Zeitschrift: Schweizerische Bauzeitung

Herausgeber: Verlags-AG der akademischen technischen Vereine

Band: 57/58 (1911)

Heft: 9

Artikel: Neuere Ausführungen von Pressluft-Stellwerken

Autor: Kohlfürst, L.

DOI: https://doi.org/10.5169/seals-82574

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 12.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

INHALT: Neuere Ausführungen von Pressluft-Stellwerken. — Verwaltungsgebäude der Schweiz, Volksbank in Bern. — Die Einführung der linksufrigen Zurichseebahn in den Hauptbahnhof Zurich der S. B. B. — Berner Alpenbahn. — Die Wrissenberg-decke. — Miscellanea: Ueber die Lokomotiven der Brüsseler Weltausstellung. Ein neuer Desinfektionsapparat für Eisenbahnwagen. Die Bedeutung des Relativitätsprinzips für die physikalische Forschung. Kühlkörper zur Lufterfrischung gekapselter elektrischer Maschinen. Maschinelle Erzeugung von Wechselströmen für 100 000 Perioden. Neue Wasserversorgung für die Stadt Athen. Bebauungspläne für die Umgebung neuer Bahn-

hofs-Anlagen. Der Grosschiffahrtsweg Rouen-Paris. Einführung motorisch betriebener Verkghrsmittel auf den Strassen von London. Schweizerische Bundesbahnen. — Konkurrenzen: Post- und Telegraphengebäude in Murten. Reformierte Kirche und Pfarnbaus zu Saignelégier. Welttelegraphendenkmal in Bern. Schulhaus und Turnhalle in Sirnach. Schweizerische Landesausstellung Bern 1914. — Nekrologie: M. W. Jackson. — Literatur. Vereinsanenrichten: Der Talsperrenbau. Literar. Neuigkeiten. — Vereinsnachrichten: Technischer Verein Winterthur. G. e. P.: Stellenvermittlung. Tafeln 27 bis 30: Verwaltungsgebäude der Schweiz, Volksbank in Bern.

Band 57.

Nachdruck von Text oder Abbildungen ist nur mit Zustimmung der Redaktion und unter genauer Quellenangabe gestattet.

Neuere Ausführungen von Pressluft-Stellwerken

von L. Kohlfürst.

In Nummer 21 und 22 der Schweizerischen Bauzeitung vom 23. und 30. Mai 1908 wurde die damals jüngste Form der in Deutschland zur Ausführung kommenden Pressluft-Stellwerke beschrieben, welche sich von den englischen Ausführungen und dem amerikanischen Urbild namentlich dadurch fortschrittlich auszeichnet, dass das Aufschneiden von Weichen sich am Stellwerk rückmeldet und die Freigabe jeder von der aufgeschnittenen Weiche abhängigen Fahrstrasse solange verhindert, als der Anstand nicht wieder gehoben worden ist. Zugleich wurde damals auf den sehr beachtenswerten Umstand hingewiesen, dass die für Deutschland in Betracht kommenden Signalbauanstalten, angeregt durch das preussische Ministerium der öffentlichen Arbeiten, für die Ausführung der Kraft-Stellwerke aller Systeme tunlichste Einheitlichkeit durch Aufstellung und Annahme gewisser Normalien anstrebten. Die seitdem im Sinne der letzterwähnten Bestrebungen1), sowie im allgemeinen bei den in Rede stehenden deutschen Einrichtungen zur Durchführung kommenden Neuerungen mögen aus der nachstehenden Beschreibung entnommen werden. Dieselbe bezieht sich auf jenen Typ, welcher zur Zeit in Deutschland lediglich durch die mit den Werken C. Stahmer, A.-G. in Georgshütte, und mit Zimmermann & Buchloh in Berlin-Borsigwalde zu einem Unternehmen vereinigte Eisenbahn-Signal-Bauanstalt Maschinenfabrik Bruchsal, A.-G. vormals Schnabel & Henning ausgeführt wird, welche Gesellschaft seit 1905 auch in der Schweiz eine Zweiganstalt "Schweizerische Stellwerksfabrik, Wallisellen" bei Zürich errichtet hat.

