für eine solche von 10000 PS bei 300 Uml/min dienen könnte; dass speziell für das Vorgelege diese Leistungserhöhung erwartet wurde, meldeten wir bereits in unserer frühern Notiz. Auf Grund der durchaus zufriedenstellenden Ergebnisse hat nun, wie die "Zeitschrift für das gesamte Turbinenwesen" berichtet, das amerikanische Navy-Departement der Westinghouse-Gesellschaft den Auftrag zum Einbau dieser Antriebs-Anordnung in den gegenwärtig im Umbau befindlichen Kreuzer "Baltimore" und in einen kürzlich bestellten Kohlendampfer erteilt. Der Kreuzer "Baltimore" erhält zur Erreichung einer Fahrgeschwindigkeit von 20 Knoten zwei Westinghouse-Schiffsturbinen mit Melville- und Macalpine-Vorgelegen von je 5000 PS Einzelleistung, wobei die Umlaufzahl der Turbinen auf 1820 Uml/min, diejenige der Propeller auf 200 Uml/min festgesetzt sind. Die zugehörigen Getriebe erhalten Teilkreisdurchmesser von 275 mm für das kleine und 2540 mm für das grosse Zahnrad. Da weiter auch schon Versuche mit Schiffsturbinen bis auf 20000 PS Einzelleistung vorliegen, mit einer für den Schiffsbetrieb besonders zweckmässig ausgebildeten, leicht ersetzbaren Schaufelung der Leitapparate, so hält die Westinghouse-Gesellschaft den Einbau von Vorgelegeturbinen in die Riesendampfer der Bauart "Mauretania" und "Lusitania" möglich, deren Maschinenleistung gegenüber dem direkten Turbinen-Propellerantrieb sich von etwa 60 000 PS auf rd. 45 000 PS erniedrigen würde, und zwar insbesondere zufolge des erheblich höhern Wirkungsgrades des langsam laufenden Propellers.

Eine Wolframlampe mit gezogenem Wolframdraht ist unlängst durch die Firma Siemens & Halske A.G. in die Praxis eingeführt worden und bietet gegenüber den bisher gebräuchlichen

Wolframlampen mit, nach dem sogen. Spritzverfahren hergestellten, Wolframfäden den erheblichen Vorzug einer grössern Widerstandsfähigkeit gegenüber Erschütterungen. Die im Laboratorium von Siemens & Halske vorgenommenen Beobachtungen über die unter gewissen Verhältnissen mögliche Walz- und Ziehbarkeit von Wolfram reichen bis ins Jahr 1904 zurück; seither sind eifrige Versuchs-

ē 1538 4

5

°E

52

arbeiten zur Herstellung der "Wolframdrahtlampe" geleistet worden, die im Jahr 1908 zu einem ersten vorläufigen Erfolg führten. Gleichzeitig sind solche Versuche auch anderwärts vorgenommen worden, so seitens der General Electric Co, wie wir unlängst melden konnten.1) Der Draht dieser neuen Wolframdrahtlampe ist nach Art der ebenfalls von der Siemens & Halske A.-G. hergestellten Tantallampe auf Station Zernez 1475 00 2 rucke 34 om weit lukt 4 Oef d 6 om om toen UT kt 50ef à 2001 Kreuzungsstation O 260 nel 30.0m. lang 8 2440 Nadukt 50ef a 8 0 g 2150 Station Fuorn o 250 3 \$ 1500 400 600 198700 0 327.5 g 2520 20 2 \$ 1350 22 g 450 23 \$ 2500 24 25 Station Cierts 1729.05 9 300 26 Viadukt a Oef à 200m 27 28 Station Fuldera 29 30 _1514.80 <u>%</u> 750 148480 8 750 33 1430.00 1429.25 GI 250 Munstertal \$ 1430 1372 05 - w 250 33 Station Münste 39 1251 30 0 300 1251 30 0 300 1247 55 0 2.50 SCHWEIZ Station Taufers 8 350 0 265 OESTERREICH 42 to OFENBERGE 4 Zernez - Schluderns ängenprofi Maximalsleigung