Zur Beschaffung der Pressluft, welche die Umstellungen der Signale und Weichen durchzuführen hat, steht ein Verbund-Kompressor (Abb. 1) in Anwendung, der die Luft auf 2,5 bis 3,5 at verdichtet und behufs seines Antriebes mit einem Elektromotor unmittelbar gekuppelt ist. Letzterer hat einen selbsttätigen Anlasser, durch den er dem laufenden

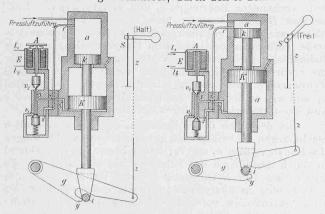


Abb. 2 und 3. Vorrichtung mit zwangsweiser Rückstellung.

Bedarfe gemäss an den äussersten zulässigen Grenzen der ansteigenden oder sinkenden Luftdichte abgestellt, bezw.

1) Rein elektrische Kraftstellwerke wurden in Deutschland allein von den Firmen Siemens & Halske, sowie Max Jüdel & Co. und elektrischpneumatische von C. Stahmer ausgeführt, u. z. die zuerst angeführte Gattung im überwiegenden Masse. Nachdem von der Firma Siemens & Halske ein neues Schaltwerk entworfen worden war, das mit denselben elektrischen Einrichtungen für rein elektrische wie für elektrisch-pneumatische Stellwerke verwendet werden konnte, entschloss sich auch die mit C. Stahmer fusionierte Maschinenfabrik Bruchsal für ihre elektrisch-pneumatischen Anlagen dieses Siemens-Halske'sche Normale grundsätzlich zur Anwendung zu bringen.

eingeschaltet wird. Die in der Pumpe verdichtete Luft streicht zuvörderst durch zwei oder mehrere Luftkammern, in denen sich Wasser und Oel abscheiden, um sodann nach Passierung eines Röhrenkühlers in das Hauptverteilungsrohr einzutreten, welches den ganzen Bahnhof entlang verläuft und in grösseren Anlagen je nach dem örtlich verschiedenen Luftverbauch streckenweise ungleichen Querschnitt erhält, indem die Röhrenweite zunächst des Stellwerkes in der Regel mit 50 mm, an den entfernten Stellen hingegen zum mindesten nur mit 26 mm bemessen wird. Von diesem Hauptverteilungsrohr gehen die gewöhnlich 13 mm weiten Zweigrohre ab, welche die Pressluft schliesslich zu den einzelnen Stellvorrichtungen der in die Anlage

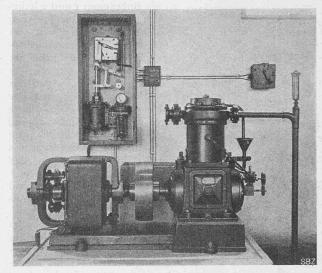


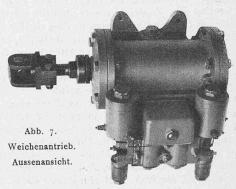
Abb. 1. Verbundkompressor mit selbsttätigem Anlasser (an der Wand).

einbezogenen Signale und Weichen weiterführen; sie münden dort in einen eigenen Vorratsbehälter, der soviel Pressluft aufzunehmen vermag, als zur Bewerkstelligung mehrerer Signal- oder Weichenumstellungen erforderlich ist, und hierdurch den Bedarf an Betriebskraft auch für den Fall sichert, als etwa ausnahmsweise eine wiederholte Betätigung der Umstellvorrichtung sich rasch hintereinander als notwendig ergeben würde.

An beliebigen geeigneten Stellen des Bahnhofes können sogenannte Lokomotivanschlüsse hergestellt werden, d. h. Rohranschlüsse, die vom Hauptverteilungsrohr abzweigend auf angemessene Höhe emporreichen. Ein solches für gewöhnlich dicht abgeschlossenes Zweigrohr ist an seiner Mündung derart vorgerichtet, dass es im Bedarfsfall leicht mit der Luftpumpe der Bremsleitung irgend einer Lokomotive in Verbindung gesetzt werden kann. Es hat dies den Zweck, bei einem etwaigen Versagen des Verbund-Kompressors oder seines Motors — vorausgesetzt, dass nicht ohnehin ein zweiter solcher Apparat als Reserve aufgestellt ist — eine vorläufige Abhilfe zu schaffen, indem man die auf grossen Bahnhöfen ja immer vorhandene Hilfsdienstoder Rangier-Lokomotive in gedachter Weise innerhalb weniger Minuten mit dem Rohrnetz verbindet, wodurch sie in Vertretung der untauglich gewordenen Stellwerks-Pumpenanlage die Drucklufterzeugung übernehmen kann.

Für den Antrieb der Signale werden neuestens die in Abb. 2 und 3 dargestellten Vorrichtungen mit "zwangläufiger Rückstellung" verwendet, welche trotz der verhältnismässigen Vereinfachung eine Doppelwirkung ausüben. Der Elektromagnet E, an dessen Spulenwindungen die zum Stellwerk führenden Stromleitungen l_1 und l_2 anschliessen, steuert in der Antriebvorrichtung die Wege der Pressluft, indem sein Anker A, je nachdem er angezogen oder abgerissen ist, eines der auf einer gemeinsamen Spindel sitzenden Ventile v_1 und v_2 schliesst oder öffnet. In der normalen Ruhelage der Antriebvorrichtung (Abb. 2) wobei E stromlos, A abgerissen, die Ventilspindel hochgehoben und demnach v_1 geschlossen, v_2 hingegen geöffnet ist, besitzt

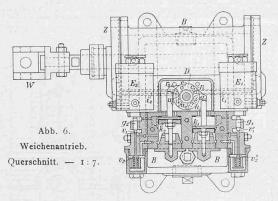
Abb. 4 und 5. Zweiarmiges Einfahrsignal. — 1:50.


das Signal S die Stellung für Halt. Infolge dieses Verhältnisses findet nämlich die Pressluft aus dem dauernd unter ihrem Drucke befindlichen obern Zylinder a durch die Bohrungen 1 und 2 lediglich bis zum verschlossenen Ventil v_1 ihren Weg, da dieses ein weiteres Vordringen verwehrt, während der Raum unter K durch die Bohrungen 5, 4, 3 und das geöffnete Ventil v_2 mit der freien Luft in Verbindung steht. Der in a auf k ständig einwirkende Luftdruck und das natürliche Uebergewicht am Signalarm halten den Differenzialkolben in seiner tiefsten Stellung fest und sichern die Haltlage des Signals.

Erfolgt hingegen durch die entsprechende Betätigung des Signalschalters am zugehörigen Stellwerk ein Stromschluss über l_1 , l_2 , dann wird der Anker A (Abb. 3) zufolge seiner angezogenen Lage v_2 schliessen und v_1 öffnen. Demnach tritt von a aus die Pressluft durch die Bohrungen 1, 2, 3, 4, 5 in den untern Zylinder, hebt infolge des Druckes auf die breite Unterfläche von K den Doppelkolben hoch, wobei der Rollenzapfen i den Hebel g mitnimmt und sonach den Arm des Signals durch die weitere Vermittlung des Gestänges z in die Stellung für Fahrt aufwärts hebt. Wird später im Stellwerk der über E geleitete Strom wieder unterbrochen, so entweicht die in d vorhandene Pressluft über 5, 4, 3, v_2 und es tritt vermöge des Ueberdruckes auf k und des Schwergewichtes der Gesamt-

vorrichtung die Haltlage des Signalarms ein, wie dies vorhin bereits in Betracht gezogen worden ist. Jeder Versuch, diese Lage von aussen her durch Hochziehen von zunbefugterweise in die Fahrtstellung umzuändern, müsste ergebnislos bleiben, weil sich hierbei die Fläche y am Gestängshebel g seitlich gegen den Rollenzapfen i lehnt und eine Verspreizung zwischen g und der Kolbenstange her-

vorbringt, welche wie eine Verriegelung wirkt. Aus Abb. 4 und 5 lässt sich weiter ersehen, wie der oben erwähnte, an das Hauptverteilungsrohr L angeschlossene Pressluft-Vorratsbehälter B beim Signal in den Grund eingebaut ist, und wie die, sich unter wasser-, staub- und rauchsichern Schutzgehäusen G_1 und G_2 befindlichen Signal-Antriebvorrichtungen — das dargestellte Beispiel bezieht sich auf ein zweiarmiges Einfahrsignal — am Signalmast angebracht sind.


Weniger einfach ist der in Abb. 6 teilweise im Durchschnitt und in Abb. 7 seinem Aeussern nach dargestellte Weichenantrieb, dessen wagrecht bewegbarer, mit der Weichenstange W verbundener Zylinderkolben, ähnlich wie bei einer Dampfmaschine, vor- und rückwärts geschoben wird. Die Pressluft wird dem Arbeitszylinder nicht unmittelbar durch einen Steuerungselektromagneten zugeführt, wie bei den Signalantrieben, sondern durch Vermittlung eines Verteilungsschiebers D (Abb. 6) der für seine Umstellungen den Antrieb von zwei kleinen Kolben k_1 und k_2 erhält. Erst diese sind es, welche, wie der Arbeitskolben des Signalantriebes, von