> einen Drahthalter aufgewickelt und hat den Namen "Wotan-Lampe" erhalten, dessen Anfangsbuchstaben an die Begriffe Wolframdraht und Tantalwicklung erinnern sollen. Gegenüber den bisherigen Wolframfadenlampen hat die Wolframdrahtlampe, wie schon erwähnt, den Vorzug grösserer Haltbarkeit; gegenüber der Tantallampe verwirklicht sie einen geringern Effektverbrauch, da sie, wie alle Wolf-

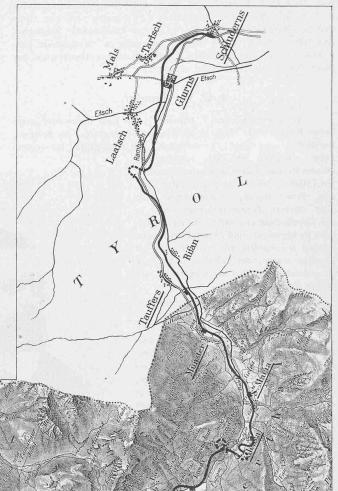
40%00

AHN

Station Glurns

Station Schluderns

¹⁾ Band LV, Seite 215.


¹⁾ Band LVI, Seite 56.

ramlampen nur ungefähr ein Watt pro Normalkerze beansprucht, d. h. rund ²/₃ des Effektverbrauchs der Tantallampe. Die Wolframdrahtlampe eignet sich nicht nur für mittlere Helligkeiten, wie die Tantallampe, sondern kann auch für Miniaturlämpchen von 1 bis 16 Volt Spannung und namentlich auch für hochkerzige Lampen mit einer Helligkeit von 100 bis 400 Normalkerzen hergestellt werden. Da der einstweilen herstellbare Wolframdraht infolge des Stromdurchgangs allmählig einen Teil seiner anfänglichen Elastizität verliert, so ist dessen mechanische Festigkeit zur Zeit derjenigen der Tantallampe noch nicht gewachsen; es ist jedoch vorauszusehen, dass in nicht allzuferner Zukunft auch in diesem Punkte Fortschritte noch erzielt werden dürften.

Monatsausweis über die Arbeiten am Lötschbergtunnel. Dezember 1910.

(Tunnellänge = $14536 m$)	N	lordseite	Südseite	Total
Fortschritt des Sohlenstollens im Dez.	m	247	162	409
in % der Tunnellänge				2,810/0
Länge des Sohlenstollens am 31. Dez.	m	6668	6644	13312
in % der Tunnellänge				91,580'0
Gesteinstemperatur vor Ort	°C	25,8	32,0	
Am Portal ausfliessende Wassermenge	I/Sek.	200	62	
Mittlere Arbeiterzahl im Tag:				
Ausserhalb des Tunnels		371	344	715
Im Tunnel		969	1417	2386
Im Canzon		1340	1761	3101

Nordseite. Der Richtstollen wurde im Gasterngranit vorgetrieben, der nur an wenig Stellen mit Quarzporphyr wechselte. Das Gestein ist massig mit vorherrschend N-S-Streichen und östlichem

Mit Bewilligung der eidg. Landestopographie. Uebersichtskarte der Ofenbergbahn. — Masstab 1:125000.

Fallen. Der erzielte Fortschritt mit fünf Meyerschen Perkussions-Maschinen war im Durchschnitt $8,52\ m$ für einen Arbeitstag.

Südseite. Der Stollen wurde im lokal schlierig-gneisig ausgebildeten, selten in Quarzporphyr übergehenden, massigen und unregelmässig geklüfteten Gasterngranit vorgetrieben. Das Streichen der schiefrigen Partien ist N 78° O, ihr Fallen 65° S. Mit vier Ingersoll-Perkussions-Maschinen wurde ein mittlerer, täglicher Fortschritt von 5,59 m erreicht.

Städtebau-Ausstellung in Frankfurt a. M. Vom 15. Januar bis zum 11. Februar gelangt in den Senckenbergschen Sälen in Frankfurt die Dr. W. Hegemannsche Sammlung amerikanischer und englischer Stadterweiterungs- und Bebauungspläne, ferner der Pläne und Ansichten bestehender