je einem Elektromagneten E1 bezw. E2 gesteuert werden. Zur Unterbringung dieser Teile sind am Zylinder Z ein kleiner Luftbehälter B, sowie die Gestellskörper für die beiden Steuerungskolben, für den Verteilungsschieber und die zwei Steuerungselektromagnete nebst ihren Ventilanordnungen, angegossen. In der Wand des Arbeitszylinders sind Luftkanäle i_1 und i_2 vorhanden, welche von der gegen den Schieber D offenen Bohrung r_1 bezw. r_2 ausgehend, sich bis zur rechtsseitigen, bezw. linksseitigen Bodenwand des Arbeitszylinders erstrecken. Zwei andere, für jede Zylinderseite vorhandene Bohrungen a1 und a2 führen in den Luftbehälter B, welch letzterer über einen Pressluft-Vorratbehälter, wie solche erwähntermassen an jeder Signalantriebstelle vorhanden sind, von dem Hauptverteilungsrohr des Bahnhofes gespeist wird. Der Verteilungsschieber D, welcher die vorbenannten vier Bohrungen überdeckt, hat für jede Zylinderseite eine Bohrung c_1 und c_2 , sowie je einen Kanal u1 und u2; er dreht sich auf einer Achse hin oder zurück und kann zweierlei Ruhelagen einnehmen.

Bei der einen dieser Endlagen, die Abb. 6 ersichtlich macht, liegen die beiden nach abwärts gekehrten Mündungen des Kanals u_2 über a_2 und r_2 ; ferner liegt c_1 auf r_1 , während a₁ durch das Fleisch des Schiebers abgeschlossen ist. Es tritt sonach von B aus stetig Pressluft durch a_2 , u_2 , r_2 , i_2 links in den Arbeitszylinder; dementgegen steht die rechts vom Arbeitskolben vorhandene Leitung i1 bei r1 durch die darüberliegende offene Schieberbohrung c1 mit der freien Luft in Verbindung, während gleichzeitig der Eintritt von Pressluft aus B über a, durch D verhindert ist. Wird der Verteilungsschieber aus der gezeichneten Stellung in die symmetrische Lage gebracht, so tritt nunmehr für den rechtsseitigen Zylinderteil dasselbe Verhältnis ein, welches bisher auf der linken Seite bestanden hat und umgekehrt. Dieses Hin- und Herrücken von D bewerkstelligen abwechselnd die in gewöhnlicher Weise vom Elektromagneten E1 bezw. E2 gesteuerten Kolben k1 und k2. Nach dem in Abb. 6 dargestellten Beispiel ist der Anker von E2 angezogen, daher die Ventilspindel g_2 nach abwärts gerückt und Ventil v_1 geschlossen, v2 geöffnet; ersteres verhindert den Luftaustritt aus dem Zylinder des Kolbens k_2 , letzteres gestattet den andauernden Uebertritt der Pressluft aus B nach dem besagten Zylinder. Der Anker des Elektromagneten E_1 ist abgerissen, daher die Ventilspindel g_1 gehoben, weshalb durch das zugehörige geöffnete Ventil v_1 der Zylinder des Kolbens k_1 mit der freien Luft verbunden und unter einem durch das geschlossene Ventil v_2 die Zuströmung von Pressluft aus B nach dem Zylinder des Kolbens k_2 verhindert wird.

Von den beiden Elektromagneten ist immer der der bestehenden Weichenlage entsprechende unter Strom, der andere stromlos und jedesmal, sobald im Stellwerk durch Aenderung der Stromwege dieses Verhältnis gewechselt wird, erfolgt eine Umstellung der Weiche. Dieser Vorgang wickelt sich, zieht man dafür Abb. 6 in Betracht, in nachstehender Weise ab: Elektromagnet E_2 wird stromlos, öffnet v_1 und schliesst v_2 ; die unter k_2 befindliche Pressluft entweicht ins Freie, die Verbindung mit B hört auf und k_2 sinkt. Gleichzeitig hat E_1 Strom erhalten, v_1 geschlossen

und v_2 geöffnet; es tritt die aus B kommende Pressluft unter k_1 und dieser Kolben steigt, wobei er den Verteilerschieber durch den Angriff, den die Kolbenstange auf einen seitlich vorstehenden Zahn der Scheibe D ausübt, in die zweite Ruhelage dreht. Bei dieser Schieberlage ist der Kanal u_1 über r_1 und a_1 , somit i_1 mit B in Verbindung gelangt, während c_2 auf c_2 gebracht und c_3 verschlossen wurde, so-

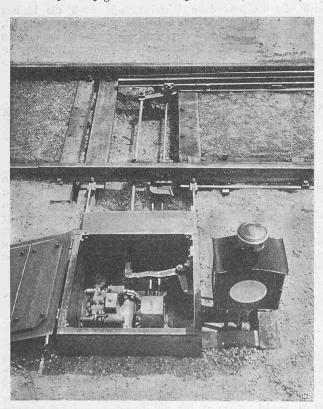


Abb. 8. Elektropneumatische Weichenantriebvorrichtung.

dass die im Arbeitszylinder vorhandene Pressluft über i_2 , r_2 , c_2 ins Freie entweicht und ein weiterer Luftzutritt aus B über i_2 nach der linken Seite des Arbeitskolbens verhindert ist. Letztern schiebt vielmehr die über i_1 eintreffende Pressluft in die linksseitige Endstellung, wobei die Kolbenstange durch Vermittlung der Weichenstange W die Weichenumstellung vollzieht. Wird ein nächstesmal das Stromverhältnis der beiden Elektromagnete neuerlich gewechselt, so tritt auch wieder in gleicher Weise wie vorhin der Wechsel in der Stellung des Verteilerschiebers, des Arbeitskolbens in

Z und der Weiche ein, wobei die in Abb. 6 gekennzeichneten Verhältnisse in allen Teilen zurückgewonnen werden.

Wie hieraus hervorgeht, kann die jeweilige Lage des Weichenantriebes zufolge einer allfälligen Unterbrechung der stromführenden Zuleitung oder beider Leitungen keine Abänderung erleiden, weil eben bei diesem Anlasse auch die Stellung des Vertailungen biehem

teilungsschiebers ungeändert bleibt. Vielmehr wird im gedachten Störungsfall der Arbeitskolben unter dem bis dahin bestandenen

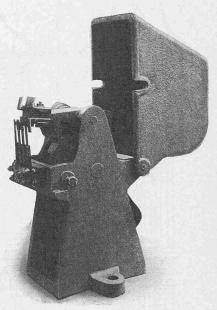


Abb. 9. Elektrischer Weichenzungen-Ueberwacher.

Einfluss der Pressluft verharren, sodass Halbstellungen der Weichen vollständig ausgeschlossen erscheinen. Die ganze Antriebvorrichtung (Abb. 8) einschliesslich eines später noch zu besprechenden Apparates für die elektrische Weichenzungen-Kontrolle, ruht auf einem mit dem Bahngeleise steif verbundenen kräftigen schmiedeisernen Untergestelle, das ein Schutzkasten umgibt, welchen man neuestens behufs Abhaltung der Sonnenhitze nicht mehr aus Eisen, sondern aus Holz herstellt. In diesem Kasten befindet sich auch ein auf dem Eisengestell gelagerter, von der Kolbenstange angetriebener Winkelhebel, durch dessen Vermittlung bei den einzelnen Weichenumstellungen die entsprechende Drehung des Weichensignalständers (Laternenständers) bewirkt wird. An der Weichenstange sitzen an genau bemessenen Stellen zwei Kloben, welche in den Endstellungen an eine Anschlagstange treffen, also den Gang der Weichenstange bezw. des Arbeitskolbens im Antrieb begrenzen und zugleich die Aufgabe haben, das Anschlagen dieses Kolbens an die Zylinderdecken zu verhüten.

Nicht nur an den spitzbefahrenen, sondern überhaupt an allen Weichen sind die Antriebe mit der vorerwähnten Zungenkontrolle versehen, welche die jeweilige Lage der Weiche am Stellwerk zu kennzeichnen und im Zusammenhang damit gewisse Sicherungen zu verbinden hat. Die bisherigen Vorrichtungen dieser Art sind in Gusseisenbüchsen verlegte Schieberkontakte, an deren Schieberlineal die beiden Weichenzungen mittels einer gelenkartigen Stangenverbindung Anschluss finden. Die Herstellung der richtigen Kontakte bezw. die ordnungsmässige Rückmeldung über den bestehenden Weichenzungenschluss kann bei ihnen nur dann erfolgen, wenn die Weichenzunge tatsächlich ihre richtige Endlage besitzt und wenn überdem diese Zungenstellung durch den Spitzenverschluss verriegelt ist. Die neuesten elektr. Zungenüberwacher (Abb. 9) werden als Kippkontakte ausgeführt und wirken gleichzeitig als Spitzenverschluss; sie bestehen nebst den Kontaktkämmen im wesentlichen aus zwei drehbaren Segmenten, die mit den beiden Zungen der

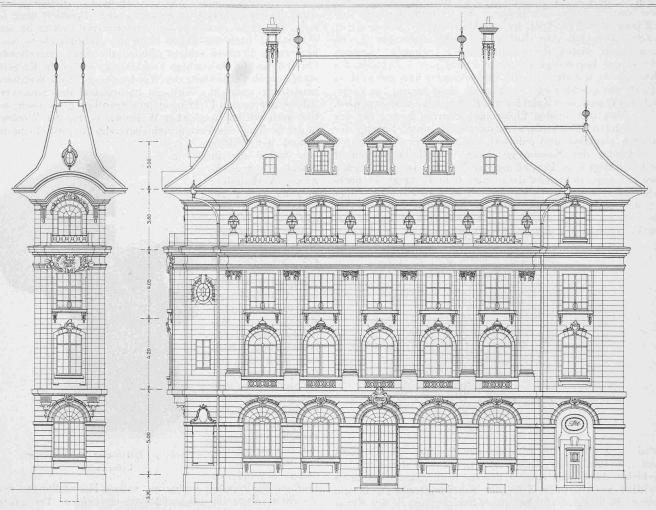


Abb. 7. Hauptfassade und Eckpartie der Schweiz. Volksbank an der Christoffelgasse in Bern. — Masstab 1:200.

Weiche durch je eine Druckstange in Verbindung stehen. Am Umfang der Segmente sind Daumenflächen vorhanden, welche dazu dienen, den Kontakthebel zu steuern; die andere Seite jedes Segmentes ist durch einen scharfen Abschnitt als Falle ausgebildet und hat die Aufgabe, bei erreichter Endstellung jene Weichenzunge, welche geschlossen ist, in dieser Lage durch den sich einlegenden Kontakthebel zu verriegeln. Bei jeder Weichenumstellung entriegelt vorerst

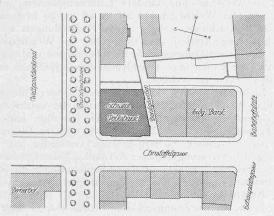


Abb. 1. Lageplan der Schweiz. Volksbank. — 1:2000.

die von der freien Weichenzunge zum Apparat geführte Stange durch Antrieb des angeschlossenen Segmentes die festgelegte Weichenzunge, wobei gleichzeitig die bisher geschlossen gewesenen Ueberwachungskontakte geöffnet werden. Hat die umgelegte Weiche ihren Weg soweit vollendet, dass die Spitzschiene bereits anliegt, so bewegt

sich die freigewordene Weichenzunge noch ein kleines Stückchen weiter, nämlich gerade so viel, als es nötig ist, das zur andern Weichenzunge gehörige Segment, bezw. diese Weichenzunge selbst, festzuriegeln, worauf erst die der neuerlangten Weichenlage entsprechenden Ueberwachungskontakte wieder in Schluss gelangen. (Schluss folgt.)

Verwaltungsgebäude der Schweiz. Volksbank in Bern.

Erbaut von Bracher & Widmer und Daxelhoffer, Arch. in Bern. (Mit Tafel 27 bis 30.)

Im Jahre 1907 beschloss die Schweiz. Volksbank in Bern die Erstellung eines neuen Verwaltungsgebäudes an Stelle ihres alten Hauses, da dieses den Anforderungen eines modernen Bankbetriebes in keiner Hinsicht mehr genügen konnte. Durch eine beschränkte Konkurrenz wurden die Plangrundlagen für die heutige Bauausführung gewonnen. Es waren laut Programm in dem neuen Hause unterzubringen:

- 1. Die Geschäftsräume der Kreisbank Bern.
- Die Räume der Generaldirektion der Schweiz. Volksbank.
- Mietwohnungen, die bei Bedarf später in Bureaux umgewandelt werden können.

Der Bauplatz liegt an der Ecke Christoffelgasse-Bundesgasse; auf der Nordseite grenzt er an das 5 m breite Bankgässchen, die Westseite stösst an einen Schulhausgarten (Abbildung 1). Das Gebäude hat also von drei Seiten reichlichen Lichtzutritt, auf der vierten Seite wenigstens soviel, dass es für die Treppen und Nebenräume genügt. Die Kreisbank beansprucht in der Hauptsache